The cultivation mode plays a vital role in algal growth and composition. This paper assessed the growth ability of twelve algae–microbial consortia (ACs) originally selected from organic wastes when nano-filtered pig slurry wastewater (NFP) and cheese whey (CW) were used as growth substrates in a mixotrophic mode in comparison with a photoautotrophic mode. Nutrient uptake ability, biochemical composition, fatty acids, and amino acid profiles of ACs were compared between both cultivation conditions. On average, 47% higher growth rates and 35% higher N uptake were found in mixotrophic cultivation along with significant P and TOC removal rates. Changing the cultivation mode did not affect AA and FA composition but improved EAA content, providing the potential for AC_5 and AC_4 to be used as local protein feed supplements. The results also showed the possibility for AC_6 and AC_1 to be used as omega-3 supplements due to their low ω-6–ω-3 ratio.

Growth Performance and Biochemical Composition of Waste-Isolated Microalgae Consortia Grown on Nano-Filtered Pig Slurry and Cheese Whey under Mixotrophic Conditions / M. Su, M. Dell'Orto, B. Scaglia, G. D'Imporzano, F. Adani. - In: FERMENTATION. - ISSN 2311-5637. - 8:10(2022 Sep 22), pp. 474.1-474.18. [10.3390/fermentation8100474]

Growth Performance and Biochemical Composition of Waste-Isolated Microalgae Consortia Grown on Nano-Filtered Pig Slurry and Cheese Whey under Mixotrophic Conditions

M. Su
Primo
;
M. Dell'Orto
Secondo
;
B. Scaglia;G. D'Imporzano
Penultimo
;
F. Adani
Ultimo
2022

Abstract

The cultivation mode plays a vital role in algal growth and composition. This paper assessed the growth ability of twelve algae–microbial consortia (ACs) originally selected from organic wastes when nano-filtered pig slurry wastewater (NFP) and cheese whey (CW) were used as growth substrates in a mixotrophic mode in comparison with a photoautotrophic mode. Nutrient uptake ability, biochemical composition, fatty acids, and amino acid profiles of ACs were compared between both cultivation conditions. On average, 47% higher growth rates and 35% higher N uptake were found in mixotrophic cultivation along with significant P and TOC removal rates. Changing the cultivation mode did not affect AA and FA composition but improved EAA content, providing the potential for AC_5 and AC_4 to be used as local protein feed supplements. The results also showed the possibility for AC_6 and AC_1 to be used as omega-3 supplements due to their low ω-6–ω-3 ratio.
biochemical composition; cheese whey; microalgae consortium; mixotrophic cultivation; nutrient assimilation;
Settore AGR/13 - Chimica Agraria
22-set-2022
Article (author)
File in questo prodotto:
File Dimensione Formato  
Su Min et al., 2022 Fermentation.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/938446
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact