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Abstract 

In this study, we extensively describe experimental models, with correlating experimental conditions, 

which were used to investigate the enzymatic hydrolysis of bacterial cellulose (BC) to obtain 

nanocrystals. Cellulase from Trichoderma reesei was used in five enzyme/BC ratios over a period of 

74 h. The turbidity data was modeled using both logistic regression and empirical regression to 

determine the fractal kinetics, resulting in unique kinetic patterns for the mixtures that were richest 

in BC and in enzymes. The evolution of the yield was inversely related to the turbidity, as confirmed 

through a semi-empirical approach that was adopted to model the experimental data. The yield values 

after 74 h of hydrolysis were higher for the substrate-rich mixtures (~20%) than for the enzyme-rich 

mixtures (~5%), as corroborated by cellobiose and glucose quantification. Transmission electron 

microscopy and atomic force microscopy analyses revealed a shift from a fibril network to a needle-

like morphology (i.e., aggregated nanocrystals or individual nanocrystals ~6 nm width and 200-800 

nm in length) as the enzyme/BC ratios went from lower to higher. These results were explained in 

terms of the heterogeneous substrate model and the erosion model. This work initiated a promising, 

environmental-friendly method that could serve as an alternative to the commonly used chemical 

hydrolysis routes. 
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INTRODUCTION 

The exciting structure and properties of bacterial nanocellulose (BNC), a green nanomaterial, have 

been widely reviewed.1 Although bacterial cellulose (BC) has the same chemical composition as 

plant-derived cellulose, differences in the biosynthesis process lead to distinct structural properties. 

The most relevant aspects rely on the purity of the cellulose, which is produced by some species of 

acetic acid bacteria (in particular, Komagataeibacter xylinum and Komagataeibacter 

sucrofermentans).2 Pure cellulose is free of other plant components such as hemicellulose and lignin. 

Deviation from purity may have tremendous technical and economic consequences in all industrial 

settings.  

From a technical point of view, the purity of BC dramatically affects the hierarchical assembly 

pattern of β-1,4-glucan chains in the cellulose I allomorph (the form that living cells assemble); the 

triclinic phase (Iα) is the most abundant (~70% from static cultures) in BNC, while the monoclinic 

phase (Iβ) is found in most plant cellulose.3 The highly ordered alignment and stacking of glucan 

chain sheets into crystal units, also known as cellulose nanocrystals, is reflected in native BC’s higher 

inherent crystallinity (84–89%) than its plant-derived counterpart (40–60%),4,5 as Sacui et al. 

confirmed recently using a combined CPMAS-NMR/WAXS spectroscopy approach.6 This turns out 

to be important when considering practical uses of BC (e.g., the development of nanocomposite 

materials), as the crystalline structure greatly affects cellulose’s mechanical and interfacial 

properties.7 The unique mechanical anisotropy of BNC is responsible for its outstanding elastic 

modulus, with single-fibril measurements made by atomic force microscopy (AFM; e.g., tip bending) 

and Raman spectroscopy as high as ~78 GPa and 114 GPa, respectively.8,9 These values further 

increase if the crystalline phase is voided of contributions from the amorphous regions. In particular, 

Reiling and Brickmann estimated the crystal modulus of polymorph Iα as being between 128 GPa and 

161 GPa,10 and Eichhorn and Davies estimated it as being between 136 and 155 GPa.11 Regardless of 

the specific absolute value, the modulus of BNC is comparable with that of high-performance 
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synthetic fibers such as aramid (130 GPa) and is above that of aluminum (70 GPa) and glass fibers 

(76 GPa).12  

From an economic point of view, Donini et al. compared the productivity of cellulose from 

plants and microorganisms.13 They found that the production of cellulose from 1 ha of eucalyptus (80 

t of cellulose/ha after 7 years of cultivation) could be achieved with bacteria to a hypothetical yield 

of 15 g/L in 50 h of culture (average of 0.3 g/h) in a bioreactor of 500 m3 in approximately 22 days. 

Moreover, obtaining high-purity BC involves a simpler procedure than obtaining plant-derived 

cellulose. Indeed, to overcome lignocellulose’s inherent recalcitrance (the resistance of cell walls to 

deconstruction), a harsh first step is necessary to remove the lignin and hemicellulose and thus 

facilitate the subsequent processing.14 The delignification or fractionation of lignocellulose (which is 

usually carried out using a sulfite, chlorite, diluted-acid, or alkaline solution) is a cumbersome process 

that is also somewhat detrimental to the environment.15 In spite of that, while it is possible to devise 

an economically feasible biotechnological process for BNC production, by enzymatic hydrolysis, the 

high selling costs associated to its production are nowadays the main hurdle that restrain BNC to 

high-value niche markets.16 The main reason for this is the low yield of the fermentation process.17 

Depending on the operating parameters (such as type of process, growth medium, strain, pH, and 

temperature) values ranging between 4.0 g/L and 16.0 g/L have been reported.18 Concerning BCNCs, 

yields in the range 21-38% and of ~14% have been reported for acid hydrolysis19 and hydrolysis 

mediated by ammonium persulfate,20 respectively. No data has been found on the yield of BCNCs 

obtained by enzymatic hydrolysis. 

Because of BC’s superior chemical purity, crystallinity, and biocompatibility, as well as its 

ultrafine network architecture and easy handling, it performs better than other conventional natural 

or synthesized counterparts,21 making its use possible for diverse sectors. The first commercially 

available BNC product (nata de coco) appeared in the 1990s;22 since then, BNC has been used for a 

variety of applications, including textiles, cosmetics, medical or biomedical products, and food 

products.23 Other proposed uses of BNC include reinforced polymeric materials or paper; thickening 
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agents or food stabilizers; food packaging; biomaterials for use in manufacturing cosmetics, artificial 

skin, artificial blood vessels, or engineered tissues; diaphragms for loudspeakers; and materials for 

use in the preparation of optically transparent films, electric conductors, or magnetic materials.24 To 

exploit BNC’s full potential, it is crucial to isolate the crystalline phase from the amorphous domains, 

especially when bacterial cellulose nanocrystals (BCNCs) are intended to be a viable alternative to 

inorganic or mineral-based reinforced nanobuilding blocks for the generation of polymer 

nanocomposites with superior performance (e.g., mechanical, gas-barrier, and thermal performance). 

Acid hydrolysis is the most widely employed method for obtaining cellulose nanocrystals from 

parental, macro-sized cellulose fibers,25 as also demonstrated by very recent works, where either 

hydrochloric acid or sulfuric acid were used to produce cellulose nanocrystals.26–31 However, 

cellulose fibers treated with sulfuric and hydrochloric acids yield crystals with poor thermal and 

mechanical properties, which can dramatically affect the composite’s final performance.32 In 

addition, the use of concentrated acid solutions poses a serious environmental risk in terms of both 

disposal and energy consumption; this is in contrast with the increasing demand for innovative green 

and sustainable chemistry technologies. Therefore, it is a priority to investigate alternative CNC-

production routes that have less environmental impact but that do not jeopardize the native cellulose’s 

structural properties. Ultrasonication has been proposed to achieve this goal, but a few studies have 

highlighted that it is more convenient when used only to assist in a main chemical route’s 

procedure.33–35 The best-known application of enzymatic hydrolysis of cellulosic biomass is for 

biological conversion into fuels and chemicals, for which it has shown the potential to achieve higher 

yields, higher selectivity, lower energy costs, and milder operating conditions than are found in 

chemical processes.36 More recently, the current global focus on refining lignocellulose biomass has 

been expanded to also include intermediate products such as nanocellulose.37 Enzymatic hydrolysis 

could theoretically be employed as an approach with low environmental impact in the top-down 

reduction of cellulose to nanocrystals. In recent years, to make this process economically viable, much 

effort has been expended to increase cellulolytic enzymes’ efficiency (e.g., by enhancing resistance 
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to operational conditions such as pH and temperature, or by increasing speed) and reduce their price. 

As a result, a number of commercial mixtures using cellulase enzymes are available under various 

trade names (e.g., Celluclast™, Accelerase™, Spezyme CP™, and Viscoferm™). In fact, these 

mixtures include a variety of enzymes that are collectively known as cellulases: i) endo-1,4-β-

glucanases (EGs), which target cellulose chains in random locations away from the chain ends; ii) 

exoglucanases or cellobiohydrolases (CBHs), which degrade cellulose by splitting off molecules from 

both ends of the chain, thus producing cellobiose dimers; and iii) β-glucosidases, which hydrolyze 

the cellobiose units that are produced during the EG and CBH attacks, turning them into glucose.38 

EGs, in particular, quickly degrade the amorphous regions of the cellulose chains to produce smaller 

cellulose fragments,39 whereas CBHs typically attack the short crystalline regions of the cellulose.40 

For this reason, cellulases can be used to obtain nanocrystals in nearly the same way as is used in acid 

hydrolysis. 

A few works in the literature already reported on the enzymatic hydrolysis of BNC. Santa-

Maria and Jeoh used a cellobiohydrolase (Cel7A from Trichoderma reesei) to investigate changes in 

cellulose microstructure throughout the hydrolysis process by simultaneous confocal and atomic force 

microscopy.41 George et al. compared BCNC’s morphological and thermal properties with those of 

acid-processed nanocrystals, which are components in polyvinylalcohol nanocomposites.32 Hu et al. 

developed a bio-absorbable bacterial cellulose (BBC) material for wound dressing applications. The 

biodegradation of this material was investigated by in-vitro biodegradability tests using different 

enzymes (alone or in combination) as a function of pH values relevant to wound environments.42 In 

a similar study, Wang et al. evaluated the in vitro biodegradability of bacterial cellulose by cellulose 

in simulated body fluid.43 Domingues et al. compared CNCs obtained by acid hydrolysis of 

eucalyptus fibers with CNCs obtained upon enzymatic hydrolysis of bacterial cellulose. The main 

focus of this investigation was on the impact of the characteristic shape and surface chemistry of the 

two types of CNCs at oil/water interfaces and solid surfaces (cationized silica an polystyrene films).44 
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In this work, we investigate the possibility of producing BCNCs using commercially available 

enzymes preparation under controlled conditions (pH, temperature, and time). We systematically 

discuss for the first time the effect that the enzyme/cellulose ratio has on the BCNCs’ final 

morphological properties and also consider the yield of the water suspensions thereof. In addition, 

we use a modeling approach to gather information on the kinetic of the hydrolysis reaction. The 

information stemming from this study can be used to further clarify enzymatic hydrolysis’s potential 

as an alternative to chemical strategies for obtaining BCNCs.  

 

EXPERIMENTAL SECTION 

Production of the macro-sized BC 

BC was produced by static fermentation using Komagataeibacter sucrofermentans DSM 15973 

(Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig 

Germany) in rectangular (630×430×115 mm3) polypropylene trays: 4 L of  Hestrin and Schramm 

(HS) medium (glucose: 20 g/L ; peptone: 5 g/L; yeast extract: 5 g/L; Na2HPO4: 2.7 g/L; citric acid: 

1.15 g/L; pH 6.0) were inoculated with 0.5 L of pre-culture (HS medium, 2L Erlenmeyer flask, growth 

for 48 h at 30°C, 150 rpm). After 7 days at 30°C the resulting BC pellicles were removed from the 

cultural medium, washed with deionized water and boiled in a NaOH 1M solution for 30 min to 

remove the residual bacterial cells. After cycles of washing with distilled water, the cellulosic material 

was homogenized for 15 min with an Ultra-turrax® T25 Basic homogenizer (Ika-Werke, Stanfen, 

Germany) at 12,000 rpm and finally freeze-dried at -55°C and 0.63 mbar for 24 h using an ALPHA 

1-2 LDplus freeze dryer (Martin Christ, Osterode am Harz, Germany). 

 

Enzymatic hydrolysis 

A stock dispersion of BC was prepared by adding 12 g of freeze-dried BC to 88 g of distilled water. 

Then, 2 g of the stock dispersion was added to 40 g of sodium acetate buffer solution (0.1 M, pH 5). 

The dispersion was homogenized using an Ultra-turrax® T25 Basic homogenizer (Ika-Werke, 

Page 7 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 
 

Stanfen, Germany) at 8,000 rpm for 5 min and then kept in an incubator at 55 ± 1°C overnight to 

facilitate the solvent’s diffusion into the cellulose material and thus promote an even degradation of 

the amorphous parts upon adding the enzymatic mixture. The enzymatic hydrolysis was performed 

using cellulase from Trichoderma reesei (ATCC26921) in the form of lyophilized powder stock 

(Sigma Aldrich, Milano, enzymatic activity ~6.5 U/mg solid). A stock solution of the enzyme in water 

(5 mg/mL) was prepared to obtain various enzyme/BC mixtures (listed in Table 1). The enzymatic 

hydrolysis was conducted for a minimum of 2 h and a maximum of 74 h, all at 55 ± 1°C. 

 

Table 1. Cellulase/BC mixtures with the related amount (g) of cellulase water solution and 

enzymatic units (U). 

Cellulasea / BCb Cellulasea (g) Enzyme Unit (U) 

1:4 0.5 16.25 

1:3 0.66 21.45 

1:2 1 32.50 

1:1 2 65 

2:1 4 130 

aAqueous solution (5 mg/g; see main text for details). bAqueous dispersion (12% by weight; see main 

text for details). 

 

Analyses 

The evolution of the enzymatic hydrolysis was monitored at 2 h or 3 h intervals in turbidity 

experiments over a temporal window of 74 h. Spectrophotometric measurements were performed 

using a Lambda 25 spectrophotometer (Perkin Elmer, Waltham, MA, USA) at wavelengths between 

380 nm and 800 nm in transmittance mode. For each sample, the area under the transmittance 

spectrum was calculated by means of PerkinElmerUV WinLab software (version 6.0.4.0738) and 

plotted over time. 
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The yield of the enzymatic process was gravimetrically determined every 2 h over a 74 h 

temporal window for each enzyme/BC combination collecting all the cellulosic material (Table 1). 

More specifically, 40 mL of the enzyme/BC water dispersion was centrifuged at 4,000 rpm (2,630 

rcf or g-force) for 15 min using a Rotofix 32 A centrifuge (Hettich GmbH & Co. KG, Tuttlingen, 

Germany). The resulting pellet, made of the hydrolyzed BC, was used for gravimetric analysis with 

a HS43S-MC halogen-lamp moisture-content analyzer (Mettler Toledo, Greifensee, Switzerland) set 

to 105°C. 

Cellobiose and glucose were the ultimate products of the enzymatic process and were quantified 

using high-performance liquid chromatography (HPLC). The supernatant that arose from the 

centrifugation of the enzyme/BC mixture (which was itself obtained after 74 h of hydrolysis) 

underwent a first centrifugation at 4,000 rpm (2,630 rcf or g-force) for 15 min. The supernatant of 

this first centrifugation was in turn centrifuged at 14,000 rpm (9,205 rcf or g-force) for 5 min to 

completely remove the residual particles that were still present in the solution. The HPLC analysis 

was performed using a Merck Hitachi L-7100 system with an Aminex HPX-87P column (300 mm × 

7.8 mm; Biorad Laboratories, Hercules, CA, USA) and an evaporative light-scattering detector 

(Sedex 75; Sedere, Alfortville, France; conditions: He 3.5 bar, 50°C). The analysis was carried out at 

60°C using water (0.5 mL/min) as the eluent. 

Transmission electron microscope (TEM) was used to capture images of the BCNCs (a LEO 

912 AB energy-filtering transmission electron microscope operating at 80 kV; Zeiss, Oberkochen, 

Germany). Digital images were recorded with a ProScan 1K Slow-Scan CCD camera (ProScan, 

Scheuring, Germany). Samples for the TEM analyses were prepared according to the negative 

staining technique by drop-casting a few microliters of dispersion onto a glow-discharged Formvar-

coated Cu grid (400-mesh) and letting the samples rest for 1-2 min, then blotting the excess of 

suspension and contrasting with uranyl acetate. 

AFM experiments were performed using a Nanoscope V Multimode (Bruker, Karlsruhe, 

Germany) in intermittent-contact mode after dropping 10 μL of 1:10 diluted BCNC dispersion onto 
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a mica substrate. The images were collected at a resolution of 512 × 512 pixels using silicon tips 

(force constant: 3 N/m; resonance frequency: ~75 kHz). Dimensional calculations for the acquired 

images were conducted with Nanoscope software (version 7.30; Bruker, Karlsruhe, Germany). The 

mean values reported for the BCNCs’ dimensions were calculated from several images. 

Information on the size distribution of BCNCs was obtained through photon correlation 

spectroscopy using a dynamic light-scattering (DLS) Zetasizer ZS90 instrument (Malvern 

Instruments Ltd., Malvern, UK). Analyses were carried out at 25°C, with a stabilization time of 60 s, 

and using water’s viscosity (v = 0.8872 cP) and refractive index (n = 1.330) values. The software 

used the nonnegative least squares algorithm to calculate the size distribution. 

The statistical significance of the mean values was determined via a one-way analysis of variance 

using StatgraphicsPlus 4.0 software (STSC, Rockville, MD, USA). The mean values, where 

appropriate, were separated using a least significant difference multiple-range test at p < 0.05. 

Modeling of the experimental data for the turbidity and yield experiments was performed by means 

of nonlinear regression, supported by the Levenberg–Marquardt algorithm, in Origin 8 software 

(OriginLab Corporation, Northampton, MA, USA). The comparison between the experimental 

transmittance data and those predicted by the models was performed using the root mean square error 

(RMSE), calculated as follows: 

 

n

xx

RMSE

n

i

ipredi




 1

2

,exp,

    (1) 

where xexp,i is the observed (measured) value, xpred,i is the value predicted by the model, and n the 

number of the experimental measurements. RMSE is a widely used parameter to estimate the quality 

of model fitting as well as to compare the individual model performance. If RMSE tends toward 0 or 

is very close to the experimental error, it means that model is able to represent the experimental data. 
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RESULTS AND DISCUSSION 

Turbidity and hydrolysis kinetic analyses 

Turbidity experiments were carried out to monitor the evolution of the enzymatic hydrolysis. More 

specifically, decreased turbidity (i.e., increased transmittance) was expected for extended hydrolysis 

times as a consequence of reduced size of the BC fibrils. A decrease in size to the nanoscale level 

would reduce effect of the scattering phenomenon (and thus the turbidity of the BC water solution), 

as the wavelength of the incident light would be greater than or equal to the size of the newly formed 

BCNCs. As depicted in Figure 1, over time, the transmittance increased for all the enzyme/BC ratios 

until an apparent steady state was reached; this is a clear evidence of a decreased rate during the 

process, which is a typical feature of cellulose hydrolysis.37 Inhibition by cellobiose and glucose, 

enzyme deactivation, decreased substrate reactivity, decreased substrate accessibility, and decreased 

synergism between cellulases (among other factors) were reported as being the most relevant rate-

relenting factors.45 However, some obvious differences among the samples were detected in evolution 

of the transmittance and two different patterns were detected among the five transmittance-versus-

time curves depending on the enzyme concentration. While the plots of the 1:4, 1:3, and 1:2 mixtures 

showed an initial lag phase followed by a rising phase (Figure 1a), the curves obtained from the 1:1 

and 2:1 mixtures exhibited an immediate climbing trend (Figure 1b). It is noteworthy that the BC-

containing water dispersions’ initial transmittance value (i.e., after 2 h) was proportionally higher for 

the mixtures that had lower amounts of enzymes; this demonstrates that, even after only 2 h, the 

enzymatic hydrolysis produced an appreciable outcome for the mixtures richest in enzymes (1:1 and 

2:1). In addition, the maximum transmittance for the 1:1 and 2:1 mixtures was achieved after ~30 and 

45 h, respectively, after which a decrease was observed; the decrease was more marked for the 2:1 

mixture. This decrease in transmittance (i.e., increase in turbidity) was probably due to the newly 

formed nanocrystals beginning to reaggregate after the completion of the hydrolysis reaction due to 

the extensive hydrogen bonding between the chemically unmodified (i.e., ‒OH rich) cellulose 

molecules. 
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Figure 1. Evolution of transmittance (expressed as the area under each spectrum) during 74 h of 

hydrolysis for the enzyme/BC ratios of: (a) 1:4 (‒‒), 1:3 (‒‒), and 1:2 (‒‒); (b) 1:1 (‒‒) and 

2:1 (‒‒). The black lines connecting the experimental points are only to ensure clarity. The red and 

green lines are the fitting curves obtained from a nonlinear regression of the experimental data 

according to eq. 2 and eq. 3 (see the main text for details). 

 

The two hydrolysis kinetics patterns described previously can be more clearly demonstrated by 

modeling the experimental transmittance data using the empirical model that Väljamäe et al. proposed 

for fractal kinetics, which are spatially heterogeneous reactions that are diffusion-limited, 

dimensionally restricted, or occurring on fractal surfaces:46 
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𝑝(𝑡) = [𝑆]0 ∙  [1 − 𝑒𝑥𝑝(−𝑘 ∙ 𝑡(1−ℎ))],    (2) 

where p(t) is the concentration of released cellobiose (in μM); [S]0 is the initial concentration of the 

cellulose substrate, as represented as cellobiose units (μM); t is time; and k and h are empirical 

constants. To apply eq. 2 to our turbidity data, the product concentration and transparency were 

assumed to follow the same evolution; that is, in the time course of insoluble cellulose’s enzymatic 

degradation, as the concentration of cellobiose increases, the transparency increases (or the turbidity 

decreases) proportionally. It must be pointed out that eq. 2 was used only for fitting purposes—to 

provide clear evidence of the two patterns observed during the native BC hydrolysis reaction for the 

various cellulose/enzyme ratios. Therefore, no physical meaning was assigned to the constants k and 

h. As shown in Figure 1, the nonlinear regression of the hydrolysis data (expressed as transparency 

evolution) using eq. 2 yielded two prediction patterns, which is consistent with the experimental 

points. These two patterns are represented by the red lines of both panel (a) and panel (b) of Figure 

1. In particular, the prediction for the 2:1 and 1:1 enzyme/BC mixtures followed the typical trend for 

the enzymatic hydrolysis of BC, with an initial increase and subsequent decrease in the reaction rate 

(Figure 1b). The prediction for the remaining mixtures (1:2, 1:3, and 1:4) provided by the same fractal 

model is instead represented by a straight line that denotes a different hydrolysis kinetics pattern for 

the mixtures containing a lower amount of enzyme (Figure 1a). This is further corroborated by the 

fact that a better prediction for the data sets of the 1:2, 1:3, and 1:4 mixtures was obtained using a 

logistic regression model (see the green line for the 1:4 mixture in Figure 1a): 

𝑦 = 𝑎 + 4𝑏 ∙ 𝑛/(1 + 𝑛)2,     (3) 

where n = exp (–(x – c) / d); a, b, c, and d are empirical parameters. Detailed information on the 

modeling of the experimental data using both eq. 2 and eq. 3 is reported in Figures S1–S5 of 

Supporting Information, together with the relevant statistical parameters arising from the fitting 

procedure (Table S1). 

This study’s logistic model is a sigmoid function that has been used to interpolate S-shaped 

data distributions for studies on topics such as tumor growth,47 toxicity and cytotoxicity,48–50 
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biodegradability,51 catalysis,52 microbial growth,53 biotechnological processes,54 and food-texture 

evolution.55 In this work, the logistic regression model suggests that, for high substrate/enzyme ratios, 

the course of BC’s enzymatic hydrolysis stays in a silent phase for the first approximately 6-8 h, 

contrary to what was observed for the mixtures richest in enzymes (i.e., the 1:1 and 2:1 mixtures).  

These observations have a mechanistic explanation. Enzymatic hydrolysis of cellulosic biomass 

is a heterogeneous reaction that occurs on the surface of a substrate that is large enough to 

accommodate a large number of enzyme molecules.45 After the first adsorption of cellulases onto the 

substrate (phase 1),56 the two following steps more directly affect the hydrolysis rate: the location of 

a bond that is susceptible to hydrolysis on the substrate surface (phase 2)57 and the formation of an 

enzyme–substrate complex (phase 3).58 Therefore, as the enzyme/cellulose ratio increases (and the 

amount of enzyme adsorbed on the cellulose surface increases), the hydrolytic reaction speeds up 

(given that the cellulosic substrate has the same characteristics in terms of, e.g., composition and 

crystallinity). The initial lag phase observed for the 1:4, 1:3, and 1:2 mixtures can thus be plausibly 

explained by considering the extended time that is necessary for phase 2 and phase 3 to take place 

due to the lower initial enzyme concentrations for those phases. In addition, the interaction between 

endo-type and exo-type enzymes must be considered. The most established mechanism is a sequential 

synergistic action whereby EGs initiate the attack on the cellulose by forming new chain ends, which 

then serve as attack sites for the endwise-acting CBHs’ processive hydrolysis.59 This means that, for 

the mixtures with the fewest enzymes, an extended time is expected to elapse before the hydrolysis 

of BC can actively occur because the EGs must generate the new chain ends before the CBHs can 

start to processively hydrolyze the cellulose chains. 

 

Yield of the hydrolysis process 

The yield of the parental freeze-dried BC’s hydrolysis reaction over 74 h is displayed in Figure 2a for 

all five enzyme/BC mixtures used in this work. The evolution of the yield is inversely related to the 

results of the turbidity experiments (i.e., the transmittance evolution is an indirect indication of the 
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hydrolysis rate), as shown in Figure 1. The yield for the substrate-rich mixtures (i.e., 1:4 and 1:3) 

apparently decreased only slightly during the first ~20 h, reflecting the lag phase that was also 

observed in the turbidity experiments. After this time, the yield decreased more rapidly, indicating a 

more intensive hydrolysis reaction. By contrast, for the enzyme-rich mixtures (i.e., 1:1 and 2:1), the 

yield decreased rapidly during the first ~10 h before decreasing, suggesting that the hydrolysis 

reaction had approached completion. A similar, though less pronounced, hydrolysis reaction was 

apparent for the 1:2 mixture.  

Quantitative information on the yield evolution was obtained through a semi-empirical 

approach. The experimental yields collected during the 74 h period of analysis were first modeled via 

nonlinear regression, with the goal of obtaining a simple but adequate analytical expression (and its 

first derivative). In particular, a first-order (eq. 4) decay function was used for the 1:2 mixture, a 

second-order (eq. 5) decay function was used for the 1:1 and 2:1 mixtures, and a simple power 

function (eq. 6) was used for the 1:3 and 1:4 mixtures: 

𝑦 = 𝑦0 + 𝑎1 𝑒𝑥𝑝(− 𝑥 𝑏1⁄ )     (4) 

𝑦 = 𝑦0 + 𝑎1 𝑒𝑥𝑝(− 𝑥 𝑏1⁄ ) + 𝑎2𝑒𝑥𝑝(−𝑥 𝑏2⁄ )   (5) 

𝑦 = (𝑎 + 𝑏𝑥2)2       (6) 

As shown in Figure 2a (solid lines), the selected functions fit the experimental data satisfactorily, 

which further supports the various kinetics that underlie the yield evolution and, in turn, the hydrolysis 

reaction. From a quantitative point of view, the first derivatives of the above functions provided 

indications of the process’s rate. The yield rate decreased steeply from the beginning for the 1:1 and 

2:1 mixtures, suggesting that the hydrolysis reaction was fully active after 2 h of incubation. After 

~30 h, the yield rate approached a quasi-steady state, again denoting the completion of the process. 

A similar trend pertained to the 1:2 mixture, though it is worth noting that the initial rate in this 

mixture was almost four times lower than those of the 1:1 and 2:1 mixtures.  
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Figure 2. (a) Experimental (symbols) and predicted (solid lines) yield values of the various 

enzyme/BC ratios, according to eq. 4 (1:2 [‒‒] mixture), eq. 5 (1:1 [‒‒] and 2:1 [‒‒] mixtures), 

and eq. 6 (1:3 [‒‒] and 1:4 [‒‒] mixtures). (b) First derivative of the fitting curves shown in panel 

(a). The symbols are only to aid in identification. 

 

Interestingly, the first derivative of eq. 6, which was used to interpolate the experimental yield data 

of the 1:3 and 1:4 mixtures, started at a zero-speed-rate state, further corroborating the presence of an 

initial latency phase in hydrolysis reactions involving substrate-rich mixtures. The rate slowly 

increased until reaching a steady state after ~50 h, and the resulting value was, in any case, much 

lower than the maximum rates recorded for the 1:1 and 2:1 mixtures (which were in the early stages 

of the hydrolysis process). These results demonstrate that the hydrolysis of BC at high substrate 

Page 16 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 
 

concentrations (the 1:3 and 1:4 mixtures) was not as efficient as for the enzyme-rich mixtures (the 

1:1 and 2:1 mixtures). However, after 74 h, the absolute yield was higher for the substrate-rich 

mixtures (~20%) than for the enzyme-rich mixtures (~5%). This has to be ascribed to the more intense 

hydrolysis process the occurred for the dispersions that contained the most enzymes (1:1 and 2:1). 

The appearance of the water dispersions that contained hydrolyzed BC was markedly different 

from that of the initial mixture that contained the parental BC (Figure 3). After 74 h of hydrolysis, all 

the mixtures were slightly hazy and fully homogeneous (i.e., without any macroscopic cellulosic 

aggregate), especially the mixtures with the 1:1 and 2:1 enzyme/BC ratios. This strongly suggests 

that all samples decreased in size, though at different time scales (after approximately 50 h of 

hydrolysis for the 1:4, 1:3, and 1:2 mixtures and approximately 30 h for the 1:1 and 2:1 mixtures). 

 

 

Figure 3. Photos of parental BC before hydrolysis (left) and of the enzyme/BC mixtures after 74 h 

of hydrolysis (right). Note the flakes in the parental dispersion and the decreasing hazy appearance 

moving from the 1:4 mixture to the 2:1 mixture. 

 

Cellobiose and glucose quantification 

The outcome of the HPLC analysis is reported in Figure 4. The concentrations of cellobiose and 

glucose were inversely related as a function of the enzyme/BC ratio; the disaccharide concentration 

decreased as the ratio decreased, whereas the hexose concentration increased monotonically as the 
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amount of enzyme increased. These results confirm that more intense hydrolytic activity occurred at 

higher concentrations of enzyme. In addition, the conversion of cellobiose into glucose after 74 h 

(mostly by the β-glucosidases) was higher for the mixtures that were richer in enzymes, insomuch as 

no cellobiose was detected in the supernatant of the 2:1 mixture. Finally, the quantitative analysis of 

cellobiose and glucose was in agreement with the yields calculated for the five enzyme/BC mixtures: 

lower yields were associated with higher concentrations of glucose after 74 h of hydrolysis. 

 

 

Figure 4. Cellobiose and glucose concentrations at the end of the 74 h BC hydrolysis reaction. Error 

bars represent the standard deviation around the mean value. The superscripts in italics refer to 

statistically significant differences within the same group (p < 0.05). aAqueous solution (5 mg/g; see 

main text for details). bAqueous dispersion (12% by weight; see main text for details). N.D.: Not 

determined. 

 

Morphological characterization of hydrolyzed BC 

Cellulose has a unique structure, as it is organized in a hierarchical fashion, with plant-derived 

cellulose and BC having quite distinct features due to certain differences in their respective 

biosynthesis processes.60 At a basic level, adjacent molecules interact via van der Waals forces and 
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intermolecular hydrogen bonding promoting the arrangement of cellulose chains in elementary fibrils. 

Within these cellulose fibrils there are regions where the cellulose chains are organized in a highly 

ordered (crystalline) structure, and regions that are disordered (amorphous-like).61 Although the 

interplay and spatial organization of these two phases has yet to be clarified, according to the existing 

literature it is likely that the amorphous phase is randomly distributed along and across the contour 

of the fibril. The crystalline domains are made of crystal units (known as cellulose nanocrystals) of 

3–10 nm in width (depending on the source), i.e., highly ordered domains whereby cellulose chains 

adopt parallel configurations according to the specific hydrogen-bonding pattern of BC’s allomorph 

Iα.
62 The next structural level involves the assembly of elementary fibrils to form cellulose nanofibrils 

(also called microfibrils) of 20–100 nm in width.63,64 Self-assembly of these nanofibrils leads to a 

third level of structural organization, which, for BC, involves flat ribbons with rectangular cross-

sections.65,66 

 

Figure 5. Transmission electron microscopy images of hydrolyzed bacterial cellulose after 74 h 

according to the following enzyme/BC ratios: (a) 1:4, (b1 and b2) 1:3, (c) 1:2, (d) 1:1, and (e) 2:1. 
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The enzymatic hydrolysis yielded different morphologies depending on the enzyme/BC ratio, 

as seen in Figures 5 and 6, which show representative TEM and AFM images, respectively. A shift 

occurs from a network of fibrils at lower enzyme/BC ratios to a thinner morphology at higher ratios 

(e.g., see panels a through e of Figure 5). In particular, flat ribbons of variable width in the range of 

50–100 nm were observed for the 1:4 and 1:3 mixtures (Figures 5a and 5b1), with bundles of ribbons 

still present in the 1:4 mixture. A markedly different morphology was observed for the 1:2 

enzyme/BC ratio, for which thin nanofibrils were tightly connected, forming a bundle rather than 

isolated particles (Figure 5c). This change in morphology was accompanied by a marked reduction 

in size (compare panels a1 and a2 with panels c1 and c2 in Figure 6), whereby thinner particles 

(although of similar length) were obtained from the 1:2 mixture (Figure 6c).  

 

 

Figure 6. Atomic force microscopy height images of hydrolyzed BC after 74 h according to the 

following enzyme/BC ratios: (a) 1:4 at 10 × 10 µm2 (a1) and 5 × 5 µm2 (a2); (b) 1:3 at 10 × 10 µm2 

(b1) and 1 × 1 µm2 (b2); (c) 1:2 at 10 × 10 µm2 (c1) and 3 × 3 µm2 (c2); (d) 1:1 at 5 × 5 µm2; and (e) 

2:1 at 1.7 × 1.7 µm2. 
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This confirmed the results of both the turbidity experiments and the yield experiments, as the 1:2 

enzyme/BC ratio led to a unique hydrolysis kinetic pattern that was reflected in the hydrolyzed BC’s 

ultimate structural characteristics.  

For the 1:1 and 2:1 mixtures, a progressive thinning was observed by increasing the enzyme 

concentration, with individual nanocrystals as thin as ~6 nm (means: 12.1 ± 4.9 nm and 8.6 ± 1.3 nm 

for the 1:1 and 1:2 mixtures, respectively) and of 200–800 nm in length (mean: 345 ± 7 nm for the 

1:2 mixture; see Figures 5d and 5e). For the 2:1 mixture, a tendency toward reaggregation of the 

individual nanocrystals was detected (Figure 5e), which would explain the decreasing trend in the 

final part of the transmittance curve during the turbidity experiments (see Figure 1). In general, while 

the morphology of the hydrolyzed BC tended to thinner particles, the simultaneous presence of large 

particles was observed even for the enzyme-richest mixtures, confirming the larger polydispersity of 

BC-derived nanoparticles over the plant-derived counterpart.10,62 The progressive reduction in size 

was confirmed via a particle-size analysis (Figure 7). Although we are aware of the inadequacy of 

the DLS technique in determining the absolute size distribution of nonspherical particles, we decided 

to use this analysis in this work to gather relative information on the size reduction of hydrolyzed BC 

as a function of the enzyme/BC ratio. Therefore, though the absolute size values reported here should 

be considered with caution, a clear shift toward a lower size occurred as the enzyme/BC ratio 

decreased. Interestingly, the peaks pertaining to the 1:1 and 2:1 mixtures almost overlapped, 

providing further indication that the BCNCs reaggregated in the mixtures that were richest in 

enzymes. The thinning of the hydrolyzed BC particles when the enzyme concentration increases 

seems to suggest a peripheral attack of the enzyme, which would align with the model that Martínez-

Sanz et al. proposed, according to which BC ribbons can be considered two-phase systems composed 

of a core of solvent-impermeable crystallites and an outer shell of paracrystalline and amorphous 

cellulose.60 
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Figure 7. Size-distribution intensity plot of hydrolyzed BC after 74 h, using dynamic light-scattering, 

for the 1:4, 1:3, 1:2, 1:1, and 2:1 enzyme/BC ratios. The mean particle sizes are in parentheses. 

 

Notably, long particles in the form of fibrils or flat ribbons were also observed in the enzyme-

rich mixtures (Figures 6d and 6e), though to a lesser extent than in the 1:4, 1:3, and 1:2 mixtures. This 

clearly shows that the enzymatic hydrolysis is generates a certain degree of unevenness, that is, some 

very smooth and well-defined nanoparticles but also remaining bundles. The simultaneous presence 

of nanocrystals (see the arrow in Figure 6e) and bigger particles seems to corroborate the 

heterogeneous substrate model, which assumes a natural heterogeneity of cellulose structure in which 

hydrolysis only changes the proportions of structural elements with different structural properties. At 

the same time, the various BCNC morphologies and the high glucose concentrations, especially in 

the 1:1 and 2:1 mixtures, lead us to consider the surface-erosion model as a plausible way to describe 

the random action of cellulases on the surfaces of crystalline domains.63 In addition, as was postulated 

for the 2:1 mixture after the turbidity experiments, the random erosion of the crystalline surface was 

the probable reason for the observed reaggregation of microfibril bundles;67 this was confirmed via 

microscopy analyses.  

Finally, it is interesting to note that twisted ribbons with various sizes and periodicities were 

observed in all samples (see Figure 5b2 and Figures 6b2 and 6e). This feature of BC is known,68 

though it is not clear whether the twists are biological in origin (caused by rotational movements of 

bacteria or enzyme complexes), physical (caused by the chiral nature of cellulose), or a combination 
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of these.69 Similar morphologies have been extensively described for fibrillar proteins (e.g., amyloid 

fibrils), the structural features of which strongly depend on the mechanisms of fibrillation.70 

 

CONCLUSIONS 

Enzymatic hydrolysis of BC is a feasible route for obtaining nanocrystals. Pinpointing the optimal 

enzyme concentration, especially with respect to the amount of substrate that takes part in the 

reaction, is necessary for efficient downsizing of the parental macroscopic fibers. However, the 

simultaneous presence of particles with various morphologies (i.e., those with varied sizes and aspect 

ratios) confirmed the heterogeneous nature of the enzymatic hydrolysis. In addition, although the 

mixtures that were richest in enzymes provided the best outcome in terms of BCNCs, they were also 

characterized by very low yields, demonstrating the high intensity of EGs’ and CBHs’ hydrolytic 

action when performed in synergy, even for cellulose’s crystalline regions. In this sense, the use of 

endoglucanases that selectively attack only the cellulose nanofibrils’ amorphous domains could 

represent a step toward a more efficient process. At the same time, in line with the circular economy 

principles, the glucose that results from the hydrolytic process can be reused as fuel in the growth 

medium for the acid bacteria that produce BC. 

After this investigation, we would suggest setting the hydrolysis process at the 2:1 enzyme/BC 

ratio up to 30 hours of reaction or, alternatively, the 1:1 enzyme/BC ratio up to ~ 45 hours. After 

these temporal windows, it is possible to achieve a yield approaching 25% with a final morphology 

mostly represented by BCNCs. However, the zero net electrical charge on the surface of the BCNCs 

resulting from the enzymatic process has to be addressed in order to obtain stable suspensions over 

time. In this regard, using surfactants and/or polyelectrolytes to act as spacers, or inducing surface 

modifications on the cellulose backbone could be valid options. 

The information gathered in this study is primarily meant to benefit the scientific community, 

particularly materials scientists who are looking for an alternative approach for obtaining cellulose 

nanocrystals that is greener than chemical hydrolysis routes. This study’s ultimate impact is of general 

c) 
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interest, as cellulose nanocrystals are increasingly being considered for applications in various fields, 

including medical/biomedical devices, purification/cleaning systems (e.g., membranes), displays, 

green building materials (e.g., insulating panels), and packaging solutions. 
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Synopsis 

Cellulose nanocrystals can be extracted from bacterial cellulose by enzymatic hydrolysis, which 

represents an alternative green method to the most widely adopted chemical (e.g., acid) hydrolysis.  
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