In this study, we extensively describe experimental models, with correlating experimental conditions, which were used to investigate the enzymatic hydrolysis of bacterial cellulose (BC) to obtain nanocrystals. Cellulase from Trichoderma reesei was used in five enzyme/BC ratios over a period of 74 h. The turbidity data was modeled using both logistic regression and empirical regression to determine the fractal kinetics, resulting in unique kinetic patterns for the mixtures that were richest in BC and in enzymes. The evolution of the yield was inversely related to the turbidity, as confirmed through a semi-empirical approach that was adopted to model the experimental data. The yield values after 74 h of hydrolysis were higher for the substrate-rich mixtures (~20%) than for the enzyme-rich mixtures (~5%), as corroborated by cellobiose and glucose quantification. Transmission electron microscopy and atomic force microscopy analyses revealed a shift from a fibril network to a needle-like morphology (i.e., aggregated nanocrystals or individual nanocrystals ~6 nm width and 200-800 nm in length) as the enzyme/BC ratios went from lower to higher. These results were explained in terms of the heterogeneous substrate model and the erosion model. This work initiated a promising, environmental-friendly method that could serve as an alternative to the commonly used chemical hydrolysis routes.
Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals / C. Rovera, M. Ghaani, N. Santo, S. Trabattoni, R.T. Olsson, D. Romano, S. Farris. - In: ACS SUSTAINABLE CHEMISTRY & ENGINEERING. - ISSN 2168-0485. - 6:6(2018 Jun 04), pp. 7725-7734.
Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals
C. Rovera;M. Ghaani;N. Santo;D. Romano;S. Farris
2018
Abstract
In this study, we extensively describe experimental models, with correlating experimental conditions, which were used to investigate the enzymatic hydrolysis of bacterial cellulose (BC) to obtain nanocrystals. Cellulase from Trichoderma reesei was used in five enzyme/BC ratios over a period of 74 h. The turbidity data was modeled using both logistic regression and empirical regression to determine the fractal kinetics, resulting in unique kinetic patterns for the mixtures that were richest in BC and in enzymes. The evolution of the yield was inversely related to the turbidity, as confirmed through a semi-empirical approach that was adopted to model the experimental data. The yield values after 74 h of hydrolysis were higher for the substrate-rich mixtures (~20%) than for the enzyme-rich mixtures (~5%), as corroborated by cellobiose and glucose quantification. Transmission electron microscopy and atomic force microscopy analyses revealed a shift from a fibril network to a needle-like morphology (i.e., aggregated nanocrystals or individual nanocrystals ~6 nm width and 200-800 nm in length) as the enzyme/BC ratios went from lower to higher. These results were explained in terms of the heterogeneous substrate model and the erosion model. This work initiated a promising, environmental-friendly method that could serve as an alternative to the commonly used chemical hydrolysis routes.File | Dimensione | Formato | |
---|---|---|---|
Post-print.pdf
Open Access dal 11/10/2019
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
acssuschemeng.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
12.51 MB
Formato
Adobe PDF
|
12.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
acssuschemeng-compressed.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
544.93 kB
Formato
Adobe PDF
|
544.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.