Candida spp. are pathobionts, as they can switch from commensals to pathogens, responsible for a variety of pathological processes. Adhesion to surfaces, morphological switch and biofilm-forming ability are the recognized virulence factors promoting yeast virulence. Sessile lifestyle also favors fungal persistence and antifungal tolerance. In this study, we investigated, in vitro, the efficacy of two urinary cranberry metabolites, 5-(3′,4′-dihydroxy phenyl)-γ-valerolactone (VAL) and 4-hydroxybenzoic acid (4-HBA), in inhibiting C. albicans adhesion and biofilm formation. Both the reference strain SC5314 and clinical isolates were used. We evaluated biomass reduction, by confocal microscopy and crystal violet assay, and the possible mechanisms mediating their inhibitory effects. Both VAL and 4-HBA were able to interfere with the yeast adhesion, by modulating the expression of key genes, HWP1 and ALS3. A significant dose-dependent reduction in biofilm biomass and metabolic activity was also recorded. Our data showed that the two cranberry metabolites VAL and 4-HBA could pave the way for drug development, for targeting the very early phases of biofilm formation and for preventing genitourinary Candida infections.

Candida albicans Biofilm Inhibition by Two Vaccinium macrocarpon (Cranberry) Urinary Metabolites: 5-(3',4'-{DihydroxyPhenyl})-gamma-Valerolactone and 4-Hydroxybenzoic Acid / E. Ottaviano, G. Baron, L. Fumagalli, J. Leite, E.A. Colombo, A. Artasensi, G. Aldini, E. Borghi. - In: MICROORGANISMS. - ISSN 2076-2607. - 9:7(2021 Jul 13), pp. 1492.1-1492.13. [10.3390/microorganisms9071492]

Candida albicans Biofilm Inhibition by Two Vaccinium macrocarpon (Cranberry) Urinary Metabolites: 5-(3',4'-{DihydroxyPhenyl})-gamma-Valerolactone and 4-Hydroxybenzoic Acid

E. Ottaviano
Primo
;
G. Baron
Secondo
;
L. Fumagalli;E.A. Colombo;A. Artasensi;G. Aldini
Penultimo
;
E. Borghi
Ultimo
2021

Abstract

Candida spp. are pathobionts, as they can switch from commensals to pathogens, responsible for a variety of pathological processes. Adhesion to surfaces, morphological switch and biofilm-forming ability are the recognized virulence factors promoting yeast virulence. Sessile lifestyle also favors fungal persistence and antifungal tolerance. In this study, we investigated, in vitro, the efficacy of two urinary cranberry metabolites, 5-(3′,4′-dihydroxy phenyl)-γ-valerolactone (VAL) and 4-hydroxybenzoic acid (4-HBA), in inhibiting C. albicans adhesion and biofilm formation. Both the reference strain SC5314 and clinical isolates were used. We evaluated biomass reduction, by confocal microscopy and crystal violet assay, and the possible mechanisms mediating their inhibitory effects. Both VAL and 4-HBA were able to interfere with the yeast adhesion, by modulating the expression of key genes, HWP1 and ALS3. A significant dose-dependent reduction in biofilm biomass and metabolic activity was also recorded. Our data showed that the two cranberry metabolites VAL and 4-HBA could pave the way for drug development, for targeting the very early phases of biofilm formation and for preventing genitourinary Candida infections.
Candida albicans; cranberry; biofilm; HWP1;
Settore BIO/19 - Microbiologia Generale
Settore CHIM/08 - Chimica Farmaceutica
13-lug-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
microorganisms-09-01492.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/860743
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact