Food proteins and peptides are able to exert a variety of well-known bioactivities, some of which are related to well-being and disease prevention in humans and animals. Currently, an active trend in research focuses on chronic inflammation and oxidative stress, delineating their major patho- genetic role in age-related diseases and in some forms of cancer. The present study aims to investigate the potential effects of pseudocereal proteins and their derived peptides on chronic inflammation and oxidative stress. After purification and attribution to protein classes according to classic Osborne’s classification, the immune-modulating, antioxidant, and trypsin inhibitor activities of proteins from quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus retroflexus L.), and buckwheat (Fagopyrum esculentum Moench) seeds have been assessed in vitro. The peptides generated by simulated gastro- intestinal digestion of each fraction have been also investigated for the selected bioactivities. None of the proteins or peptides elicited inflammation in Caco-2 cells; furthermore, all protein fractions showed different degrees of protection of cells from IL-1β-induced inflammation. Immune-modulating and antioxidant activities were, in general, higher for the albumin fraction. Overall, seed proteins can express these bioactivities mainly after hydrolysis. On the contrary, higher trypsin inhibitor activity was expressed by globulins in their intact form. These findings lay the foundations for the exploitation of these pseudocereal seeds as source of anti-inflammatory molecules.

Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being / J. Capraro, S. De Benedetti, G. Heinzl, A. Scarafoni, C. Magni. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 22:7(2021 Mar), pp. 3543.1-3543.14. [10.3390/ijms22073543]

Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being

J. Capraro;S. De Benedetti;G. Heinzl;A. Scarafoni
;
C. Magni
2021-03

Abstract

Food proteins and peptides are able to exert a variety of well-known bioactivities, some of which are related to well-being and disease prevention in humans and animals. Currently, an active trend in research focuses on chronic inflammation and oxidative stress, delineating their major patho- genetic role in age-related diseases and in some forms of cancer. The present study aims to investigate the potential effects of pseudocereal proteins and their derived peptides on chronic inflammation and oxidative stress. After purification and attribution to protein classes according to classic Osborne’s classification, the immune-modulating, antioxidant, and trypsin inhibitor activities of proteins from quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus retroflexus L.), and buckwheat (Fagopyrum esculentum Moench) seeds have been assessed in vitro. The peptides generated by simulated gastro- intestinal digestion of each fraction have been also investigated for the selected bioactivities. None of the proteins or peptides elicited inflammation in Caco-2 cells; furthermore, all protein fractions showed different degrees of protection of cells from IL-1β-induced inflammation. Immune-modulating and antioxidant activities were, in general, higher for the albumin fraction. Overall, seed proteins can express these bioactivities mainly after hydrolysis. On the contrary, higher trypsin inhibitor activity was expressed by globulins in their intact form. These findings lay the foundations for the exploitation of these pseudocereal seeds as source of anti-inflammatory molecules.
Settore BIO/10 - Biochimica
Article (author)
File in questo prodotto:
File Dimensione Formato  
Int J Mol Sci 2021_2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/829386
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact