This study explored the functionalization of sodium caseinate (NaCas) using environmentally friendly approaches to improve the mechanical and structural properties of the derived films. NaCas functionalization was achieved through casein crosslinking using two approaches: (i) thermal treatment at an alkaline pH to induce the formation of lysinoalanine (LAL) and (ii) riboflavin-mediated photo-oxidation to induce the formation of di-tyrosine (di-Tyr). Starting from NaCas (not functionalized, control) obtained from pasteurized milk, three functionalized NaCas samples were prepared: one sample crosslinked by LAL, and two samples crosslinked by di-Tyr formed under LED light either with or without riboflavin. The amount of crosslinking was evaluated in the acid hydrolysates through HPLC methods using either fluorescence (di-Tyr) or MS (LAL) detection. Heat treatment at pH 9 induced the formation of up to 3540 µg of LAL/g casein, whereas LED light exposure in the presence of riboflavin promoted the formation of up to 500 µg of di-Tyr/g casein. The formation of crosslinks at the intermolecular level, which resulted in protein aggregation, was detected by SDS-PAGE. Films were obtained by mixing the water solutions of the four NaCas samples with glycerol as the plasticizer and casting them. The FTIR spectra revealed that the formation of crosslinks also induced changes in the secondary structure of NaCas, which were conserved in the derived films. Mechanical testing demonstrated that di-Tyr crosslinks enhanced film ductility, while LAL crosslinks increased tensile strength and stiffness.

Functionalization of Sodium Caseinate for Production of Neat Films: Effects of Casein Crosslinking Induced by Heating at Alkaline pH or Light Exposure / P. D'Incecco, S. Gerna, M. Sindaco, L. Pellegrino, A. Barbiroli, V. Rosi, S. Limbo. - In: FOODS. - ISSN 2304-8158. - 14:16(2025 Aug 08), pp. 2764.1-2764.17. [10.3390/foods14162764]

Functionalization of Sodium Caseinate for Production of Neat Films: Effects of Casein Crosslinking Induced by Heating at Alkaline pH or Light Exposure

P. D'Incecco
Primo
;
S. Gerna
Secondo
;
M. Sindaco;L. Pellegrino;A. Barbiroli;V. Rosi
Penultimo
;
S. Limbo
Ultimo
2025

Abstract

This study explored the functionalization of sodium caseinate (NaCas) using environmentally friendly approaches to improve the mechanical and structural properties of the derived films. NaCas functionalization was achieved through casein crosslinking using two approaches: (i) thermal treatment at an alkaline pH to induce the formation of lysinoalanine (LAL) and (ii) riboflavin-mediated photo-oxidation to induce the formation of di-tyrosine (di-Tyr). Starting from NaCas (not functionalized, control) obtained from pasteurized milk, three functionalized NaCas samples were prepared: one sample crosslinked by LAL, and two samples crosslinked by di-Tyr formed under LED light either with or without riboflavin. The amount of crosslinking was evaluated in the acid hydrolysates through HPLC methods using either fluorescence (di-Tyr) or MS (LAL) detection. Heat treatment at pH 9 induced the formation of up to 3540 µg of LAL/g casein, whereas LED light exposure in the presence of riboflavin promoted the formation of up to 500 µg of di-Tyr/g casein. The formation of crosslinks at the intermolecular level, which resulted in protein aggregation, was detected by SDS-PAGE. Films were obtained by mixing the water solutions of the four NaCas samples with glycerol as the plasticizer and casting them. The FTIR spectra revealed that the formation of crosslinks also induced changes in the secondary structure of NaCas, which were conserved in the derived films. Mechanical testing demonstrated that di-Tyr crosslinks enhanced film ductility, while LAL crosslinks increased tensile strength and stiffness.
FTIR; caseinate film; crosslinking; di-tyrosine; lysinoalanine; mechanical properties; sodium caseinate; thermal treatment
Settore AGRI-07/A - Scienze e tecnologie alimentari
8-ago-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
foods-14-02764-v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Licenza: Creative commons
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1181580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 0
social impact