Marine and plant-based omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are widely added to animal diets to promote growth and immunity. We tested the hypothesis that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and their 1:2 combination could counteract acute or long-term damage of lipopolysaccharides (LPS), dextran sodium sulphate (DSS) and hydrogen peroxide (H2O2) in Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2). The results showed that 24 h treatment with EPA or DHA exhibited proliferative effects in IPEC-J2 cells at low to moderate concentrations (6.25–50 μM) (p < 0.05). Further, 24 h pretreatment with individual DHA (3.3 µM), EPA (6.7 µM) or as DHA:EPA (1:2; 10 µM) combination increased the mitochondrial activity or cell membrane integrity post-LPS (24 h), DSS (24 h) and H2O2 (1 h) challenge (p < 0.05). Additionally, DHA:EPA (1:2, 10 µM) combination decreased the apoptotic caspase-3/7 activity around twofold after 24 h LPS and DSS challenge (p < 0.05). Our study confirms the proliferative and cytoprotective properties of EPA and DHA in IPEC-J2 cells. Increased intracellular mitochondrial activity and cell membrane integrity by ω-3 PUFAs can play a role in preventing enterocyte apoptosis during acute or chronic inflammatory and oxidative stress.

Omega-3 Polyunsaturated Fatty Acids Counteract Inflammatory and Oxidative Damage of Non-Transformed Porcine Enterocytes / T.S. Sundaram, C. Giromini, R. Rebucci, A. Baldi. - In: ANIMALS. - ISSN 2076-2615. - 10:6(2020 May 31), pp. 956.1-956.11.

Omega-3 Polyunsaturated Fatty Acids Counteract Inflammatory and Oxidative Damage of Non-Transformed Porcine Enterocytes

T.S. Sundaram
;
C. Giromini;R. Rebucci;A. Baldi
2020

Abstract

Marine and plant-based omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are widely added to animal diets to promote growth and immunity. We tested the hypothesis that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and their 1:2 combination could counteract acute or long-term damage of lipopolysaccharides (LPS), dextran sodium sulphate (DSS) and hydrogen peroxide (H2O2) in Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2). The results showed that 24 h treatment with EPA or DHA exhibited proliferative effects in IPEC-J2 cells at low to moderate concentrations (6.25–50 μM) (p < 0.05). Further, 24 h pretreatment with individual DHA (3.3 µM), EPA (6.7 µM) or as DHA:EPA (1:2; 10 µM) combination increased the mitochondrial activity or cell membrane integrity post-LPS (24 h), DSS (24 h) and H2O2 (1 h) challenge (p < 0.05). Additionally, DHA:EPA (1:2, 10 µM) combination decreased the apoptotic caspase-3/7 activity around twofold after 24 h LPS and DSS challenge (p < 0.05). Our study confirms the proliferative and cytoprotective properties of EPA and DHA in IPEC-J2 cells. Increased intracellular mitochondrial activity and cell membrane integrity by ω-3 PUFAs can play a role in preventing enterocyte apoptosis during acute or chronic inflammatory and oxidative stress.
docosahexaenoic acid; eicosapentaenoic acid; omega-3 polyunsaturated fatty acids; porcine IPEC-J2 cells
Settore AGR/18 - Nutrizione e Alimentazione Animale
   Joint Doctorate in Molecular Animal Nutrition (MANNA)
   MANNA
   EUROPEAN COMMISSION
   H2020
   765423
31-mag-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Sundaram 2020.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/746324
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact