The cultivation mode plays a vital role in algal growth and composition. This paper assessed the growth ability of twelve algae–microbial consortia (ACs) originally selected from organic wastes when nano-filtered pig slurry wastewater (NFP) and cheese whey (CW) were used as growth substrates in a mixotrophic mode in comparison with a photoautotrophic mode. Nutrient uptake ability, biochemical composition, fatty acids, and amino acid profiles of ACs were compared between both cultivation conditions. On average, 47% higher growth rates and 35% higher N uptake were found in mixotrophic cultivation along with significant P and TOC removal rates. Changing the cultivation mode did not affect AA and FA composition but improved EAA content, providing the potential for AC_5 and AC_4 to be used as local protein feed supplements. The results also showed the possibility for AC_6 and AC_1 to be used as omega-3 supplements due to their low ω-6–ω-3 ratio.
Growth Performance and Biochemical Composition of Waste-Isolated Microalgae Consortia Grown on Nano-Filtered Pig Slurry and Cheese Whey under Mixotrophic Conditions / M. Su, M. Dell'Orto, B. Scaglia, G. D'Imporzano, F. Adani. - In: FERMENTATION. - ISSN 2311-5637. - 8:10(2022 Sep 22), pp. 474.1-474.18. [10.3390/fermentation8100474]
Growth Performance and Biochemical Composition of Waste-Isolated Microalgae Consortia Grown on Nano-Filtered Pig Slurry and Cheese Whey under Mixotrophic Conditions
M. SuPrimo
;M. Dell'OrtoSecondo
;B. Scaglia;G. D'ImporzanoPenultimo
;F. Adani
Ultimo
2022
Abstract
The cultivation mode plays a vital role in algal growth and composition. This paper assessed the growth ability of twelve algae–microbial consortia (ACs) originally selected from organic wastes when nano-filtered pig slurry wastewater (NFP) and cheese whey (CW) were used as growth substrates in a mixotrophic mode in comparison with a photoautotrophic mode. Nutrient uptake ability, biochemical composition, fatty acids, and amino acid profiles of ACs were compared between both cultivation conditions. On average, 47% higher growth rates and 35% higher N uptake were found in mixotrophic cultivation along with significant P and TOC removal rates. Changing the cultivation mode did not affect AA and FA composition but improved EAA content, providing the potential for AC_5 and AC_4 to be used as local protein feed supplements. The results also showed the possibility for AC_6 and AC_1 to be used as omega-3 supplements due to their low ω-6–ω-3 ratio.File | Dimensione | Formato | |
---|---|---|---|
Su Min et al., 2022 Fermentation.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.