We study analytically the dynamics of two-dimensional rectangular lattices with periodic boundary conditions. We consider anisotropic initial data supported on one low-frequency Fourier mode. We show that, in the continuous approximation, the resonant normal form of the system is given by integrable PDEs. We exploit the normal form result in order to prove the existence of metastability phenomena for the lattices. More precisely, we show that the energy spectrum of the normal modes attains a distribution in which the energy is shared among a packet of low-frequencies modes; such distribution remains unchanged up to the time-scale of validity of the continuous approximation.

Metastability phenomena in two-dimensional rectangular lattices with nearest-neighbour interaction / M. Gallone, S. Pasquali. - In: NONLINEARITY. - ISSN 0951-7715. - 34:7(2021 Jul), pp. 4983-5044. [10.1088/1361-6544/ac0483]

Metastability phenomena in two-dimensional rectangular lattices with nearest-neighbour interaction

M. Gallone
Primo
;
S. Pasquali
Secondo
2021

Abstract

We study analytically the dynamics of two-dimensional rectangular lattices with periodic boundary conditions. We consider anisotropic initial data supported on one low-frequency Fourier mode. We show that, in the continuous approximation, the resonant normal form of the system is given by integrable PDEs. We exploit the normal form result in order to prove the existence of metastability phenomena for the lattices. More precisely, we show that the energy spectrum of the normal modes attains a distribution in which the energy is shared among a packet of low-frequencies modes; such distribution remains unchanged up to the time-scale of validity of the continuous approximation.
Continuous approximation; Metastability; Energy Localization
Settore MAT/07 - Fisica Matematica
Settore MAT/05 - Analisi Matematica
   Mathematical Quantum Matter
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2017ASFLJR_001
lug-2021
https://arxiv.org/abs/1911.12648
Article (author)
File in questo prodotto:
File Dimensione Formato  
GP_ETL_2019_rect_v9.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri
1911.12648.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 485.43 kB
Formato Adobe PDF
485.43 kB Adobe PDF Visualizza/Apri
Gallone_2021_Nonlinearity_34_4983.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/779292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact