Growing evidence showed the capacity of (poly)phenols to exert a protective role on intestinal health. Nevertheless, the existing findings are still heterogeneous and the underlying mechanisms remain unclear. This study investigated the potential benefits of a red raspberry (Rubus idaeus) powder on the integrity of the intestinal barrier, focusing on its ability to mitigate the effects of tumor necrosis factor-α (TNF-α)-induced intestinal permeability. Human colorectal adenocarcinoma cells (i.e., Caco-2 cells) were used as a model to assess the impact of red raspberry on intestinal permeability, tight junction expression, and oxidative stress. The Caco-2 cells were differentiated into polarized monolayers and treated with interferon-γ (IFN-γ) (10 ng mL-1) for 24 hours, followed by exposure to TNF-α (10 ng mL-1) in the presence or absence of red raspberry extract (1-5 mg mL-1). The integrity of the intestinal monolayer was evaluated using transepithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran (FITC-D) efflux assay. Markers of intestinal permeability (claudin-1, occludin, and zonula occludens-1 (ZO-1)) and oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG) and protein carbonyl) were assessed using ELISA kits. Treatment with red raspberry resulted in a significant counteraction of TEER value loss (41%; p < 0.01) and a notable reduction in the efflux of FITC-D (-2.5 times; p < 0.01). Additionally, red raspberry attenuated the levels of 8-OHdG (-48.8%; p < 0.01), mitigating the detrimental effects induced by TNF-α. Moreover, red raspberry positively influenced the expression of the integral membrane protein claudin-1 (+18%; p < 0.01), an essential component of tight junctions. These findings contribute to the growing understanding of the beneficial effects of red raspberry in the context of the intestinal barrier. The effect of red raspberry against TNF-α-induced intestinal permeability observed in our in vitro model suggests, for the first time, its potential as a dietary strategy to promote gastrointestinal health.

Red raspberry (Rubus idaeus) preserves intestinal barrier integrity and reduces oxidative stress in Caco-2 cells exposed to a proinflammatory stimulus / M. Marino, M. Rendine, S. Venturi, M. Porrini, C. Gardana, D. Klimis-Zacas, P. Riso, C. Del Bo'. - In: FOOD & FUNCTION. - ISSN 2042-650X. - 15:13(2024 Jul 07), pp. 6943-6954. [10.1039/D4FO01050G]

Red raspberry (Rubus idaeus) preserves intestinal barrier integrity and reduces oxidative stress in Caco-2 cells exposed to a proinflammatory stimulus.

M. Marino
Primo
;
M. Rendine
Secondo
;
S. Venturi;M. Porrini;C. Gardana;P. Riso
Penultimo
;
C. Del Bo'
Ultimo
2024

Abstract

Growing evidence showed the capacity of (poly)phenols to exert a protective role on intestinal health. Nevertheless, the existing findings are still heterogeneous and the underlying mechanisms remain unclear. This study investigated the potential benefits of a red raspberry (Rubus idaeus) powder on the integrity of the intestinal barrier, focusing on its ability to mitigate the effects of tumor necrosis factor-α (TNF-α)-induced intestinal permeability. Human colorectal adenocarcinoma cells (i.e., Caco-2 cells) were used as a model to assess the impact of red raspberry on intestinal permeability, tight junction expression, and oxidative stress. The Caco-2 cells were differentiated into polarized monolayers and treated with interferon-γ (IFN-γ) (10 ng mL-1) for 24 hours, followed by exposure to TNF-α (10 ng mL-1) in the presence or absence of red raspberry extract (1-5 mg mL-1). The integrity of the intestinal monolayer was evaluated using transepithelial electrical resistance (TEER) and fluorescein isothiocyanate-dextran (FITC-D) efflux assay. Markers of intestinal permeability (claudin-1, occludin, and zonula occludens-1 (ZO-1)) and oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG) and protein carbonyl) were assessed using ELISA kits. Treatment with red raspberry resulted in a significant counteraction of TEER value loss (41%; p < 0.01) and a notable reduction in the efflux of FITC-D (-2.5 times; p < 0.01). Additionally, red raspberry attenuated the levels of 8-OHdG (-48.8%; p < 0.01), mitigating the detrimental effects induced by TNF-α. Moreover, red raspberry positively influenced the expression of the integral membrane protein claudin-1 (+18%; p < 0.01), an essential component of tight junctions. These findings contribute to the growing understanding of the beneficial effects of red raspberry in the context of the intestinal barrier. The effect of red raspberry against TNF-α-induced intestinal permeability observed in our in vitro model suggests, for the first time, its potential as a dietary strategy to promote gastrointestinal health.
Settore MED/49 - Scienze Tecniche Dietetiche Applicate
Settore MEDS-08/C - Scienza dell'alimentazione e delle tecniche dietetiche applicate
7-lug-2024
10-giu-2024
https://pubmed.ncbi.nlm.nih.gov/38855989/
Article (author)
File in questo prodotto:
File Dimensione Formato  
Marino et al., 2024 F&F raspberry.pdf

accesso aperto

Descrizione: Article, online first
Tipologia: Publisher's version/PDF
Dimensione 655.77 kB
Formato Adobe PDF
655.77 kB Adobe PDF Visualizza/Apri
d4fo01050g.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 659.87 kB
Formato Adobe PDF
659.87 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1061968
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact