In multiple sclerosis (MS), oligodendrocyte precursor cells (OPCs) are recruited to the site of injury to remyelinate damaged axons; however, in patients this process is often ineffective due to defects in OPC maturation. The membrane receptor GPR17 timely regulates the early stages of OPC differentiation; however, after reaching its highest levels in immature oligodendrocytes, it has to be downregulated to allow terminal maturation. Since, in several animal models of disease GPR17 is upregulated, the aim of this work was to characterize GPR17 alterations in MS patients. We developed immunohistochemistry and immunofluorescence procedures for the detection of GPR17 in human tissues and stained post-mortem MS brain lesions from patients with secondary progressive MS and control subjects. The inflammatory activity in each lesion was evaluated by immunohistochemistry for the myelin protein MOG and the HLA antigen to classify them as active, chronic inactive or chronic active. Hence, we assessed the distribution of GPR17-positive cells in these lesions compared to normal appearing white matter (NAWM) and white matter (WM) of control subjects. Our data have shown a marked increase of GPR17-expressing oligodendroglial cells accumulating at NAWM, in which moderate inflammation was also found. Furthermore, we identified two distinct subpopulations of GPR17-expressing oligodendroglial cells, characterized by either ramified or rounded morphology, that differently populate the WM of healthy controls and MS patients. We concluded that the coordinated presence of GPR17 in OPCs at the lesion sites and inflamed NAWM areas suggests that GPR17 could be exploited to support endogenous remyelination through advanced pharmacological approaches.

The Distribution of GPR17-Expressing Cells Correlates with White Matter Inflammation Status in Brain Tissues of Multiple Sclerosis Patients / J. Angelini, D. Marangon, S. Raffaele, D. Lecca, M.P. Abbracchio. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 22:9(2021 Apr 27), pp. 4574.1-4574.15. [10.3390/ijms22094574]

The Distribution of GPR17-Expressing Cells Correlates with White Matter Inflammation Status in Brain Tissues of Multiple Sclerosis Patients

Jacopo Angelini;Davide Marangon;Stefano Raffaele;Davide Lecca;Maria Abbracchio
2021-04-27

Abstract

In multiple sclerosis (MS), oligodendrocyte precursor cells (OPCs) are recruited to the site of injury to remyelinate damaged axons; however, in patients this process is often ineffective due to defects in OPC maturation. The membrane receptor GPR17 timely regulates the early stages of OPC differentiation; however, after reaching its highest levels in immature oligodendrocytes, it has to be downregulated to allow terminal maturation. Since, in several animal models of disease GPR17 is upregulated, the aim of this work was to characterize GPR17 alterations in MS patients. We developed immunohistochemistry and immunofluorescence procedures for the detection of GPR17 in human tissues and stained post-mortem MS brain lesions from patients with secondary progressive MS and control subjects. The inflammatory activity in each lesion was evaluated by immunohistochemistry for the myelin protein MOG and the HLA antigen to classify them as active, chronic inactive or chronic active. Hence, we assessed the distribution of GPR17-positive cells in these lesions compared to normal appearing white matter (NAWM) and white matter (WM) of control subjects. Our data have shown a marked increase of GPR17-expressing oligodendroglial cells accumulating at NAWM, in which moderate inflammation was also found. Furthermore, we identified two distinct subpopulations of GPR17-expressing oligodendroglial cells, characterized by either ramified or rounded morphology, that differently populate the WM of healthy controls and MS patients. We concluded that the coordinated presence of GPR17 in OPCs at the lesion sites and inflamed NAWM areas suggests that GPR17 could be exploited to support endogenous remyelination through advanced pharmacological approaches.
demyelination; multiple sclerosis; neuropathology; oligodendrocytes
Settore BIO/14 - Farmacologia
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Article (author)
File in questo prodotto:
File Dimensione Formato  
ijms-22-04574.pdf

accesso aperto

3.06 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/841078
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact