Background: Phosphorus is an essential component of fertilizers and feed and in recent decades has become one of the main sustainability issues as a non-renewable resource. In plant seeds, the main reserve of phosphorus is phytic acid, a strong anti-nutritional factor for monogastrics and a pollutant of cultivated lands. The reduction of phytic acid in cereal seeds has become a major challenge in breeding programs to increase the nutritional quality of foods and feeds and to improve the environmental phosphorus sustainability in agriculture. In maize (Zea mays L.), four low phytic acid (lpa) mutations have been isolated and lpa1-1 is the most promising. However, the reduction of phytic acid in lpa1-1 leads to many adverse pleiotropic effects on the seed and in general on plant performance. A seed weight reduction and a consequent yield loss were previously described in this mutant. Method: In this work, a field experiment to study seed weight and yield was conducted for two years in two different genetic backgrounds (B73 and B73/Mo17). Furthermore, the greater susceptibility of lpa1-1 to drought stress was also investigated: a dedicated field experiment was set up and measurements were carried out under optimal water conditions and moderate drought stress. Results: From the first experiment it emerges that under high-input conditions, lpa1-1 seems to have comparable or even better yield than the relative control. The main problem of this mutant remains the reduced field emergence (~40%). In the study of drought stress it was found that the increased sensitivity in the mutant is mainly caused by an altered stomatal regulation, but not by a less developed root system, as previously reported. When the stress occurred, the parameters measured did not significantly change in the wild-type, while they dropped in the mutant: the net photosynthesis decreased by 58%, the transpiration rate by 63% and the stomatal conductance by 67%. Conclusions: Some possible solutions have been proposed, with the aim of developing a commercial variety, which remains the main goal to exploit the nutritional benefits of low phytic acid mutants.

The potential of Low Phytic Acid1-1 mutant in maize (Zea mays L.): a sustainable solution to non-renewable phosphorus / F. Colombo, S. Sangiorgio, A.M.A. Abruzzese, M. Bononi, F. Tateo, S. Kumar Singh, F.F. Nocito, S.R. Pilu. - In: FRONTIERS IN BIOSCIENCE. - ISSN 2768-6698. - 27:10(2022 Oct 14), pp. 284.1-284.12. [10.31083/j.fbl2710284]

The potential of Low Phytic Acid1-1 mutant in maize (Zea mays L.): a sustainable solution to non-renewable phosphorus

F. Colombo
Primo
;
S. Sangiorgio
Secondo
;
A.M.A. Abruzzese;M. Bononi;F. Tateo;F.F. Nocito
Penultimo
;
S.R. Pilu
Ultimo
2022

Abstract

Background: Phosphorus is an essential component of fertilizers and feed and in recent decades has become one of the main sustainability issues as a non-renewable resource. In plant seeds, the main reserve of phosphorus is phytic acid, a strong anti-nutritional factor for monogastrics and a pollutant of cultivated lands. The reduction of phytic acid in cereal seeds has become a major challenge in breeding programs to increase the nutritional quality of foods and feeds and to improve the environmental phosphorus sustainability in agriculture. In maize (Zea mays L.), four low phytic acid (lpa) mutations have been isolated and lpa1-1 is the most promising. However, the reduction of phytic acid in lpa1-1 leads to many adverse pleiotropic effects on the seed and in general on plant performance. A seed weight reduction and a consequent yield loss were previously described in this mutant. Method: In this work, a field experiment to study seed weight and yield was conducted for two years in two different genetic backgrounds (B73 and B73/Mo17). Furthermore, the greater susceptibility of lpa1-1 to drought stress was also investigated: a dedicated field experiment was set up and measurements were carried out under optimal water conditions and moderate drought stress. Results: From the first experiment it emerges that under high-input conditions, lpa1-1 seems to have comparable or even better yield than the relative control. The main problem of this mutant remains the reduced field emergence (~40%). In the study of drought stress it was found that the increased sensitivity in the mutant is mainly caused by an altered stomatal regulation, but not by a less developed root system, as previously reported. When the stress occurred, the parameters measured did not significantly change in the wild-type, while they dropped in the mutant: the net photosynthesis decreased by 58%, the transpiration rate by 63% and the stomatal conductance by 67%. Conclusions: Some possible solutions have been proposed, with the aim of developing a commercial variety, which remains the main goal to exploit the nutritional benefits of low phytic acid mutants.
low phytic acid mutants; lpa; drought stress; root system architecture; stomatal conductance; environmental sustainability; seed quality; carbon isotope discrimination
Settore AGR/07 - Genetica Agraria
Settore AGR/13 - Chimica Agraria
Settore AGR/15 - Scienze e Tecnologie Alimentari
https://www.imrpress.com/journal/FBL/27/10/10.31083/j.fbl2710284
Article (author)
File in questo prodotto:
File Dimensione Formato  
2768-6698-27-10-284.pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: Publisher's version/PDF
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/943630
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact