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Simple Summary: Farm animals frequently suffer from chronic inflammatory diseases due to certain
physiological or pathophysiological conditions such as weaning, the periparturient period and infections.
Traditionally, antibiotics were added to animal diets to counteract inflammation and enhance growth.
However, this leads to the emergence of antibiotic-resistant bacterial species which causes potential
health hazards. Over several decades, omega-3 polyunsaturated fatty acids have been known to exhibit
a multitude of beneficial effects in animal health and are regarded as a functional food with therapeutic
potential. We accessed the bioactivity of omega-3 polyunsaturated fatty acids as eicosapentaenoic acid
and docosahexaenoic acid in pig intestinal epithelium under different stress conditions in an in vitro
set-up. Our results demonstrated the proliferative and cytoprotective properties of the two fatty acids,
which are fundamental to determining the cellular mechanism for efficient utilization in pig diets.

Abstract: Marine and plant-based omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are widely added
to animal diets to promote growth and immunity. We tested the hypothesis that eicosapentaenoic acid
(EPA), docosahexaenoic acid (DHA) and their 1:2 combination could counteract acute or long-term
damage of lipopolysaccharides (LPS), dextran sodium sulphate (DSS) and hydrogen peroxide (H2O2)
in Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2). The results showed that 24 h treatment with EPA
or DHA exhibited proliferative effects in IPEC-J2 cells at low to moderate concentrations (6.25–50 µM)
(p < 0.05). Further, 24 h pretreatment with individual DHA (3.3 µM), EPA (6.7 µM) or as DHA:EPA (1:2;
10 µM) combination increased the mitochondrial activity or cell membrane integrity post-LPS (24 h),
DSS (24 h) and H2O2 (1 h) challenge (p < 0.05). Additionally, DHA:EPA (1:2, 10 µM) combination
decreased the apoptotic caspase-3/7 activity around twofold after 24 h LPS and DSS challenge (p < 0.05).
Our study confirms the proliferative and cytoprotective properties of EPA and DHA in IPEC-J2 cells.
Increased intracellular mitochondrial activity and cell membrane integrity byω-3 PUFAs can play a
role in preventing enterocyte apoptosis during acute or chronic inflammatory and oxidative stress.

Keywords: omega-3 polyunsaturated fatty acids; eicosapentaenoic acid; docosahexaenoic acid;
porcine IPEC-J2 cells

1. Introduction

The intestinal epithelial layer (IEL) at the gut–lumen and tissue interface is an important key player
of host–innate immunity. The IEL maintains intestinal homeostasis by establishing communication
between gut microbiota and underlying immune cells. Further, it acts as a “physical barrier” that blocks
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the entry of luminal pathogens and antigens into the circulatory system [1]. Sometimes, excessive
inflammation and oxidative stress can damage the integrity of the IEL and contribute to intestinal
malfunctioning. Pigs during weaning in particular undergo severe inflammatory and metabolic stress
due to altered diet, separation from piglets, transportation and exposure to pathogens. Further, the
weaning process alters the physiological structure and functions of the intestine which is subsequently
predisposed to growth deficiencies, morbidity and mortality [2]. Dietary omega-3 polyunsaturated
fatty acids (ω-3 PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are
widely known to exhibit strong anti-inflammatory, anti-oxidative and other health-beneficial properties
in animals [3–5]. Generally, ω-3/-6 PUFAs are structural constituents of phospholipid cell membranes
which maintain cell flexibility and fluidity. They also perform immunomodulatory functions by
generating lipid-based signaling mediators. It is widely assumed thatω-6 derived mediators play a
central role in pro-inflammation and the development of inflammatory diseases. Recently, however,
it has been found thatω-3 can replaceω-6 in immune cell membranes and give rise to low potency
lipid-mediators that act as agonists of pro-inflammation [5–7]. These principal findings are supported
by numerous animal studies which reported that dietary supplementation ofω-3 PUFAs ameliorates
lipopolysaccharides (LPS) mediated inflammation and weaning stress and improves intestinal structure
during gestation and lactation in pigs [8–11]. Previously, its anti-inflammatory potential was tested in
cancer enterocyte models [12,13]. However, cancer cells are not a realistic representative of normal
physiology [14–16]. Recently,ω-3 PUFAs were shown to reverse mycotoxin damage of non-transformed
IPEC-1 cells [17]. However, there has been limited research investigating the ω-3 PUFA effects on
IEL injury in various stress conditions. Here, the ability of ω-3 PUFAs to counteract intracellular
and membrane damage mediated by different stressors as LPS, dextran sodium sulphate (DSS) and
hydrogen peroxide (H2O2) was evaluated in a non-transformed porcine enterocyte model, IPEC-J2.

2. Materials and Methods

2.1. Cell Line and Culture Conditions

IPEC-J2 is a non-transformed cell line, derived from the jejunum epithelium of unsuckled
piglet (DSMZ, Braunschweig, Germany). Cell passages of 24–28 were used for the experiments.
Cells were cultured in a complete medium consisting of a 1:1 mixture of Dulbecco’s modified Eagle’s
medium with stable L-Glutamate and Ham’s F-12 mixture (DMEM/F12) (Immunological sciences,
Società Italiana Chimici, Rome, Italy), supplemented with 15 mM HEPES (Sigma-Aldrich, Milano, Italy),
5% heat-inactivated fetal bovine serum (FBS) (Immunological sciences, Società Italiana Chimici, Rome,
IT) and 1% penicillin (100 U/mL)/streptomycin (100 mg/mL) (Euroclone, Milano, Italy). Cells were
seeded at a density of 2 × 106 cells per T-75 cm2 culture flask (Corning, Sigma-Aldrich, Milano, Italy)
and maintained at 37 ◦C under a humidified atmosphere with 5% CO2. At complete confluency,
cells were trypsinated with 5 mL trypsin-EDTA (Sigma-Aldrich, Milano, Italy). Subsequently, the viable
cells were counted in a hemocytometer by tryphan blue (Sigma-Aldrich, Milano, Italy) staining and
seeded at a density of 3 × 104 cells/well in 96-well plates (Corning, Sigma-Aldrich, Milano, Italy).
Cells were allowed to adhere 24 h prior to the treatments.

2.2. Cell Treatments

2.2.1. Dose-Response Study

Cells were treated with increasing concentrations of EPA or DHA (0–200 µM) in DMEM medium
for 24 h. Similarly, the cells were exposed to different stressors such as Salmonella typhimurium LPS
(0–100 µg/mL), DSS (0–10%) for 24 h and H2O2 (0–10 mM) for 1 h. All chemicals were purchased from
Sigma-Aldrich (Milano, Italy).
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2.2.2. Cellular Challenge

Cells were pre-treated for 24 h with or without DHA (3.3 µM), EPA (6.7 µM) and DHA:EPA (1:2;
10 µM) in a DMEM medium, supplemented with 0.05% FBS. The FBS concentration was chosen based
on a preliminary study with a range of 0–1% up to 48 h. The concentration of 0.05% FBS optimally
supported cell attachment and growth. Subsequently, the cells were challenged with LPS (50 µg/mL),
DSS (2%) for 24 h and H2O2 (1 mM) for 1 h individually to induce inflammatory and oxidative damage.

2.3. Cell Viability Assay

Cell viability was determined by quantification of mitochondrial oxidoreductase using the
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay method. Following cellular
treatments (1.2b), the supernatant was replaced with 150 µL of MTT buffer (Sigma-Aldrich, Milano,
Italy) prepared in 1× PBS (0.25 mg/mL) for 2 h. The end product so obtained was dissolved in an equal
volume of dimethyl sulfoxide (DMSO) (Sigma-Aldrich), and the optical density (OD) was measured
at 570 nm in a calorimetric plate reader (Bio-Rad, Sigma-Aldrich). Cells without any treatment were
included as a control which represented 100% viability and DMSO was used as blank. Cell viability
was calculated using the formula:

Cell viability (%) = (ODtreatment − ODblank/(ODcontrol − ODblank) × 100 (1)

2.4. Lactate Dehydrogenase Assay

Cell membrane integrity was estimated by assessing the cytosolic lactate dehydrogenase (LDH)
released in the culture media. After the treatments (section 1.2b), 50 µL of the supernatant was mixed
with an equal volume of LDH buffer (CytoTox 96®, Promega, Madison, WI, USA) in a 96-well plate
and incubated for 30 min in darkness, at room temperature. Subsequently, colorimetric measurement
was performed in a microplate reader (Bio-Rad) at 490 nm.

2.5. Nitric Oxide Activity

The amount of cellular nitric oxide (NO) in the culture media was estimated via the Griess test.
For this, 50 µL of supernatant from the treatments (section 1.2b) was incubated with Griess reagent
(Promega). The end-point was colorimetrically measured at 490 nm as per the manufacturer’s instructions.

2.6. Apoptosis Assay

Cellular apoptosis was determined by accessing the intracellular caspase-3/7 activity. For this,
the cells were seeded at a low density of 2 × 104 cells/well in a 96-well plate and the treatments were
performed as described above (section 1.2b). Thereafter, supernatant was replaced with assay reagent,
incubated in darkness and fluorescence was measured at 499Ex/521Em in a microplate reader (Bio Tek,
Agilent, Milano, Italy) as per manufacturer’s instructions (Apo-ONE®, Promega).

2.7. Statistical Analysis

The values of half inhibitory concentrations (IC50) were calculated by non-linear regression analysis
using GraphPad Prism software (Version 8). Treatment effects were assessed by one-way ANOVA with
Bonferroni post-hoc test. At least three independent experiments were performed with three technical
replicates. All data are expressed as mean±SEM and a value of p < 0.05 was considered statistically significant.

3. Results

3.1. Dose-Response Effect of Different Test Compounds on the IPEC-J2 Cell Viability

As shown in Figure 1a,b, the concentrations between 6.25 and 50 µM of EPA and DHA significantly
increased cell viability which abruptly decreased at 200µM compared to the control (0µM, 100% viability;
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p < 0.05). The dose–response curves of LPS, DSS and H2O2 are reported in Figure 2a–c. Twenty-four
hours exposure to LPS did not affect IPEC-J2 cell viability until 25 µg/mL (Figure 2a) and DSS until
0.62% (Figure 2b). Later, it decreased in a dose-dependent manner between 50 and100 µg/mL for LPS
and 1.25% and 10% for DSS. A similar dose-dependent effect was observed for 1 h acute challenge
of H2O2 as shown in Figure 2c. Subsequently, the dose–response curves of the stressors were used
to estimate the IC50 values (section 1.7) that correspond to 62.02 µg/mL for LPS, 2.07% for DSS and
1.53 mM H2O2, respectively. Based on these values, the concentrations of 50 µg/mL LPS, 2% DSS and
1 mM H2O2 below the IC50 were chosen for further nutrient assessment.
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Figure 1. Dose–response effect of (a) eicosapentaenoic acid (EPA) and (b) docosahexaenoic acid (DHA)
with different concentrations (0–200 µM) on the Intestinal Porcine Epithelial Cell line (IPEC-J2) viability
for 24 h. Data are presented as mean± SEM (n = 3, one-way ANOVA). Statistically significant differences
among the treatments are denoted by different letters (a, b, c, d, e), where p < 0.05.
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Figure 2. Dose–response effect of (a) lipopolysaccharide (LPS) (0–200 µM) for 24 h; (b) dextran sodium
sulfate (DSS) (0–10%) for 24 h and (c) H2O2 (0–4 mM) for 1 h on IPEC-J2 viability. Data are presented as
mean ± SEM (n = 3, one-way ANOVA). The 50% inhibitory concentrations (IC50) were calculated by
non-linear regression analysis and R2 represents the goodness of fit.
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3.2. Viability Effects of EPA and DHA on IPEC-J2 Cells Challenged by Different Stressors

MTT-based viability assay was used to determine the treatment effects on mitochondrial metabolic
activity of IPEC-J2 cells. Pre-treatment of cells with EPA (6.7 µM) and DHA:EPA (1:2; 10 µM) increased
mitochondrial activity against LPS stress, while DHA did not have an impact compared to the control
(0 µM, p < 0.05) (Figure 3a). Similar mitochondrial protection was observed for cells pre-treated with
DHA (3.3 µM), EPA (6.7 µM) and their combination, DHA:EPA (1:2; 10 µM) from the damage of 24 h
DSS (Figure 3b) and 1 h H2O2 stress (Figure 3c) compared to the control (0 µM, p < 0.05).
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3.3. Effects of EPA and DHA on Membrane Integrity and NO Activity of IPEC-J2 Cells Challenged by
Different Stressors

LDH assay was performed to determine the treatment effects on cell membrane integrity. Neither
the individual DHA (3.3 µM)/EPA (6.7 µM) nor its combination DHA:EPA (1:2; 10 µM) were able
to recover membrane integrity from 24 h LPS (Figure 4a) and DSS challenge (Figure 4b) (p < 0.05).
As shown in Figure 4c, pre-treatment of the cells with DHA (3.3 µM), EPA (6.7 µM) and DHA:EPA (1:2;
10 µM) was able to significantly maintain membrane integrity against 1 h H2O2 challenge compared
to the control (0 µM, p < 0.05). The NO activity in the culture media was tested by Griess reagent.
Surprisingly, the NO content in the culture media was below the detection limit (<2.5 µM) for all the
treatments (not shown).
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Figure 4. Effects of DHA (3.3 µM), EPA (6.7 µM) and DHA:EPA (1:2; 10 µM) pre-treatment (24 h) on
the membrane integrity of IPEC-J2 cells challenged by (a) LPS (50 or 100 µg/mL) for 24 h; (b) DSS (2%)
for 24 h and (c) H2O2 (1 mM) for 1 h. Data are presented as mean ± SEM (n = 3, one-way ANOVA).
Statistically significant differences among the treatments are denoted by different letters (a, b, c, d),
where p < 0.05.

3.4. Effects of EPA and DHA on Apoptosis of IPEC-J2 Cells Exposed to Different Stressors

The intracellular caspase-3/7 activity was estimated to elucidate the treatment effects on apoptosis
of IPEC-J2 cells. A twenty-four hours challenge of 50–100 µg/mL LPS (Figure 5a) and 2% DSS (Figure 5b)
significantly increased the caspase-3/7 activity twofold compared to the control (0 µM) while, the
24 h DHA:EPA (1:2; 10 µM) pre-treatment remarkably reduced this activity in IPEC-J2 cells (p < 0.05).
Additionally, the reduction of caspase-3/7 activity was comparatively higher for 50µg/mL over 100µg/mL
of LPS. In contrast, no caspase-3/7 activity was observed for H2O2 challenge (not shown).
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Figure 5. Effects of DHA:EPA (1:2; 10 µM) pre-treatment (24 h) on the apoptosis of IPEC-J2 cells
challenged by (a) LPS (50 or 100 µg/mL) and (b) DSS (2%) for 24 h. Data are presented as mean ± SEM
(n = 3, one-way ANOVA). Statistically significant differences among the treatments are denoted by
different letters (a, b, c), where p < 0.05.

4. Discussion

Supplementation with ω-3 PUFAs of human and animal diets has been reported to control a
wide range of inflammatory diseases [18–21]. It also improves reproductive performance in farm
animals [22–24]. Nevertheless, its molecular mechanism at the level of the IEL under inflammatory
and oxidative stress remains uncertain. It is therefore essential to delineate the effects ofω-3 PUFAs
using appropriate cell models for efficient utilization in animal diets. Previously, the significance of
cell models and cell-based assays available for screening antioxidants was described [25]. In particular,
intestinal cell models are widely utilized for the validation of bioactive compounds in food and feed
analysis [15,26–28]. Earlier, the anti-inflammatory and anti-necroptosis activity of ω3-PUFAs were
demonstrated in normal and cancer enterocyte models [12,13,17]. However, cancer cells face certain
limitations as they exhibit aberrant cell surface sugars, glycoproteins, glycosylation and metabolic
pathways [14–16].

Here, we demonstrated the cytoprotective properties of ω-3 PUFAs (EPA, DHA, DHA:EPA)
in the porcine IPEC-J2 enterocyte model under different biological and chemical stress. IPEC-J2
is a non-cancer and non-transformed enterocyte model. Moreover, it is isolated from the jejunum
epithelium, the primary site of nutrients absorption. Furthermore, enterocytes are the major cell
population of IEL (~70–80%), making it an appropriate in vitro cell model to delineate nutrient behavior
closer to an in vivo environment.

The pathophysiological events of inflammation and oxidative stress were stimulated in the IPEC-J2
cells by challenge against LPS, H2O2 and DSS. LPS is a component of the Gram-negative bacterial cell
wall which instigates pro-inflammatory responses by activation of the NF-κB signalling pathway [29].
In addition, LPS triggers oxidative stress by decreasing the Nrf2 transcription factor that regulates
cellular redox balance. H2O2 is a commonly used chemical in IPEC-J2 cells for the characterization
of dietary antioxidants [30–32]. It induces oxidative stress-mediated inflammation by altering the
subcellular DNA, proteins and lipids [33]. DSS is mainly used in animal models to induce a leaky
epithelial barrier for the stimulation of inflammatory bowel disease. This is the first report of DSS
application in IPEC-J2 cells, and earlier, it was used in cancer cells [34].

Further, it is important to apply an optimal concentration of the stressor that renders mild toxicity
without completely killing or causing irrecoverable cell damage. To estimate this, a dose–response study
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was performed by exposing the cells to increasing concentrations of each stressor. Their corresponding
IC50 values were then determined from the viability assay. Subsequently, the stressor concentrations
forω-3 PUFA assessment (section 1.2b) were chosen below the IC50 range.

We observed that LPS concentrations > 25 µg/mL are required to decrease the viability of
IPEC-J2 cells after 24 h exposure. It was reported that high concentrations of LPS between 100 and
300 µg/mL are required to reduce the viability of non-transformed rat IEC-18 enterocytes after 24 h [35].
LPS concentrations between 1 and 10 µg/mL did not affect IPEC-J2 viability until 24 h, while 10 µg/mL
activated the expression of pro-inflammatory IL6 and IL8 mRNA [36]. An LPS concentration of
10 µg/mL activated pro-inflammatory genes in 8 h, although it did not cause any cytotoxic effects
after 24 h [37]. From these observations, in addition to the outcome of our present dose–response
study, it is evident that LPS concentrations between 0.1 and 10 µg/mL (1–24 h) are sufficient to activate
pro-inflammatory genes, while concentrations > 25 µg/mL (24 h) are required to induce cytotoxic
effects in IPEC-J2 cells. Thus, an LPS concentration of 50 µg/mL (24 h) below the IC50 range was
chosen to investigate theω-3 PUFA effects against biological damage. Likewise, the concentration of
1 mM H2O2 (1 h) and 2 % DSS (24 h) was chosen to evaluate theω-3 PUFA effects against chemical
damage. Similar concentrations of H2O2 were previously reported to reduce IPEC-J2 viability [30–33].
Additionally, 2% DSS was used to induce inflammation in the cancer cell models [34].

From the dose–response study of EPA and DHA, a low to moderate concentration between 6.25 and
50 µM was observed to significantly increase viability, while 200 µM exhibited inhibitory effects in
IPEC-J2 cells. A similar increase in cell viability at 6.25–25 µg/mL of EPA and DHA was observed in
IPEC-1 cells [17]. Further, EPA and DHA were reported to induce a dose-dependent anti-proliferative,
anti-cancer and apoptosis activity at 15–200 µM in human cancer enterocytes as HT-29, Caco-2 and
DLD-1 [38–41]. In another study, cancer cells were reported to exhibit differentialω-3 PUFA uptake and
membrane distribution due to decreased activity ofω-3 PUFA synthesizing ∆5/∆6 desaturase enzymes
over normal cells [42–44]. In addition, excessive production of reactive oxygen species by cancer cells
was reported to accelerateω-3 PUFA mediated lipid peroxidation, making it more vulnerable toω-3
PUFA than normal cells [44]. These factors could explain the differential outcome ofω-3 PUFA activity
in cancer and non-cancer enterocytes. Therefore, it is essential to choose appropriate cell models to
avoid misinterpretations on the outcome of a study. A concentration of 10 µM EPA/DHA was chosen
as a starting point to determine its lowest cytoprotective dose in IPEC-J2 cells. Furthermore, 10 µM
was the minimal concentration reported to significantly exhibit anti-inflammation in macrophages [45]
and 12.5–25 µg/mL in IPEC-1 cells [17]. Additionally, 10 µM lies in the range of concentrations that
exhibited proliferative effects in our dose–response study. Normally, the natural sources of ω-3 PUFA
as fish and linseed oil comprise a mixture of short and long chain fatty acids with major proportions
of EPA and DHA in different ratios. In order to mimic this natural co-existence, we mainly focused
on the effects of DHA:EPA combination in a 1:2 ratio as chosen from previous in vivo trials [46–48].
Our experimental set-up enabled us to demonstrate that the pre-treatment of IPEC-J2 cells with DHA
(3.3 µM), EPA (6.7 µM) and DHA:EPA (1:2; 10 µM) is able to significantly restore the mitochondrial
activity reduced by H2O2 (1 h) and DSS (24 h) induced stress as observed from the viability assay.
Similarly, EPA (6.7 µM) and DHA:EPA (1:2; 10 µM) protected the mitochondrial activity against
LPS (24 h) stress while single DHA (3.3 µM) administration did not show any impact. Possibly,
its concentration is too low to confer cytoprotection unlike EPA or the combination.

Moreover, as witnessed from the LDH assay, DHA (3.3 µM), EPA (6.7 µM) and DHA:EPA (1:2;
10 µM) potentially recovered membrane integrity from H2O2 stress, while they were unable to do so
for LPS and DSS stress. The concentrations of LPS and DSS tested in the current study are speculated
to have disrupted the IPEC-J2 cell membrane beyond the recovery potential of different nutrient
doses tested. Additionally, post-LPS and DSS challenge, a two-fold remarkable decline in apoptotic
caspase-3/7 was observed for cells with DHA:EPA (1:2; 10µM) pre-treatment than for those without.
In contrast, no caspase-3/7 activity was observed for H2O2. Perhaps the acute challenge of H2O2

activated necrosis instead of apoptosis, which requires further analysis. Generally, cellular apoptosis
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is activated by multiple pathways such as DNA fragmentation, certain mitochondrial proteins, or
electrolyte imbalance, induced by membrane damage [49]. Thus, the anti-apoptotic activity of ω-3
PUFA observed in IPEC-J2 cells could be mediated by control of mitochondrial activity and membrane
integrity. In accordance with our results, ω-3 PUFA was shown to recover mitochondrial activity,
membrane integrity and suppressed necroptosis genes corresponding to mycotoxin injury in IPEC-1
cells [17]. Future investigation is necessary to access gene and protein expressions to substantiate
the pathway involved in ω-3 PUFA bioactivity. This study has a practical application of using ω-3
PUFA as a nutritional strategy in pigs. Thus, the present outcome is fundamental to understanding the
cellular mechanism underpinningω-3 PUFA nutrition in pig diets.

5. Conclusions

To summarize, our current study demonstrated the proliferative and cytoprotective properties of
ω-3 PUFAs as EPA and DHA in the non-transformed porcine enterocyte model, IPEC-J2. EPA and
DHA, either individually or in combination, are able to suppress the enterocyte apoptosis through
recovery of mitochondrial activity or cell membrane integrity from the detrimental effects of LPS,
DSS and H2O2. Additionally, for the first time, low concentrations ofω-3 PUFAs were demonstrated to
efficiently control both acute and long-term damage. Further, these in vitro effects should be translated
into in vivo efficacy through animal trials for dose–effect optimization.
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