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METASTABILITY PHENOMENA IN TWO-DIMENSIONAL RECTANGULAR

LATTICES WITH NEAREST-NEIGHBOUR INTERACTION

M. GALLONE(†) AND S. PASQUALI(∗)

Abstract. We study analytically the dynamics of two-dimensional rectangular lattices with pe-
riodic boundary conditions. We consider anisotropic initial data supported on one low-frequency
Fourier mode. We show that, in the continuous approximation, the resonant normal form of the
system is given by integrable PDEs. We exploit the normal form in order to prove the existence of
metastability phenomena for the lattices. More precisely, we show that the energy spectrum of the
normal modes attains a distribution in which the energy is shared among a packet of low-frequencies
modes; such distribution remains unchanged up to the time-scale of validity of the continuous ap-
proximation.
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1. Introduction

In this paper we present an analytical study of the dynamics of two-dimensional rectangular lattices
with nearest-neighbour interaction and periodic boundary conditions, for initial data with only one low-
frequency Fourier mode initially excited. We give some rigorous results concerning the relaxation to a
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metastable state, in which energy sharing takes place among low-frequency modes only.

The study of metastability phenomena for lattices started with the numerical result by Fermi, Pasta
and Ulam (FPU) [FPU95], who investigated the dynamics of a one-dimensional chain of particles with
nearest neighbour interaction. In the original simulations all the energy was initially given to a single
low-frequency Fourier mode with the aim of measuring the time of relaxation of the system to the
‘thermal equilibrium’ by looking at the evolution of the Fourier spectrum. Classical statistical mechanics
prescribes that the energy spectrum corresponding to the thermal equilibrium is a plateau (the so-
called theorem of equipartition of energy). Despite the authors believed that the approach to such an
equilibrium would have occurred in a short time-scale, the outcoming Fourier spectrum was far from
being flat and they observed two features of the dynamics that were in contrast with their expectations:
the lack of thermalization displayed by the energy spectrum and the recurrent behaviour of the dynamics.

Both from a physical and a mathematical point of view, the studies on FPU-like systems have a long
and active history: a concise survey of this vast literature is discussed in the monograph [Gal07]. For a
more recent account on analytic results on the ‘FPU paradox’ we refer to [BCMM15].

In particular, we mention the papers [BP06] and [Bam08], in which the authors used the techniques of
canonical perturbation theory for PDEs in order to show that the FPU α model (respectively, β model)
can be rigorously described by a system of two uncoupled KdV (resp. mKdV) equations, which are
obtained as a resonant normal form of the continuous approximation of the FPU model; moreover, this
result allowed to deduce a rigorous result about the energy sharing among the Fourier modes, up to the
time-scales of validity of the approximation. If we denote by N the number of degrees of freedom for
the lattice and by µ ∼ 1

N
≪ 1 the wave-number of the initially excited mode, if we assume that the

specific energy ǫ ∼ µ4 (resp. ǫ ∼ µ2 for the FPU β model), then the dynamics of the KdV (resp. mKdV)
equations approximates the solutions of the FPU model up to a time of order O(µ−3). However, the
relation between the specific energy and the number of degrees of freedom implies that the result does
not hold in the thermodynamic limit regime, namely for large N and for fixed specific energy ǫ (such a
regime is the one which is relevant for statistical mechanics).

Unlike the extensive research concerning one-dimensional systems, it seems to the authors that the
behaviour of the dynamics of two-dimensional lattices is far less clear; it is expected that the interplay
between the geometry of the lattice and the specific energy regime could lead to different results.

Benettin and collaborators [BVT80] [Ben05] [BG08] studied numerically a two-dimensional FPU lat-
tice with triangular cells and different boundary conditions in order to estimate the equipartition time-
scale, and they found out that in the thermodynamic limit regime the equipartition is reached faster
than in the one-dimensional case. The authors decided not to consider model with square cells in order
to have a spectrum of linear frequencies which is different with respect to the one of the one-dimensional
model; they also added (see [BG08], section B.(iii) )

There is a good chance, however, that models with square lattice, and perhaps a different potential
so as to avoid instability, behave differently from models with triangular lattice, and are instead more
similar to one-dimensional models. This would correspond to an even stronger lack of universality in the
two-dimensional FPU problem.

Up to the authors’ knowledge, the only analytical results on the dynamics of two-dimensional lattices
in this framework concern the existence of breathers [Wat94] [BW06] [BW07] [YWSC09] [WJ14] [BPP10].

In this paper we study two-dimensional rectangular lattices with (2N1 + 1)× (2N2 + 1) sites, square
cell, nearest-neighbour interaction and periodic boundary conditions, and we show the existence of
metastability phenomena as in [BP06]. More precisely, under some suitable assumptions on the ratio
between the sides of the lattice and on the type of small-amplitude solution we want to describe, we
obtain for a 2D Electrical Transmission lattice (ETL) either a system of two uncoupled KdV equations or
a system of two uncoupled KP-II equations as a resonant normal form for the continuous approximation
of the lattice, while for the 2D Klein-Gordon lattice with quartic defocusing nonlinearity we obtain a
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one-dimensional cubic defocusing NLS equation. Since all the above PDEs are integrable, we can exploit
integrability to deduce a mathematically rigorous result on the formation of the metastable packet.

Up to the authors’ knowledge, this is the first analytical result about metastable phenomena in
two-dimensional Hamiltonian lattices with periodic boundary conditions; in particular, this is the first
rigorous result for two-dimensional lattices in which the dynamics of the lattice in a genuinely two-
dimensional regime is described by a system of two-dimensional integrable PDEs.

Some comments are in order:

i. denoting by µ ≪ 1 the wave-number of the Fourier mode initially excited, we have that the
time-scale of validity of our result is of order O(µ−3) for the 2D ETL lattice, and of order
O(µ−2) for the 2D Klein-Gordon lattice;

ii. the ansatz about the small amplitude solutions gives a relation between the specific energy of
the system ǫ and the wave-number µ ∼ 1

N1
of the Fourier mode initially excited. More precisely,

we obtain ǫ ∼ µ4 for the 2D ETL lattice as in [BP06], and ǫ ∼ µ2 for the 2D Klein-Gordon
lattice. This implies that the result does not hold in the thermodynamic limit regime;

iii. our result can be easily generalized to higher-dimensional lattices (see Remark 2.8 and Remark
2.9), such as the physical case of three-dimensional rectangular lattices with cubic cells.

To prove our results we follow the strategy of [BP06]. The first step consists in the approximation of
the dynamics of the lattice with the dynamics of a continuous system. As a second step we perform a
normal form canonical transformation and we obtain that the effective dynamics is given by a system of
integrable PDEs (KdV, KP-II, NLS depending on the lattice and the relation between N1 and N2). Next,
we exploit the dynamics of these integrable PDEs in order to construct approximate solutions of the
original discrete lattices, and we estimate the error with repect to a true solution with the corresponding
initial datum. Finally, we use the known results about the dynamics of the above mentioned integrable
PDEs in order to estimate the specific energies for the approximate solutions of the original lattices.

The novelties of this work are: on the one side, a mathematically rigorous proof of the approximation
of the dynamics of the ETL lattice by the dynamics of certain integrable PDEs (among these integrable
PDEs, there is one which is genuinely two-dimensional, the KP-II equation) and of the dynamics of the
two-dimensional KG lattice by the dynamics of the one-dimensional nonlinear Schrödinger equation; on
the other side, there are two technical differences with respect to previous works, namely the normal
form theorem (which is a variant of the technique used in [BCP02] [Bam05] [Pas19]) and the estimates
for bounding the error between the approximate solution and the true solution of the lattice (which need
a more careful study than the ones appearing in [SW00] [BP06] for the one-dimensional case).

2. Main Results

2.1. The Electrical transmission lattice. We describe a lossless periodic two-dimensional electrical
transmission lattice (ETL), given by a rectangular configuration of repeating units, each made up of two
linear inductors and a nonlinear capacitor; in the non-periodic setting, the model has been studied in
[BW06]. We define lattice nodes by the locations of capacitors. We denote

Z
2
N1,N2

:= {(j1, j2) : j1, j2 ∈ Z, |j1| ≤ N1, |j2| ≤ N2};(1)

we also write e1 := (1, 0), e2 := (0, 1) and Z
2
N := Z

2
N,N .

The variable Vj(t), j ∈ Z
2
N1,N2

, denotes the voltage across the j-th capacitor, Qj(t) denotes the charge
stored on the j-th capacitor and Ij(t) denotes the current through the j-th inductor along direction e1.
To derive the equations for the voltage Vj and the charge Qj in the lattice one can proceed as follows.
Considering a section of the lattice and applying Faraday’s law and Lenz’s law, the difference in shunt
voltage at site j and site j + e1 is given by

Vj+e1 − Vj = −LdIj
dt
,(2)
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where L is the inductance, which we assume to be constant. Assuming the capacitance C to be an
analytic function of the voltage V we can expand it in Taylor series, obtaining for small voltages

Cj(V ) ∼ C0(1 + 2aVj + 3bV 2
j ),(3)

where C0 := Cj(0), a and b are real constants determined by the physical realisation of the network.
Using standard relations between electrical quantities we finally obtain a closed equation for the charge

d2Qj

dt2
=

1

LC0
(∆1(Q+ αQ2 + βQ3))j ,(4)

(∆1Q)j := (Qj+e1 − 2Qj +Qj−e1) + (Qj+e2 − 2Qj +Qj−e2).(5)

where α, β are real parameters related to a and b. Up to a rescaling of time, we can set LC0 = 1 without
loss of generality. The Hamiltonian associated to (4) is given by

H(Q,P ) =
∑

j∈Z2
N1,N2

−1

2
Pj (∆1P )j + (F (Q))j ,(6)

(F (Q))j =
Q2

j

2
+ α

Q3
j

3
+ β

Q4
j

4
.(7)

We refer to (6) as α + β model (respectively, β model) if α 6= 0 (respectively α = 0). With the above
Hamiltonian formulation the equations of motion associated to (6) are given by

{
Q̇j = −(∆1P )j

Ṗj = −(F ′(Q))j
;

Q̈j = (∆1F
′(Q))j .(8)

We also introduce the Fourier coefficients of Q via the following standard relation,

Qj :=
1√

(2N1 + 1)(2N2 + 1)

∑

k∈Z2
N1,N2

Q̂ke
i j·k 2π

(2N1+1)1/2(2N2+1)1/2 , j ∈ Z
2
N1,N2

,(9)

and similarly for Pj . We denote by

Ek :=
ω2
k|P̂k|2 + |Q̂k|2

2
,(10)

ω2
k := 4 sin2

(
k1 π

2N1 + 1

)
+ 4 sin2

(
k2 π

2N2 + 1

)
,(11)

the energy and the square of the frequency of the mode at site k = (k1, k2) ∈ Z
2
N1,N2

. For states described
by real functions, one has E(k1,k2) = E(−k1,k2) and E(k1,k2) = E(k1,−k2) for all k = (k1, k2), so we will
consider only indexes in

Z
2
N1,N2,+ := {(k1, k2) ∈ Z

2
N1,N2

: k1, k2 ≥ 0}.

It is also convenient to introduce the following specific quantities,

κ := κ(k) =

(
k1

N1 +
1
2

,
k2

N2 +
1
2

)
,(12)

Eκ :=
Ek(

N1 +
1
2

) (
N2 +

1
2

) ,(13)

where (13) is the specific energy of the normal mode with index κ.
We want to study the behaviour of small amplitude solutions of (8), with initial data in which only

one low-frequency Fourier mode is excited.
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We assume N1 ≤ N2, and we introduce the quantities

µ :=
2

2N1 + 1
,(14)

σ := logN1+
1
2

(
N2 +

1

2

)
,(15)

which play the role of parameters in our construction.
We study the α+ β model of (8) in the following regimes:

(KdV) the very weakly transverse regime, where the effective dynamics is described by a system of
two uncoupled Korteweg-de Vries (KdV) equations. This corresponds to taking µ ≪ 1 and
2 < σ < 5;

(KP) the weakly transverse regime, where the effective dynamics is a described by a system of two
uncoupled Kadomtsev-Petviashvili (KP) equation. This corresponds to taking µ≪ 1 and σ = 2.

From now on, we denote by κ0 :=
(

1

N1+
1
2

, 1

(N1+
1
2
)σ

)
= (µ, µσ).

Theorem 2.1. Consider (8) with α 6= 0, 2 < σ < 5.
Fix 1 ≤ γ ≤ 7−σ

2
and two positive constants C0 and T0, then there exist positive constants µ0, C1 and

C2 (depending only on γ, C0 and on T0) such that the following holds. Consider an initial datum with

Eκ0(0) = C0µ
4, Eκ(0) = 0, ∀κ = (κ1, κ2) 6= κ0,(16)

and assume that µ < µ0. Then there exists ρ > 0 such that along the corresponding solution one has

Eκ(t) ≤ C1 µ
4e−ρ|(κ1/µ,κ2/µ

σ)| + C2 µ
4+γ , |t| ≤ T0

µ3
(17)

for all κ. Moreover, for any n2 with 0 ≤ n2 ≤ N2 there exists a sequence of almost-periodic functions
(Fn)n=(n1,n2)∈Z2

N1,N2,+
such that, if we denote

Fκ0 = µ4 Fn, Fκ = 0 ∀κ 6= nκ0(18)

then

|Eκ(t)− Fκ(t)| ≤ C2 µ
4+γ , |t| ≤ T0

µ3
.(19)

Theorem 2.2. Consider (8) with α 6= 0, σ = 2.
Fix 1 ≤ γ < 5

2
and two positive constants C0 and T0, then there exist positive constants µ0, C1 and

C2 (depending only on γ, C0 and on T0) such that the following holds. Consider an initial datum with

Eκ0(0) = C0µ
4, Eκ(0) = 0 ∀κ = (κ1, κ2) 6= κ0,(20)

and assume that µ < µ0. Then there exists ρ > 0 such that along the corresponding solution one has

Eκ(t) ≤ C1 µ
4e−ρ|(κ1/µ,κ2/µ

σ)| + C2 µ
4+γ , |t| ≤ T

µ3
(21)

for all κ.

Remark 2.3. In Theorem 2.2 we do not mention the existence of a sequence of almost-periodic func-
tions approximating the specific energies of the modes. This is related to the construction of action-
angle/Birkhoff coordinates for the KP equation, which is an open problem in the theory of integrable
PDEs.

2.2. The 2D Klein-Gordon lattice. Among the lattices that have received a great amount of atten-
tion, we mention the class of Klein-Gordon (KG) lattices, which combine the nearest-neighbour potential
with an on-site one. The Hamiltonian of the system with 2N +1 particles in the one-dimensional case is

H(r, s) =

N∑

j=−N

s2

2
+

(rj+1 − rj)
2

2
+ U(rj),(22)

U(x) = m2 x
2

2
+ β

x2p+2

2p+ 2
, m > 0, p ≥ 1.(23)
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We now pass to two-dimensional KG lattices: the scalar model

H(Q,P ) =
∑

j∈Z2
N1,N2

P 2
j

2
+

1

2

∑

j,k∈Z
2
N1,N2

|j−k|=1

(Qj −Qk)
2

2
+

∑

j∈Z2
N1,N2

U(Qj),(24)

U(x) = m2 x
2

2
+ β

x2p+2

2p+ 2
, m > 0, β > 0, p ≥ 1,(25)

can be used to describe rigid rotating molecules in the lattice plane (Q being the angle of rotation), where
each molecule interacts with its neighbors and with the periodic substrate potential U ; alternatively, Q
can represent the transverse motion of a planar lattice [Ros03].

Using the operator ∆1 introduced in (5), the Hamiltonian (24) can be rewritten as

H(Q,P ) =
∑

j∈Z2
N1,N2

P 2
j

2
+

1

2

∑

j∈Z2
N1,N2

Qj (−∆1Q)j +
∑

j∈Z2
N1,N2

U(Qj),(26)

the associated equations of motion are

Q̈j = (∆1Q)j −m2Qj − βQ2p+1
j , j ∈ Z

2
N1,N2

.(27)

If we take p = 1, we obtain a generalization of the one-dimensional φ4 model.

We also introduce the Fourier coefficients of Q via the following relation,

Qj :=
1√

(2N1 + 1)(2N2 + 1)

∑

k∈Z2
2N+1

Q̂ke
i j·k 2π

(2N1+1)1/2(2N2+1)1/2 , j ∈ Z
2
N1,N2

,(28)

and similarly for Pj , and we denote by

Ek :=
|P̂k|2 + ω2

k|Q̂k|2
2

,(29)

ω2
k := m2 + 4 sin2

(
k1 π

2N1 + 1

)
+ 4 sin2

(
k2 π

2N2 + 1

)
,(30)

the energy and the square of the frequency of the mode at site k = (k1, k2) ∈ Z
2
N1,N2

.
In the rest of the paper we will assume that m = 1.

We study the two-dimensional KG lattice (24) in the following regime:

(1D NLS) the very weakly transverse regime, where the effective dynamics is described by a cubic one-
dimensional nonlinear Schrödinger (NLS) equation. This corresponds to taking µ ≪ 1 and
1 < σ < 7.

Theorem 2.4. Consider (24) with β > 0, 1 < σ < 7.
Fix 0 < γ ≤ 7−σ

2
and two positive constants C0 and T0, then there exist positive constants µ0, C1 and

C2 (depending only on γ, C0 and on T0) such that the following holds. Consider an initial datum with

Eκ0(0) = C0µ
2, Eκ(0) = 0, ∀κ = (κ1, κ2) 6= κ0,(31)

and assume that µ < µ0. Then there exists ρ > 0 such that along the corresponding solution one has

Eκ(t) ≤ C1 µ
2e−ρ|(κ1/µ,κ2/µ

σ)| + C2 µ
2+γ , |t| ≤ T0

µ2
(32)

for all κ. Moreover, for any n2 with 0 ≤ n2 ≤ N2 there exists a sequence of almost-periodic functions
(Fn)n=(n1,n2)∈Z2

N1,N2,+
such that, if we denote

Fκ0 = µ2 Fn, Fκ = 0 ∀κ 6= nκ0(33)

then

|Eκ(t)− Fκ(t)| ≤ C2 µ
2+γ , |t| ≤ T0

µ2
.(34)
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2.3. Further remarks.

Remark 2.5. The specific choice of the direction of longitudinal propagation in the regimes that we have
considered is not relevant.

Remark 2.6. Using the definition of σ and µ in (15), (14) we can read Theorems 2.1, 2.2 using, as
parameter, the total number of sites in the lattice N . The statement should read as follows:

Consider (8) with α 6= 0 and 2 ≤ σ < 5. Fix 1 ≤ γ ≤ 7−σ
2

and two positive constants C0 and T0, then
there exists positive constants N0, C1 and C2 (depending only on γ,C0 and T0) such that if we consider
an initial datum with

(35) Eκ0(0) =
C0

N
4

1+σ

, Eκ(0) = 0 ∀κ 6= κ0

with N > N0. There exists ρ > 0 such that along the corresponding solution one has

(36) Eκ(t) ≤
C1

N
4

1+σ

e−ρ|(N1κ1,N2κ2)| +
C2

N
4+γ
1+σ

, |t| ≤ T0N
3

1+σ .

for all κ.

Remark 2.7. We point out that the time of validity of Theorem 2.4 for the KG lattice is of order
O(µ−2), which is different from the time of validity of Theorem 2.1 and Theorem 2.2 for the FPU
lattice. In the one-dimensional case it has been observed that, for a fixed value of specific energy ǫ and
for long-wavelength modes initially excited, the φ4 model reached equipartition faster than the FPU β
model (see [LLPR07], sec. 2.1.8).

Remark 2.8. Theorem 2.1 and Theorem 2.2 can be generalized to higher dimensional lattices. Indeed,
let d ≤ 4, define

Z
d
N1,...,Nd

:= {(j1, . . . , jd) : j1, . . . , jd ∈ Z, |j1| ≤ N1, . . . , |jd| ≤ Nd},(37)

and consider the d-dimensional ETL

H(Q,P ) =
∑

j∈Zd
N1,...,Nd

−1

2
Pj (∆1P )j + (F (Q))j ,(38)

(F (Q))j =
Q2

j

2
+ α

Q3
j

3
+ β

Q4
j

4
, j ∈ Z

d
N1,...,Nd

.(39)

We assume N1 ≤ N2, . . . , Nd, and we introduce the quantities

µ :=
2

2N1 + 1
,(40)

σi := logN1+
1
2

(
Ni+1 +

1

2

)
, i = 1, . . . , d− 1.(41)

Then we can describe the following regimes:

(KdV-d) the α+ β model, in the very weakly transverse regime with µ≪ 1 and 2 < σ1, . . . , σd−1 < 5;
(KP-d) the α+ β model, in the weakly transverse regime with µ≪ 1 and σ1 = 2, 2 < σ2, . . . , σd−1 < 5.

Moreover, in order to obtain Theorem 2.1 and Theorem 2.2 we will have to assume that

2γ +

d−1∑

i=1

σi < 7.(42)

which, together with the fact that σi > 2 for all i = 1, . . . , d− 1, is consistent with the assumption d ≤ 4.
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Remark 2.9. Theorem 2.4 can be generalized to higher dimensional lattices. Indeed, let d ≤ 6, define
Z

d
N1,...,Nd

as in (37) and consider the d-dimensional NLKG lattice

H(Q,P ) =
∑

j∈Zd
N1,...,Nd

P 2
j

2
+

1

2

∑

j,k∈Z
d
N1,...,Nd

|j−k|=1

(Qj −Qk)
2

2
+

∑

j∈Zd
N1,...,Nd

U(Qj),(43)

U(x) = m2 x
2

2
+ β

x2p+2

2p+ 2
, m > 0, β > 0, p ≥ 1,(44)

We assume N1 ≤ N2, . . . , Nd−1, and we introduce the quantities µ and σi (1 ≤ i ≤ d− 1) as in (40) and
(41).

Then we can describe the following regime:

(1DNLS-d) the model (43) with m = 1 and p = 1 in the very weakly transverse regime, with µ ≪ 1,
1 < σ1, . . . , σd−1 < 7;

Moreover, in order to obtain Theorem 2.4 we will have to assume that

2γ +

d−1∑

i=1

σi < 7.(45)

which, together with the fact that σi > 1 for all i = 1, . . . , d− 1, is consistent with the assumption d ≤ 6.

Remark 2.10. There are other interesting regimes for (8) and (27) especially for their relation with the
modified KdV equation and two-dimensional Non-Linear Schrödinger equation respectively. These will
be discussed in Remark 4.7 and Remark 4.12 respectively.

3. Galerkin Averaging

3.1. An Averaging Theorem. Following [Pas19] (see also [BP06] and [Bam05]) we use a Galerkin
averaging method in order to approximate the solutions of the continuous approximation of the lattice
with the solutions of the system in normal form.

To this end we first have to introduce a topology in the phase space. This is conveniently done in
terms of Fourier coefficients.

Definition 3.1. Fix two constants ρ ≥ 0 and s ≥ 0. We will denote by ℓ2ρ,s the Hilbert space of complex
sequences v = (vn)n∈Z2\{0} with obvious vector space structure and with scalar product

〈v, w〉ρ,s :=
∑

n∈Z2\{0}

vnwne
2ρ|n||n|2s .(46)

and such that

‖v‖2ρ,s := 〈v, v〉ρ,s =
∑

n∈Z2\{0}

|vn|2e2ρ|n||n|2s(47)

is finite. We will denote by ℓ2 the space ℓ20,0.

We will identify a 2-periodic function v with the sequence of its Fourier coefficients {v̂n}n,

v(y) =
1

2

∑

n∈Z2

v̂ne
iπ n·y ,

and we will say that v ∈ ℓ2ρ,s if the sequence of its Fourier coefficients belong to ℓ2ρ,s.

Now fix ρ ≥ 0 and s ≥ 1, and consider the scale of Hilbert spaces Hρ,s := ℓ2ρ,s × ℓ2ρ,s ∋ ζ = (ξ, η),
endowed with one of the following symplectic forms:

Ω1 :=

(
0 i
−i 0

)
, Ω2 :=

(
−∂−1

x1
0

0 ∂−1
x1

)
.(48)

Observe that Ωγ : Hρ,s → Hρ,s+γ−1 (γ = 1, 2) is a well-defined operator. Moreover, Ω2 is well-defined on
the space of functions with zero-average with respect to the x1-variable, i.e. on those functions ζ(x1, x2)

such that for every x2 we have
∫ 1

−1
ζ(x1, x2) dx1 = 0.
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If we fix γ ∈ {1, 2}, s and Us ⊂ ℓ2ρ,s open, we define the gradient of K ∈ C∞(Us,R) with respect to

ξ ∈ ℓ2ρ,s as the unique function s.t.

〈∇ξK,h〉 = dξKh, ∀h ∈ ℓ2ρ,s.

Similarly, for an open set Us ⊂ Hρ,s the Hamiltonian vector field of the Hamiltonian function H ∈
C∞(Us,R) is given by

XH(ζ) = Ω−1
γ ∇ζH(ζ).

The open ball of radius R and center 0 in ℓ2ρ,s will be denoted by Bρ,s(R); we write Bρ,s(R) :=
Bρ,s(R)×Bρ,s(R) ⊂ Hρ,s.

Now, we introduce the Fourier projection operators π̂j : ℓ2ρ,s → ℓ2ρ,s

π̂j((vn)n∈Z2\{0}) :=

{
vn if j − 1 ≤ |n| < j

0 otherwise
, j ≥ 1,(49)

the operators πj : Hρ,s → Hρ,s

πj((ζn)n∈Z2\{0}) :=

{
ζn if j − 1 ≤ |n| < j

0 otherwise
, j ≥ 1,(50)

and the operators ΠM : Hρ,s → Hρ,s

ΠM ((ζn)n∈Z2\{0}) :=

{
ζn if |n| ≤M

0 otherwise
, M ≥ 0.(51)

Lemma 3.2. The projection operators defined in (50) and (51) satisfy the following properties for any
ζ ∈ Hρ,s:

i. for any j ≥ 0

ζ =
∑

j≥0

πjζ;

ii. for any M ≥ 0

‖ΠMζ‖Hρ,s ≤ ‖ζ‖Hρ,s ;

iii. the following equality holds

‖ζ‖Hρ,s =

∥∥∥∥∥∥∥


∑

j∈N

j2s|πjζ|2



1/2
∥∥∥∥∥∥∥
Hρ,0

(52)

where |ζ|, for ζ ∈ Hρ,s is the element |ζ| ∈ Hρ,s whose n-th element is

|ζ|n := (|ξn|, |ηn|)
and (ζα)n := (ξαn , η

α
n).

Now we consider a Hamiltonian system of the form

H = h0 + δF,(53)

where we assume that

(PER) h0 generates a linear periodic flow Φτ
h0

with period T ,

Φτ+T
h0

= Φτ
h0

∀τ,
which is analytic as a map from Hρ,s into itself for any s ≥ 1. Furthermore, the flow is an
isometry for any s ≥ 1.

(INV) for any s ≥ 1, Φτ
h0

leaves invariant the space ΠjHρ,s for any j ≥ 0. Furthermore, for any j ≥ 0

πj ◦ Φτ
h0

= Φτ
h0

◦ πj .
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Next, we assume that the vector field of F admits an asymptotic expansion in δ of the form

F ∼
∑

j≥1

δj−1Fj ,(54)

XF ∼
∑

j≥1

δj−1XFj ,(55)

and that the following property is satisfied

(HVF) There exists R∗ > 0 such that for any j ≥ 1
· XFj is analytic from Bρ,s+2j+γ(R

∗) to Hρ,s.
Moreover, for any r ≥ 1 we have that

· XF−
∑

r
j=1 δj−1Fj

is analytic from Bρ,s+2(r+1)+γ(R
∗) to Hρ,s.

The main result of this section is the following theorem.

Theorem 3.3. Fix R > 0, s1 ≫ 1. Consider (53), and assume (PER), (INV) and (HVF). Then ∃
s0 > 0 with the following properties: for any s ≥ s1 there exists δs ≪ 1 such that for any δ < δs there
exists Tδ : Bρ,s(R/2) → Bρ,s(R) analytic canonical transformation such that

H1 := H ◦ Tδ = h0 + δZ1 + δ2 R(1),(56)

where Z1 is in normal form, namely

{Z1, h0} = 0,(57)

and there exists a positive constant C′
s such that

sup
Bρ,s+s0

(R/2)

‖XZ1‖Hρ,s ≤ C′
s,

sup
Bρ,s+s0

(R/2)

‖XR(1)‖Hρ,s ≤ C′
s,(58)

sup
Bρ,s(R/2)

‖Tδ − id‖Hρ,s ≤ C′
s δ.(59)

In particular,

Z1(ζ) = 〈F1〉 (ζ),(60)

where 〈F1〉 (ζ) :=
∫ T

0
F1 ◦ Φτ

h0
(ζ) dτ

T
.

Remark 3.4. By using the same arguments of [Bam05] and [Pas19] one can prove a more general
version of Theorem 3.3, in which the Hamiltonian is put in normal form up to order r, for any r ≥ 1.
In this latter case, both δs and s0 will also depend on r.

3.2. Proof of the Averaging Theorem. The proof of Theorem 3.3 is actually an application of the
techniques used in [Pas19] and [BP06]).

First notice that by assumption (INV) the Hamiltonian vector field of h0 generates a continuous flow
Φτ which leaves ΠMHρ,s invariant.

Now we set H = H1,M +R1,M +R1, where

H1,M := h0 + δ F1,M ,(61)

F1,M := F1 ◦ ΠM ,(62)

and

R1,M := h0 + δF1 −H1,M ,(63)

R1 := δ (F − F1) .(64)

The system described by the Hamiltonian (61) is the one that we will put in normal form.
In the following we will use the notation a . b to mean: there exists a positive constant K independent
of M and R (but eventually on s), such that a ≤ Kb. We exploit the following intermediate results:
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Lemma 3.5. For any s ≥ s1 there exists R > 0 such that ∀ σ > 0, M > 0

sup
Bρ,s+γ+σ+2(R)

‖XR1,M (ζ)‖Hρ,s .
δ

(M + 1)σ
,(65)

sup
Bρ,s+γ+4(R)

‖XR1 (ζ)‖Hρ,s . δ2.(66)

Proof. We recall that R1,M = h0 + δFj −H1,M .
We first notice that ‖id − ΠM‖Hρ,s+σ→Hρ,s = (M + 1)−σ: indeed, using (52) we obtain

∥∥∥∥∥∥

∑

j≥M+1

πjf

∥∥∥∥∥∥
Hρ,s

=

∥∥∥∥∥∥∥


 ∑

j≥M+1

|jsπjf |2



1/2
∥∥∥∥∥∥∥
Hρ,0

≤ (M + 1)−σ

∥∥∥∥∥∥∥


 ∑

j≥M+1

|js+σπjf |2



1/2
∥∥∥∥∥∥∥
Hρ,0

≤ (M + 1)−σ‖f‖Hρ,s+σ ,

whereas the inequality ‖id − ΠM‖Hρ,s+σ→Hρ,σ ≤ (M + 1)−σ is obtained with a function which has non
zero components only for |j| =M + 1, i.e. f = πM+1f .

Inequality (65) follows from

sup
(ζ)∈Bρ,s+γ+2+σ(R)

‖XR1,M (ζ)‖Hρ,s

. ‖dXδF1‖L∞(Bρ,s+2+γ(R),Hρ,s)‖id− ΠM‖L∞(Bρ,s+2+γ+σ(R),Bρ,s+2+γ(R))

. δ (M + 1)−σ,

while estimate (66) is an immediate consequence of (HVF). �

Lemma 3.6. For any s ≥ s1

sup
Bρ,s(R∗)

‖XF1,M (ζ)‖Hρ,s ≤ K
(F )
1,s M

2+γ ,

where

K
(F )
1,s := sup

Bρ,s(R∗)

‖XF1(ζ)‖Hρ,s−2−γ < +∞.

Proof. Using (52) we have

sup
(ζ)∈Bρ,s(R)

∥∥∥∥∥∥

∑

h≤M

πhXF1,M (ζ)

∥∥∥∥∥∥
Hρ,s

= sup
(ζ)∈Bρ,s(R)

∥∥∥∥∥∥∥


∑

h≤M

|hsπhXF1,M (ζ)|2



1/2
∥∥∥∥∥∥∥
Hρ,0

(67)

≤M2+γ sup
(ζ)∈Bρ,s(R)

∥∥∥∥∥∥∥


∑

h≤M

|hs−2−γπhXF1,M (ζ)|2



1/2
∥∥∥∥∥∥∥
Hρ,0

(68)

≤M2+γ sup
(ζ)∈Bρ,s(R)

‖XF1,M (ζ)‖Hρ,s−2−γ = K
(F )
1,s M

2+γ ,(69)

where the last quantity is finite for R ≤ R∗ by property (HVF). �

To normalize (61) we need a slight reformulation of Theorem 4.4 in [Bam99]. Here we report a
statement of the result adapted to our context which is proved in Appendix A.

Lemma 3.7. Let s ≥ s1 + 2 + γ, R > 0, and consider the system (61). Assume that δ < 1
30

, and that

12 T K
(F )
1,s M

2+γδ < R(70)

where

K
(F )
1,s := sup

ζ∈Bρ,s(R)

‖XF1(ζ)‖Hρ,s−2−γ .
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Then there exists an analytic canonical transformation T (0)
δ,M : Bρ,s(R/2) → Bρ,s(R) such that

sup
Bρ,s(R/2)

‖T (0)
δ,M (ζ)− ζ‖Hρ,s ≤ 2T K

(F )
1,s M

2+γδ,(71)

and that puts (61) in normal form up to a small remainder,

H1,M ◦ T (0)
δ,M = h0 + δZ

(1)
M + δ2R(1)

M ,(72)

with Z
(1)
M in normal form, namely {h0,M , Z

(1)
M } = 0, and

sup
Bρ,s(R/2)

‖X
Z

(1)
M

(ζ)‖Hρ,s ≤ K
(F )
1,s M

2+γ(73)

sup
Bρ,s(R/2)

‖XR(1)
M

(ζ)‖Hρ,s ≤ 15K
(F )
1,s M

2+γ(74)

Now we conclude with the proof of the Theorem 3.3.

Proof. If we define δs := min{ 1
30
, R

12 T K
(F )
1,s M2+γ

} and we choose

s0 = σ + 2 + γ,

σ ≥ 2,

then the transformation Tδ := T (0)
δ,M defined by Lemma 3.7 satisfies (56) because of (72).

Next, Eq. (57) follows from Lemma 3.7, Eq. (58) follows from (73) and (74), while (59) is precisely
(71). Finally, (60) can be deduced by applying Lemma A.6 to G = F1. �

4. Applications to two-dimensional lattices

4.1. The KdV regime for the ETL lattice. We want to study the behaviour of small amplitude
solutions of (8), with initial data in which only one low-frequency Fourier mode is excited.

As a first step, we introduce an interpolating function Q = Q(t, x) such that

(A1) Q(t, j) = Qj(t), for all j ∈ Z
2
N1,N2

;
(A2) Q is periodic with period 2N1 + 1 in the x1-variable, and periodic with period 2N2 + 1 in the

x2-variable;
(A3) Q has zero average,

∫
[−(N1+

1
2 ),N1+

1
2 ]×[−(N2+

1
2 ),N2+

1
2 ]
Q(t, j)dj = 0 ∀t;

(A4) Q fulfills

Q̈ = ∆1(Q+ αQ2 + βQ3),(75)

∆1 := 4 sinh2

(
∂x1

2

)
+ 4 sinh2

(
∂x2

2

)
.(76)

It is easy to verify that (75) is Hamiltonian with Hamiltonian function

H(Q,P ) =

∫
[

− 1
µ
, 1
µ

]

×
[

− 1
µσ , 1

µσ

]

−P ∆1P +Q2

2
+ α

Q3

3
+ β

Q4

4
dx,(77)

where P is a periodic function which has zero average and is canonically conjugated to Q.
First we consider (75), with α 6= 0, and we look for small amplitude solutions of the form

Q(t, x) = µ2q(µt, µx1, µ
σx2),(78)

where q : R×T
2 → R is a periodic function and µ, σ are defined in (14)-(15). We introduce the rescaled

variables τ = µt, y1 = µx1, y2 = µσx2, and we denote

I := [−1, 1]2.(79)
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Plugging (78) into (75), we get

qττ =
∆µ,y1,σ

µ2

(
q + µ2αq2

)
,(80)

∆µ,y1,σ := 4 sinh2

(
µ∂y1
2

)
+ 4 sinh2

(
µσ ∂y2

2

)
,(81)

which is a Hamiltonian PDE corresponding to the Hamiltonian functional

K1(q, p) =

∫

I

−p∆µ,y1,σp

2µ2
+
q2

2
+ αµ2 q

3

3
dy,(82)

and p is the variable canonically conjugated to q.
Now, observe that the the operator ∆µ,y1,σ admits the following asymptotic expansion,

∆µ,y1,σ

µ2
∼ ∂2

y1 + µ2(σ−1)∂2
y2 +

∑

m≥1

cm
(
µ2m∂2(m+1)

y1 + µ2[(m+1)σ−1]∂2(m+1)
y2

)
,(83)

cm :=
2

(2m)!
,(84)

which, up to terms of order O(µ4), reads

∆µ,y1,σ

µ2
∼ ∂2

y1 +
µ2

12
∂4
y1 +O(µ4),(85)

(recall that σ > 2). Therefore the Hamiltonian (82) admits the following asymptotic expansion

K1(q, p) ∼ ĥ0(q, p) + µ2F̂1(q, p) + µ4R̂(q, p),(86)

ĥ0(q, p) =

∫

I

−p (∂2
y1p) + q2

2
dy,(87)

F̂1(q, p) =

∫

I

−p ∂
4
y1p

24
+ α

q3

3
dy.(88)

Note that the nonlinearity of degree 4 does not affect the Hamiltonian up to order O(µ4). Following the
approach of [BP06], we can introduce the following non-canonical change of coordinates

ξ :=
1√
2
(q + ∂y1p),(89)

η :=
1√
2
(q − ∂y1p).(90)

Since the previous transformation is not canonical, the Poisson tensor in these new coordinates is

J = ∂y1

(
−1 0
0 1

)
,(91)

and Hamilton equations associated to a Hamiltonian K1 are

∂τξ = −∂y1
δK1

δξ

∂τη = ∂y1
δK1

δη
.

Remark 4.1. The explicit expression of the Poisson tensor (91) let us compute straightforwardly Casimir
invariants associated to J, which are

C(ξ, η) = A+B

∫ 1

−1

ξ(τ, y1, y2)dy1 +C

∫ 1

−1

η(τ, y1, y2)dy1,(92)

where A, B and C are arbitrary real constants.
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Since Casimir invariants are constants of motion, we can restrict our analysis on the subspace defined
by

∫ 1

−1

ξ(τ, y1, y2)− η(τ, y1, y2)dy1 = 0 ∀τ ∈ R, |y2| ≤ 1.(93)

However, by recalling (89)-(90) one sees that (93) implies
∫ 1

−1

∂y1p(τ, y1, y2)dy1 = 0 ∀τ ∈ R, |y2| ≤ 1,(94)

which is true due to periodic boundary conditions.

Moreover, if we write K1 in (ξ, η) coordinates we have

K1(ξ, η) ∼ h0(ξ, η) + µ2F1(ξ, η) + µ4R(ξ, η),(95)

h0(ξ, η) =

∫

I

ξ2 + η2

2
dy,(96)

F1(ξ, η) =

∫

I

− [∂y1(ξ − η)]2

48
+ α

(ξ + η)3

3 · 23/2 dy.(97)

Now we apply the averaging Theorem 3.3 to the Hamiltonian (95), with δ = µ2: observe that the
equations of motion of h0 have the following simple form:

(98)

{
ξτ = −∂y1ξ
ητ = ∂y1η

;

{
ξ(τ, y) = ξ0(y1 − τ, y2)

η(τ, y) = η0(y1 + τ, y2)
.

Proposition 4.2. The average of F1 in (95) with respect to the flow of h0 in (96) is given by

〈F1〉 (ξ, η) = −
∫

I

(∂y1ξ)
2 + (∂y1η)

2

48
dy +

α

3 · 23/2 ([ξ
3] + [η3]),(99)

where we denote by [f j ] the average
∫
I
f j(y) dy

4
.

The proof of this proposition is a straightforward application of the following two lemmas.

Lemma 4.3. Given two functions u, v ∈ L2([−1, 1])
∫ 1

−1

dy

∫ 1

−1

ds u(y ± s)v(y ∓ s) =

∫ 1

−1

u(y)dy

∫ 1

−1

v(y) dy.

Proof. Denoting with {ûk}k and {v̂k}k the Fourier series of u and v respectively and using Plancherel
theorem one obtains

∫ 1

−1

dy

∫ 1

−1

ds u(y ± s)v(y ∓ s) =
1

2

∫ 1

−1

dy

∫ 1

−1

ds
∑

k,k′∈Z

ûkv̂k′eπik(y±s)eπik′(y∓s) = û0v̂0

and thus Lemma is proved. �

Lemma 4.4. Given a function u ∈ L1([−1, 1]) then

1

2

∫ 1

−1

ds

∫ 1

−1

dy u(y ± s) =

∫ 1

−1

u(x) dx

Proof. The thesis follows by a simple change of coordinates x := y ± s. �

Proof of Proposition 4.2. For the computation of 〈F1〉(ξ, η) one can exchange the order of the integrations
and apply Lemma 4.3 and 4.4. �

Corollary 4.5. The equations of motion associated to h0(ξ, η) + µ2 〈F1〉 (ξ, η) are given by

(100)

{
ξτ = −∂y1ξ − µ2

24
∂3
y1ξ −

µ2α

2
√

2
∂y1(ξ

2)

ητ = ∂y1η +
µ2

24
∂3
y1η +

µ2α

2
√

2
∂y1(η

2)
.
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The latter is a system of two uncoupled KdV equations in translating frames with respect to the
y1-direction, for each fixed value of the coordinate y2.

Remark 4.6. If one considers a square lattice, namely

H(Q,P ) =
∑

j∈Z2
N

−1

2
Pj (∆1P )j + (F (Q))j,(101)

with F (Q) as in (7), with its continuous approximation

H(Q,P ) =

∫
[

− 1
µ
, 1
µ

]2

−P ∆1P +Q2

2
+ α

Q3

3
+ β

Q4

4
dx,(102)

and makes the ansatz (78) about the solution, one gets the rescaled Hamiltonian

K1(q, p) =

∫

Iµ,σ

−p∆µ,y1,σp

2µ2
+
q2

2
+ αµ2 q

3

3
+ βµ4 q

4

4
dy,(103)

∆µ,y1,σ := 4 sinh2

(
µ∂y1
2

)
+ 4 sinh2

(
µσ ∂y2

2

)
,(104)

Iµ,σ := [−1, 1]× [−µσ−1, µσ−1],(105)

which, combined with the fact that
∫ 1

−1

ξ(τ, y1, y2)− η(τ, y1, y2) dy1 = 0 ∀τ ∈ R, |y2| ≤ µσ−1,(106)

leads to the system (100) of two uncoupled KdV equations in translating frames with respect to the
y1-direction.

Remark 4.7. One can also study the β model (namely, (75) with α = 0 and β 6= 0) in the following
regime,

(mKdV) the β model in the very weakly transverse regime,

Q(t, x) = µ q(µt, µx1, µ
σx2),(107)

where µ≪ 1, 2 < σ.

Let us introduce again the rescaled variables τ = µt, y1 = µx1, y2 = µσx2, and the domain I as in
(79); plugging (107) into (75), we get

qττ =
∆µ,y1,σ

µ2

(
q + µ2βq3

)
,(108)

where ∆µ,y1,σ is the operator introduced in (81). Eq. (108) is a Hamiltonian PDE with the following
corresponding Hamiltonian,

K2(q, p) =

∫

I

−p∆µ,y1,σp

2µ2
+
q2

2
+ βµ2 q

4

4
dy,(109)

where p is the variable canonically conjugated to q.
Recalling that (93) holds true, we exploit again the non-canonical change of coordinates (89)-(90) and

the Poisson tensor (91), obtaining that

K2(ξ, η) ∼ h0(ξ, η) + µ2F1(ξ, η) + µ4R(ξ, η),(110)

where h0 is the same as in (96), while

F1(ξ, η) =

∫

I

− [∂y1(ξ − η)]2

48
+ β

(ξ + η)4

24
dy.(111)

Applying Theorem 3.3 to the Hamiltonian (110) with δ = µ2, we get that the equations of motion
associated to h0(ξ, η) + µ2 〈F1〉 (ξ, η) are given by

(112)

{
ξτ = −

(
1 + 3

4
[η2]
)
∂y1ξ − µ2

24
∂3
y1ξ − µ2β

4
∂y1(ξ

3)

ητ =
(
1 + 3

4
[ξ2]
)
∂y1η +

µ2

24
∂3
y1η +

µ2β
4
∂y1(η

3)
.
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which is a system of two uncoupled mKdV equations in translating frames with respect to the y1-direction.
The integrability properties of the mKdV equation and the existence of Birkhoff coordinates for this model
have been proved in [KST08].

4.2. The KP regime for the ETL lattice. For this regime we consider (75), with α 6= 0, and we look
for small amplitude solutions of the form

Q(t, x) = µ2q(µt, µx1, µ
2x2),(113)

with µ as in (14). We introduce the rescaled variables τ = µt, y1 = µx1, y2 = µ2x2.
Plugging (113) into (75), leads to

qττ =
∆µ,y1

µ2

(
q + µ2αq2

)
,(114)

∆µ,y1 := 4 sinh2

(
µ∂y1
2

)
+ 4 sinh2

(
µ2 ∂y2

2

)
,(115)

which is a Hamiltonian PDE corresponding to the Hamiltonian functional,

K3(q, p) =

∫

I

−p∆µ,y1p

2µ2
+
q2

2
+ αµ2 q

3

3
+ βµ4 q

4

4
dy,(116)

where I is as in (79), and p is the variable canonically conjugated to q.
Now, observe that the the operator ∆µ,y1 admits the following asymptotic expansion up to terms of

order O(µ4),

∆µ,y1

µ2
∼ ∂2

y1 + µ2∂2
y2 +

µ2

12
∂4
y1 +O(µ4),(117)

Therefore the Hamiltonian (116) admits the following asymptotic expansion

K3(q, p) ∼ ĥ0(q, p) + µ2F̂1(q, p) + µ4R̂(q, p),(118)

ĥ0(q, p) =

∫

I

−p (∂2
y1p) + q2

2
dy,(119)

F̂1(q, p) =

∫

I

−p ∂
4
y1p

24
− p ∂2

y2p

2
+ α

q3

3
dy.(120)

By exploiting again the non-canonical change of coordinates (q, p) 7→ (ξ, η) introduced in (89)-(90)
and the Poisson tensor (91), and

∫ 1

−1

ξ(τ, y1, y2)− η(τ, y1, y2)dy1 = 0 ∀τ ∈ R, |y2| ≤ 1,(121)

we obtain

K3(ξ, η) ∼ h0(ξ, η) + µ2F1(ξ, η) + µ4R(ξ, η),(122)

h0(ξ, η) =

∫

I

ξ2 + η2

2
dy,(123)

F1(ξ, η) =

∫

I

− [∂y1(ξ − η)]2

48
+

[∂y2∂
−1
y1 (ξ − η)]2

4
+ α

(ξ + η)3

3 · 23/2 dy,(124)

where (124) is well defined because of (121).
Now we apply the averaging Theorem 3.3 to the Hamiltonian (122), with δ = µ2.

Proposition 4.8. The average of F1 in (122) with respect to the flow of h0 in (122) is given by

〈F1〉 (ξ, η) =
∫

I

− (∂y1ξ)
2 + (∂y1η)

2

48
+

(∂y2∂
−1
y1 ξ)

2 + (∂y2∂
−1
y1 η)

2

4
dy +

α

3 · 23/2 ([ξ
3] + [η3])(125)

where we denote by [f j ] the average
∫
I
f j(y) dy

4
.
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Corollary 4.9. The equations of motion associated to h0(ξ, η) + µ2 〈F1〉 (ξ, η) are given by

(126)

{
ξτ = −∂y1ξ − µ2

24
∂3
y1ξ − µ2

2
∂−1
y1 ∂

2
y2ξ − αµ2

2
√

2
∂y1(ξ

2)

ητ = ∂y1η +
µ2

2
∂−1
y1 ∂

2
y2η +

µ2

24
∂3
y1η +

αµ2

2
√

2
∂y1(η

2)
.

More explicitly, we observe that (126) is a system of two uncoupled KP equations on a two-dimensional
torus in translating frames.

4.3. The one-dimensional NLS regime for the KG Lattice. We want to study small amplitude
solutions of (27) , with initial data in which only one low-frequency Fourier mode is excited.

Analogously to the procedure of the previous sections, the first step is to introduce an interpolating
function Q = Q(t, x) such that

(B1) Q(t, j) = Qj(t), for all j ∈ Z
2
N1,N2

;
(B2) Q is periodic with period 2N1 + 1 in the x1-variable, and periodic with period 2N2 + 1 in the

x2-variable;
(B3) Q fulfills

Q̈ = ∆1Q−Q− βQ2p+1,(127)

where ∆1 is the operator defined in (76) (recall that we also assumed m = 1 in (25)).

It is easy to verify that (127) is Hamiltonian with Hamiltonian function

H(Q,P ) =

∫

[− 1
µ
, 1
µ
]×[− 1

µσ , 1
µσ ]

P 2

2
+
Q2

2
− Q ∆1Q

2
+ β

Q2p+2

2p+ 2
dx,(128)

where P is a periodic function and is canonically conjugated to Q.
Starting from the Hamiltonian (24), where p = 1, we look for small amplitude solutions of the form

Q(t, x) = µ q(µ2t, µx1, µ
σx2) .(129)

where q : R× T
2 → R is a periodic function and σ, µ are defined respectively in (15)-(14).

We introduce the rescaled variable y1 = µx1 and y2 = µσx2, and we define I as in (79). The
Hamiltonian (24) in the rescaled variable is given by

K4(q, p) =

∫

I

p2

2
+
q2

2
− q ∆µ,y1,σq

2
+ βµ2 q

4

4
dy,(130)

with the operator ∆µ,y1,σ as in (81), and p is the variable canonically conjugated to q. The corresponding
equation of motion is given by

qtt = −q +∆µ,y1,σq − βµ2q3.(131)

Recall that

∆µ,y1,σ

µ2
∼ ∂2

y1 + µ2(σ−1)∂2
y2 +

µ2

12
∂4
y1 +O(µ2(2σ−1)),

hence the Hamiltonian (130) admits the following asymptotic expansion

K4(q, p) ∼ ĥ0(q, p) + µ2F̂1(q, p) + µ2(2σ−1)R̂(q, p),(132)

ĥ0(q, p) =

∫

I

p2 + q2

2
dy,(133)

F̂1(q, p) =

∫

I

− q ∂
2
y1q

2
+ β

q4

4
dy,(134)

and the equation of motion associated to h0+F1 is given by the following cubic one-dimensional nonlinear
Klein-Gordon (NLKG) equation,

qtt = −(q − µ2∂2
y1q)− µ2βq3.(135)

We now exploit the change of coordinates (q, p) 7→ (ψ, ψ̄) given by

ψ =
1√
2
(q − ip),(136)
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therefore the inverse change of coordinates is given by

q =
1√
2
(ψ + ψ̄),(137)

p =
1√
2
i(ψ − ψ̄),(138)

while the symplectic form is given by −idψ ∧ dψ̄. With this change of variables the Hamiltonian takes
the form

K4(ψ, ψ̄) ∼ h0(ψ, ψ̄) + µ2F1(ψ, ψ̄) + µ2(2σ−1)R(ψ, ψ̄),(139)

h0(ψ, ψ̄) =

∫

I

ψ ψ̄dy,(140)

F1(ψ, ψ̄) =

∫

I

− (ψ + ψ̄) [−∂2
y1(ψ + ψ̄)]

4
+ β

(ψ + ψ̄)4

16
dy.(141)

Now we apply the averaging Theorem 3.3 to the Hamiltonian (139), with δ = µ2. Observe that h0

generates a periodic flow,

−i∂tψ = ψ;

ψ(t, y) = eitψ0(y).(142)

Proposition 4.10. The average of F1 in (139) with respect to the flow of h0 (133) is given by

〈F1〉 (ψ, ψ̄) =
∫

I

ψ̄ (−∂2
y1ψ)

2
dy +

3β

8

∫

I

|ψ|4dy.(143)

Corollary 4.11. The equations of motion associated to h0(ψ, ψ̄) + µ2 〈F1〉 (ψ, ψ̄) are given by a cubic
one-dimensional nonlinear Schrödinger equation for each fixed value of y2,

−iψt = ψ − µ2 ∂2
y1ψ + µ2 3β

4
|ψ|2ψ.(144)

Remark 4.12. Let us consider the Hamiltonian (24) in the following regime,

(2-D NLS) the scalar model (24) with m = 1, p = 1 and

Q(t, x) = µ q(µ2t, µx),(145)

where µ≪ 1 and σ = 1.

If we introduce the rescaled variable y = µx and we define I as in (79), we have that the Hamiltonian
takes the following form (we denote by p the variable canonically conjugated to q)

K5(q, p) =

∫

I

p2

2
+
q2

2
− q ∆µq

2
+ βµ2 q

4

4
dy,(146)

∆µ := 4 sinh2

(
µ∂y1
2

)
+ 4 sinh2

(
µ
∂y2
2

)
.(147)

By expanding the operator ∆µ and by exploiting the change of variable (136), we get

K5(ψ, ψ̄) ∼ h0(ψ, ψ̄) + µ2F1(ψ, ψ̄) + µ4R(ψ, ψ̄),(148)

h0(ψ, ψ̄) =

∫

I

ψ ψ̄dy,(149)

F1(ψ, ψ̄) =

∫

I

− (ψ + ψ̄) [−∆(ψ + ψ̄)]

4
+ β

(ψ + ψ̄)4

16
dy.(150)

By applying Theorem 3.3 to the Hamiltonian (139), with δ = µ2, we obtain that the equation of motion
associated to h0(ψ, ψ̄) + µ2 〈F1〉 (ψ, ψ̄) is given by the cubic nonlinear Schrödinger (NLS) equation

−iψt = ψ − µ2 ∆ψ + µ2 3β

4
|ψ|2ψ.(151)

The local well-posedness of the NLS equation (151) in the Sobolev space Hs(T2), s > 0, has been
discussed by Bourgain in [Bou93a]; along with the conservation laws, this implies the global existence in
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the defocusing case (β > 0), and the global existence for small solutions in the focusing case (β < 0).
The long time dynamics of the NLS equation has also been studied, in relation with the transfer of energy
among Fourier modes and with the growth of Sobolev norms [CKS+10] [CF12] [Han14] [GK15] [GHP16].

5. Dynamics of the normal form equation

5.1. The KdV equation. In this section we recall some known facts on the dynamics of the KdV
equation with periodic boundary conditions. The interested reader can find more detailed explanations
and proofs in [KP03].

Consider the KdV equation

ξτ = − 1

24
∂3
y1ξ −

α

2
√
2
∂y1(ξ

2), y1 ∈ [0, 2].(152)

Through the Lax pair formulation of the evolution problem (152) one get that the periodic eigenvalues
(λn)n∈N of the Sturm-Liouville operator

Lξ := −∂2
y1 + 6

√
2ξ(τ, y1)(153)

are conserved quantities under the evolution of the KdV equation (152). Moreover, if we define the gaps
of the spectrum γm := λ2m − λ2m−1 (m ≥ 1), it is well known that the squared spectral gaps (γ2

m)m≥1

form a complete set of constants of motion for (152).
The following relation between the sequence of the spectral gaps and the regularity of the correspond-

ing solution to the KdV equation holds (see Theorem 9, Theorem 10 and Theorem 11 in [KP08]; see also
[Pös11])

Theorem 5.1. Assume that ξ ∈ L2, then ξ ∈ ℓ20,s if and only if its spectral gaps satisfy

∑

m≥1

m2s|γm|2 < +∞.

Moreover if ξ ∈ ℓ2ρ,s, then

∑

m≥1

m2se2ρm|γm|2 < +∞;(154)

conversely, if (154) holds, then ξ ∈ ℓ2ρ′,0 for some ρ′ > 0.

Kappeler and Pöschel constructed the following global Birkhoff coordinates (see Theorem 1.1 in
[KP03])

Theorem 5.2. There exists a diffeomorphism Ω : L2 → ℓ20,1/2 × ℓ20,1/2 such that:

• Ω is bijective, bianalytic and canonical;
• for each s ≥ 0, the restriction of Ω to ℓ20,s, namely the map

Ω : ℓ20,s → ℓ20,s+1/2 × ℓ20,s+1/2

is bijective, bianalytic and canonical;
• the coordinates (x, y) ∈ ℓ20,3/2×ℓ20,3/2 are Birkhoff coordinates for the KdV equation, namely they

form a set of canonically conjugated coordinates in which the Hamiltonian of the KdV equation

(152) depends only on the action Im :=
x2
m+y2

m
2

(m ≥ 1).

The dynamics of the KdV equation (152) in terms of the variables (x, y) is trivial: it can be immedi-
ately seen that any solution is periodic, quasiperiodic or almost periodic, depending on the number of
spectral gaps (equivalently, depending on the number of actions) initially different from zero.
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5.2. The KP equation. In this section we recall some known facts on the dynamics of the KP equation
on the two-dimensional torus

ξτ = − 1

24
∂3
y1ξ −

1

2
∂−1
y1 ∂

2
y2ξ −

α

2
√
2
∂y1(ξ

2), α = ±1, y ∈ T
2 := R

2/(2πZ)2.(155)

The KP equation has been introduced in order to describe weakly-transverse solutions of the water
waves equations; it has been considered as a two-dimensional analogue of the KdV equation, since also the
KP equation admits an infinite number of constants of motions [LC82] [CLL83] [CL87]. It is customary
to refer to (155) as KP-I equation when α = −1, and as KP-II equation when α = 1.

The global-well posedness for the KP-II equation on the two-dimensional torus has been discussed
by Bourgain in [Bou93b]. The main point of the result by Bourgain consists in extending the local
well-posedness result to a global one, even though the L2-norm is the only constant of motion for the
KP-II equation that allows an a-priori bound for the solution (see Theorem 8.10 and Theorem 8.12 in
[Bou93b]).

Theorem 5.3. Consider (155) with α = 1.
Let ρ ≥ 0 and s ≥ 0, and assume that the initial datum ξ(0, ·, ·) = ξ0 ∈ ℓ2ρ,s. Then (155) is globally

well-posed in ℓ2ρ,s. Moreover, the ℓ2-norm of the solution is conserved,

‖ξ(t)‖ℓ2 = ‖ξ0‖ℓ2 ,(156)

while

‖ξ(t)‖ℓ20,s ≤ eC|t|‖ξ0‖ℓ20,s ,(157)

where C depends on s.

Remark 5.4. As pointed out by Bourgain in Sec. 10.2 of [Bou93b], a global well-posedness result for
sufficiently smooth solution of the KP-I equation (namely, (155) with α = −1) on the two-dimensional
torus can be obtained by generalizing the argument in [SJ87] for small data and by using the a-priori
bounds given by the constants of motion for the KP-I equation.

For the KP equation the construction of action-angle/Birkhoff coordinates is still an open problem.

5.3. The one-dimensional cubic NLS equation. In this section we recall some known facts on the
dynamics of the one-dimensional cubic defocusing NLS equation with periodic boundary conditions. The
interested reader can find more detailed explanations and proofs in [GKK14] [Mol14].

Consider the cubic defocusing NLS equation

iψτ = −∂2
y1ψ + 2|ψ|2ψ, y1 ∈ T := R/(2πZ).(158)

Eq. (158) is a PDE admitting a Hamiltonian structure: indeed, we can set Hρ,s = ℓ2ρ,s × ℓ2ρ,s as
the phase space with elements denoted by φ = (φ1, φ2), while the associated Poisson bracket and the
Hamiltonian are given by

{F,G} := −i
∫

T

(∂φ1F ∂φ2G− ∂φ1G∂φ2F ) dy1,(159)

HNLS(φ1, φ2) :=

∫

T

∂y1φ1 ∂y1φ2 + φ2
1φ

2
2 dy1.(160)

The defocusing NLS equation (158) is obtained by restricting (160) to the invariant subspace of states
of real type,

Hρ,s
r := {φ ∈ Hρ,s : φ2 = φ̄1}.(161)

The above Hamiltonian (160) is well-defined on Hρ,s with s ≥ 1 and ρ ≥ 0, while the initial value
problem for the NLS equation (158) is well-posed on H0,0 = ℓ2 × ℓ2.

It is well known from the work by Zakharov and Shabat that the NLS equation (158) has a Lax pair,
and that it admits infinitely many constants of motion in involution. More precisely, for any φ ∈ H0,0

consider the Zakharov-Shabat operator

L(φ) =

(
i 0
0 −i

)
∂y1 +

(
0 φ1

φ2 0

)
,(162)
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where we call φ the potential of the operator L(φ). The spectrum of L(φ) on the interval [0, 2] with peri-
odic boundary conditions is pure point, and it consists of the following sequence of periodic eigenvalues

· · · < λ−
−1 ≤ λ+

−1 < λ−
0 ≤ λ+

0 < λ−
1 ≤ λ+

1 < · · · ,(163)

where the quantities γm := λ+
m−λ−

m (m ∈ Z) are called gap lengths. It has been proved that the squared
spectral lengths (γ2

m)m∈Z form a complete set of analytic constants of motion for (158).
Grébert, Kappeler and Mityagin proved the following relation between the sequence of the squared

spectral gaps and the regularity of the corresponding potential (see Theorem in [GKM98]).

Theorem 5.5. Let ρ ≥ 0 and s > 0, then for any bounded subset B ⊂ ℓ2ρ,s × ℓ2ρ,s there exists n0 ≥ 1 and
M ≥ 1 such that for any |k| ≥ n0 and any (φ1, φ2) ∈ B, the following estimate holds

∑

|k|≥n0

(1 + |k|)2se2ρ|k||γm|2 ≤M.(164)

Moreover, Grébert and Kappeler constructed the following global Birkhoff coordinates (see Theorem
20.1 - Theorem 20.3 in [GKK14])

Theorem 5.6. There exists a diffeomorphism Ω : L2
r → H0,0

r such that:

• Ω is bianalytic and canonical;
• for each s ≥ 0, the restriction of Ω to H0,s

r , namely the map

Ω : H0,s
r → H0,s

r

is again bianalytic and canonical;
• the coordinates (x, y) ∈ H0,1

r are Birkhoff coordinates for the NLS equation, namely they form
a set of canonically conjugated coordinates in which the Hamiltonian of the NLS equation (158)

depends only on the action Im :=
x2
m+y2

m
2

(m ∈ Z).

The dynamics of the NLS equation (158) in terms of the variables (x, y) is trivial: it can be immediately
seen that any solution is periodic, quasiperiodic or almost periodic, depending on the number of spectral
gaps (equivalently, depending on the number of actions) initially different from zero.

6. Approximation results

In this section we show how to use the normal form equations in order to construct approximate solu-
tions of (8) and (27), and we estimate the difference with respect to the true solutions with corresponding
initial data.

The approach is the same for all the regimes (78), (113) and (129). First, we have to point out a
relation between the energy of normal mode Ek (defined in (10) for (8), and in (10) for (27)) , k ∈ Z

2
2N+1,

and the Fourier coefficients of the solutions of the normal form equations. Then we have to prove that
the approximate solutions approximate the energy of the true normal mode Ek up to the time-scale in
which the continuous approximation is valid, and finally we can deduce the result about the dynamics
of the lattice.

6.1. The KdV regime. Let I = [−1, 1]2 be as in (79), we define the Fourier coefficients of the function
q : I → R by

q̂(j) :=
1

2

∫

I

q(y1, y2)e
−iπ(j1y1+j2y2)dy1 dy2,(165)

and similarly for the Fourier coefficients of the function p.

Lemma 6.1. Consider the lattice (6) in the regime (KdV) and with interpolanting function (78). Then
for a state corresponding to (q, p) one has

Eκ =
µ4

2

∑

L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣
p̂K+L

µ

∣∣∣∣
2

, ∀k : κ(k) = (µK1, µ
σK2)(166)

(where the ωk are defined as in (11) and the Eκ in (13)), and Eκ = 0 otherwise.
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Proof. First we introduce a (2N1 +1)(2N2 +1)-periodic interpolating function for Qj , namely a smooth
function Q : (t, x) 7→ Q(t, x) such that

Qj(t) = Q(t, j), ∀t, j,
Q(t, x1, x2 + 2N2 + 1) = Q(t, x), ∀t, x,
Q(t, x1 + 2N1 + 1, x2) = Q(t, x), ∀t, x,

and similarly for Pj . We denote by

Q̂(j) :=
1

(2N1 + 1)1/2(2N2 + 1)1/2

∫

[−(N1+
1
2 ),(N1+

1
2 )]×[−(N2+

1
2 ),(N2+

1
2 )]

Q(x)e
−i j·x 2π

(2N1+1)1/2(2N2+1)1/2 dx,

(167)

so that by the interpolation property we obtain

Qj(t) = Q(t, j) =
1

(2N1 + 1)1/2(2N2 + 1)1/2

∑

k∈Z2

Q̂(j)e
i j·k 2π

(2N1+1)1/2(2N2+1)1/2

=
1

(2N1 + 1)1/2(2N2 + 1)1/2

×
∑

k=(k1,k2)∈Z2
2N+1


 ∑

h=(h1,h2)∈Z2

Q̂(k1 + (2N1 + 1)h1, k2 + (2N2 + 1)h2)


 e

i j·k 2π

(2N1+1)1/2(2N2+1)1/2 ,

hence

Q̂k =
∑

h∈Z2

Q̂(k1 + (2N1 + 1)h1, k2 + (2N2 + 1)h2).(168)

The relation between Q̂(k) and q̂k can be deduced from (78),

Q(j) = µ2q(µj1, µ
σj2);

Q̂k =
1

2
µ(σ+1)/2

∫
[

− 1
µ
, 1
µ

]

×
[

− 1
µσ , 1

µσ

]

Q(x1, x2)e
−iπ(k1x1µ+k2x2µ

σ)dx1 dx2

=
1

2
µ(σ+1)/2

∫
[

− 1
µ
, 1
µ

]

×
[

− 1
µσ , 1

µσ

]

µ2 q (µx1, µ
σx2) e

−iπ(k1x1µ+k2x2µ
σ)dx1 dx2

(78)
=

1

2
µ(3−σ)/2

∫

I

q(y)e−iπ(k1y1+k2y2)dy

= µ(3−σ)/2q̂k,(169)

and similarly

P̂k = µ(1−σ)/2p̂k.(170)

By using (10), (13) and (168)-(170) we have

Eκ
(13)
= µσ+1 1

2

∑

L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|Q̂K+L|2 + ω2
k|P̂K+L|2

(169),(169)
= µσ+1 µ3−σ 1

2

∑

L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣
p̂K+L

µ

∣∣∣∣
2

for all k such that κ(k) = (µK1, µ
σK2), and this leads to (166). �
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Proposition 6.2. Fix ρ > 0 and 0 < δ ≪ 1. Consider the normal form system (100), and define the
Fourier coefficients of (ξ, η) through the following formula

ξ(y) =
1

2

∑

h∈Z2

ξ̂he
ih·yπ,(171)

η(y) =
1

2

∑

h∈Z2

η̂he
ih·yπ, .(172)

Consider (ξ, η) ∈ Hρ,0, and denote by Eκ the specific energy of the normal mode with index κ as defined
in (12)-(13). Then for any positive µ sufficiently small

∣∣∣∣∣Eκ − µ4 |ξ̂K |2 + |η̂K |2
2

∣∣∣∣∣ ≤ Cµ4+ 6
5 ‖(ξ, η)‖2Hρ,0(173)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ C µ8‖(ξ, η)‖2Hρ,0(174)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

We defer the proof of the above Proposition to Appendix B.

Now, consider the following system of uncoupled KdV equations

ξτ = − 1

24
∂3
y1ξ −

α

2
√
2
∂y1(ξ

2),(175)

ητ =
1

24
∂3
y1η +

α

2
√
2
∂y1(η

2),(176)

and consider a solution (τ, y) 7→ (ξ̃a(τ, y), η̃a(τ, y)) such that it belongs to Hρ,n, for some n ≥ 1.
We consider the approximate solutions (Qa, Pa) of the FPU model (75)

Qa(τ, y) :=
µ2

√
2

[
ξ̃a(µ

2τ, y1 − τ, y2) + η̃a(µ
2τ, y1 + τ, y2)

]
(177)

∂y1Pa(τ, y) :=
µ√
2

[
ξ̃a(µ

2τ, y1 − τ, y2)− η̃a(µ
2τ, y1 + τ, y2)

]
,(178)

We need to compare the difference between the approximate solution (177)-(178) and the true solution

of (8). Let consider an initial datum (Q0, P0) with corresponding Fourier coefficients (Q̂0,k, P̂0,k) given
by (9), where

Q0,k 6= 0 only if κ(k) = (µK1, µ
σK2).(179)

We also assume that there exist C, ρ > 0 such that

|Q̂0,k|2 + ω2
k|P̂0,k|2

(2N1 + 1)(2N2 + 1)
≤ Ce−2ρ|(κ1(k)/µ,κ2(k)/µ

σ)|.(180)

Moreover, we define an interpolating function for the initial datum (Q0, P0) by

Q0(y) =
1

(2N1 + 1)(2N2 + 1)

∑

K:(µ2|K1|2+µ2σ |K2|2)
1/2

=|κ(k)|≤1

Q̂0,ke
iπ(µK1y1+µσK2y2),

and similarly for y 7→ P0(y).

Proposition 6.3. Consider (8) with σ > 2 and γ ≥ 1 such that σ + 2γ < 7. Let us assume that the
initial datum satisfies (179)-(180), and denote by (Q(t), P (t)) the corresponding solution. Consider the

approximate solution (ξ̃a(t, x), η̃a(t, x)) with the corresponding initial datum. Assume that (ξ̃a, η̃a) ∈ Hρ,n

for some ρ > 0 and for some n ≥ 1 for all times, and fix T0 > 0 and 0 < δ ≪ 1.
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Then there exists µ0 = µ0(T0, ‖(ξ̃a(0), η̃a(0))‖Hρ,n) such that, if µ < µ0, we have that there exists
C > 0 such that

sup
j

|Qj(t)−Qa(t, j)|+ |Pj(t)− Pa(t, j)| ≤ Cµγ , |t| ≤ T0

µ3
,(181)

where (Qa, Pa) are given by (177)-(178). Moreover,
∣∣∣∣∣Eκ − µ4 |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣ ≤ C µ4+γ(182)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ µ4+γ(183)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

Proof. The argument follows along the lines of Appendix C in [BP06].
Exploiting the canonical transformation found in Theorem 3.3, we also define

ζa := (ξa, ηa) = Tµ2(ξ̃a, η̃a) = ζ̃a + ψa(ζ̃a),(184)

where ψa(ζ̃a) := (ψξ(ζ̃a), ψη(ζ̃a)); by (59) we have

sup
ζ∈Bρ,n(R)

‖ψa(ζ)‖Hρ,m ≤ C′
nµ

2R.(185)

For convenience we define

qa(τ, y) :=
1√
2

[
ξa(µ

2τ, y1 − τ, y2) + ηa(µ
2τ, y1 + τ, y2)

]
(186)

∂y1pa(τ, y) :=
1√
2

[
ξa(µ

2τ, y1 − τ, y2)− ηa(µ
2τ, y1 + τ, y2)

]
,(187)

We observe that the pair (qa, pa) satisfies

µ2(qa)t = −∆1 µpa + µ6Rq(188)

µ(pa)t = −µ2qa − µ4 απ0q
2
a + µ5Rp,(189)

where the operator ∆1 acts on the variable x, π0 is the projector on the space of the functions with zero
average, and the remainders are functions of the rescaled variables τ and y which satisfy

sup
Bρ,n(R)

‖Rq‖ℓ2ρ,0 ≤ C,

sup
Bρ,n(R)

‖Rp‖ℓ2ρ,1 ≤ C.

We now restrict the space variables to integer values; keeping in mind that qa and pa are periodic, we
assume that j ∈ Z

2
N,Nσ .

For a finite sequence Q = (Qj)j∈Z2
N,Nσ

we define the norm

‖Q‖2ℓ2
N,Nσ

:=
∑

j∈Z2
N,Nσ

|Qj |2.(190)

Now we consider the discrete model (8): we rewrite in the following form,

Q̇j = −(∆1P )j(191)

Ṗj = −Qj − απ0Q
2
j(192)

and we want to show that there exist two sequences E = (Ej)j∈Z2
N,Nσ

and F = (Fj)j∈Z2
N,Nσ

such that

Q = µ2 qa + µ2+γE, P = µpa + µ2+γF
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fulfills (191)-(192), where γ > 0 is a parameter we will fix later in the proof. Therefore, we have that

Ė = −∆1 F − µ6−2−γRq(193)

Ḟ = −E − απ0 (µ
2 2qaE + µ2+γE2)− µ5−2−γRp,(194)

where we impose initial conditions on (E,F ) such that (q̃, p̃) has initial conditions corresponding to the
ones of the true initial datum,

µ2qa(0, µj1, µ
σj2) + µ2+γE0,j = Q0,j ,

µpa(0, µj1, µ
σj2) + µ2+γF0,j = P0,j .

We now define the operator ∂i, i = 1, 2, by (∂if)j := fj − fj−ei for each f ∈ ℓ2N,Nσ .

• Claim 1: Let σ > 2 and γ > 0, we have

‖E0‖ℓ2
N,Nσ

≤ C′µ(3−2γ−σ)/2,

‖∂1F0‖ℓ2
N,Nσ

≤ C′µ(3−2γ−σ)/2,

‖∂2F0‖ℓ2
N,Nσ

≤ C′µ(1−2γ+σ)/2.

To prove Claim 1 we observe that

E0 = µ2 ξa + ηa − (ξ̃a + η̃a)√
2µ2+γ

= µ−γ ψξ + ψη√
2

,

F0 = µ
∂−1
y1 [ξa − ηa − (ξ̃a − η̃a)]√

2µ2+γ
= µ−1−γ ∂

−1
y1 (ψξ − ψη)√

2
,

from which we can deduce

‖E0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|E0,j |2 ≤ C 4Nσ+1 (µ2−γ)2 = C µ3−2γ−σ ,

‖∂1F0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂1F0,j |2 ≤ C 4Nσ+1 (µ2−γ)2 ≤ C µ3−2γ−σ

‖∂2F0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂2F0,j |2 ≤ C 4Nσ+1 (µ1+σ−γ)2 = C µ1−2γ+σ

and this leads to the thesis.

• Claim 2: Fix n ≥ 1, T0 > 0 and K∗ > 0, then for any µ < µs and for any σ > 2 and γ ≥ 1 such
that σ + 2γ < 7 we have

‖E‖2ℓ2
N,Nσ

+ ‖∂1F‖2ℓ2
N,Nσ

+ ‖∂2F‖2ℓ2
N,Nσ

≤ K∗, |t| < T0

µ3
.(195)

To prove the claim, we define

F(E,F ) :=
∑

j∈Z2
N,Nσ

E2
j + Fj(−∆1F )j

2
+

2µ2αqa,jE
2
j

2
,(196)

and we remark that, using the boundedness of qa,j ,

1

2
F(E,F ) ≤ ‖E‖2ℓ2

N,Nσ
+ ‖∂1F0‖2ℓ2

N,Nσ
+ ‖∂2F0‖2ℓ2

N,Nσ
≤ 4F(E, F ).
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Now we compute the time derivative of F . Exploiting (193)-(194)

Ḟ =
∑

j

Ej

[
−(∆1F )j − µ4−γ(Rq)j

]
(197)

+
∑

j

(−∆1F )j
[
−Ej − α(µ22qa,jEj + µ2+γE2

j )− µ3−γ(Rp)j
]

(198)

+
∑

j

2µ2 α qa,jEj

[
−(∆1F )j − µ4−γ(Rq)j

]
(199)

+
∑

j

µ2αE2
j µ

∂qa,j
∂τ

(200)

=
∑

j

−Ej µ
4−γ(Rq)j +

∑

j

(−∆1F )j
[
−αµ2+γE2

j − µ3−γ(Rp)j
]

(201)

−
∑

j

2µ2 α qa,jEj µ
4−γ(Rq)j +

∑

j

µ2αE2
j µ

∂qa,j
∂τ

(202)

In order to estimate (201)-(202), we notice that

sup
j

|(∆1F )j | ≤ 2 sup
j

|(∂1F )j |+ |(∂2F )j | ≤ 4
√
F ,

‖Rq‖2ℓ2
N,Nσ

≤
∑

j

|(Rq)j |2 ≤ 4Nσ+1 sup
y

|Rq(y)|2 ≤ Cµ−1−σ,

and that |(∂iRp)j | ≤ µ supy

∣∣∣ ∂Rp

∂y
(y)
∣∣∣, which implies

‖∂iRp‖2ℓ2
N,Nσ

≤ Cµ1−σ .

Now, the first sum in (201) is estimated by CF1/2µ(7−2γ−σ)/2 ; the second sum in (201) can be
bounded by

C(µ2+γF3/2 + µ(7−2γ−σ)/2F1/2).

Recalling that qa,j is bounded, the first sum in (202) can be bounded by CF1/2µ(11−2γ−σ)/2, while the
second one is estimated by Cµ3F . Hence, as long as F < 2K∗ we have

∣∣∣Ḟ
∣∣∣ ≤ C

∣∣∣F1/2µ(7−2γ−σ)/2 + µ2+γF3/2 + µ(7−2γ−σ)/2F1/2 + F1/2µ(11−2γ−σ)/2 + µ3F
∣∣∣

≤ C(µ2+γ
√
2K1/2

∗ + µ3)F + C(2µ(7−2γ−σ)/2 + µ(11−2γ−σ)/2)
√
2K1/2

∗ ,(203)

γ≥1

≤ C µ3 2
√
2K1/2

∗ F +C 3µ(7−2γ−σ)/2
√
2K1/2

∗ ,(204)

and by applying Gronwall’s lemma we get

F(t) ≤ F(0)eC 2
√

2K
1/2
∗ µ3t + eC 2

√
2K

1/2
∗ µ3t C 2

√
2K1/2

∗ µ3t C 3µ(7−2γ−σ)/2
√
2K1/2

∗ ,(205)

from which we can deduce the thesis. �

Proof of Theorem 2.1. First we prove (17).
We consider an initial datum as in (16); when passing to the continuous approximation (75), this

initial datum corresponds to an initial data (ξ0, η0) ∈ Hρ0,n for some ρ0 > 0 and n ≥ 1. By Theorem 5.1
the corresponding sequence of gaps belongs to Hρ0,n, and that the solution (ξ(τ ), η(τ )) is analytic in a
complex strip of width ρ(t). Taking the minimum of such quantities one gets the coefficient ρ appearing
in the statement of Theorem 2.1. Applying Proposition 6.3, we can deduce the corresponding result for
the discrete model (8) and the specific quantities (13).

Next, we prove (19). In order to do so, we exploit the Birkhoff coordinates (x, y) introduced in
Theorem 5.2; indeed, by rewriting the normal form system (100) in Birkhoff coordinates we get that
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every solution is almost-periodic in time. Now, let us introduce the quantities

E
(1)
K :=

∣∣∣ξ̂K
∣∣∣
2

,

E
(2)
K := |η̂K |2 ,

then τ 7→ E
(1)
K (x(τ ), y(τ )) and τ 7→ E

(2)
K (x(τ ), y(τ )) are almost-periodic. If we set EK := 1

2

(
E

(1)
K + E

(2)
K

)
,

we can exploit (182) of Proposition 6.3 to translate the results in terms of the specific quantities Eκ, and
we get the thesis. �

6.2. The KP regime. Similarly to Lemma 6.1, Proposition 6.2 we can prove the following results

Lemma 6.4. Consider the lattice (6) in the regime (KP) and with interpolanting function (113). Then
for a state corresponding to (q, p) one has

Eκ =
µ4

2

∑

L=(L1,L2)∈Z2:µL1,µ2L2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣
p̂K+L

µ

∣∣∣∣
2

, ∀k : κ(k) = (µK1, µ
2K2)(206)

(where the ωk are defined as in (11)), and Eκ = 0 otherwise.

Proposition 6.5. Fix ρ > 0 and 0 < δ ≪ 1. Consider the normal form system (126), and define the
Fourier coefficients of (ξ, η) through the following formula

ξ(y) =
1

2

∑

h∈Z2

ξ̂he
ih·yπ,(207)

η(y) =
1

2

∑

h∈Z2

η̂he
ih·yπ, .(208)

Consider (ξ, η) ∈ Hρ,0, and denote by Eκ the specific energy of the normal mode with index κ as defined
in (12)-(13). Then for any positive µ sufficiently small

∣∣∣∣∣Eκ − µ4 |ξ̂K |2 + |η̂K |2
2

∣∣∣∣∣ ≤ Cµ4+ 6
5 ‖(ξ, η)‖2Hρ,0(209)

for all k such that κ(k) = (µK1, µ
2K2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ C µ8‖(ξ, η)‖2Hρ,0(210)

for all k such that κ(k) = (µK1, µ
2K2) and |K2

1 +K2
2 |1/2 > (2+δ)| logµ|

ρ
, and Eκ = 0 otherwise.

Now, consider the following systems of uncoupled KP equations

ξτ = − 1

24
∂3
y1ξ −

1

2
∂−1
y1 ∂

2
y2ξ −

α

2
√
2
∂y1(ξ

2),(211)

ητ =
1

2
∂−1
y1 ∂

2
y2η +

1

24
∂3
y1η +

α

2
√
2
∂y1(η

2).(212)

and consider a solution (τ, y) 7→ (ξ̃a(τ, y), η̃a(τ, y)) such that it belongs to Hρ,n, for some n ≥ 1.
We consider the approximate solutions (Qa, Pa) of the FPU model (75)

Qa(τ, y) :=
µ2

√
2

[
ξ̃a(µ

2τ, y1 − τ, y2) + η̃a(µ
2τ, y1 + τ, y2)

]
(213)

∂y1Pa(τ, y) :=
µ√
2

[
ξ̃a(µ

2τ, y1 − τ, y2)− η̃a(µ
2τ, y1 + τ, y2)

]
.(214)

We need to compare the difference between the approximate solution (213)-(214) and the true solution

of (8). Let us consider an initial datum (Q0, P0) with corresponding Fourier coefficients (Q̂0,k, P̂0,k) given
by (9), where

Q0,k 6= 0 only if κ(k) = (µK1, µ
2K2).(215)
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We also assume that there exist C, ρ > 0 such that

|Q̂0,k|2 + ω2
k|P̂0,k|2

N
≤ Ce−2ρ|(κ1(k)/µ,κ2(k)/µ

2)|.(216)

Moreover, we define an interpolating function for the initial datum (Q0, P0) by

Q0(y) =
1

(2N1 + 1)(2N2 + 1)

∑

K:(µ2|K1|2+µ4|K2|2)
1/2

=|κ(k)|≤1

Q̂0,ke
iπ(µK1y1+µ2K2y2),

and similarly for y 7→ P0(y).
Arguing as for Proposition 6.3, we obtain

Proposition 6.6. Consider (8) with σ = 2, and fix 1 ≤ γ ≤ 5
2
. Let us assume that the initial

datum for (8) satisfying (215)-(216), and denote by (Q(t), P (t)) the corresponding solution. Consider

the approximate solution (ξ̃a, η̃a) with the corresponding initial datum. Assume that (ξ̃a, η̃a) ∈ Hρ,n for
some ρ > 0 and for some n ≥ 1 for all times, and fix T0 > 0 and 0 < δ ≪ 1.

Then there exists µ0 = µ0(T0, ‖(ξ̃a(0), η̃a(0))‖Hρ,n) such that, if µ < µ0, we have that there exists
C > 0 such that

sup
j

|Qj(t)−Qa(t, j)|+ |Pj(t)− Pa(t, j)| ≤ Cµγ , |t| ≤ T0

µ3
,(217)

where (Qa, Pa) are given by (177)-(178). Moreover,
∣∣∣∣∣Eκ − µ4 |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣ ≤ Cµ4+γ(218)

for all k such that κ(k) = (µK1, µ
2K2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ µ4+γ(219)

for all k such that κ(k) = (µK1, µ
2K2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

Proof of Theorem 2.2. First we prove (21).
We consider an initial datum as in (20); when passing to the continuous approximation (75), this

initial datum corresponds to an initial data (ξ0, η0) ∈ Hρ0,n for some ρ0 > 0 and n ≥ 1. By Theorem 5.3
the corresponding solution (ξ(τ ), η(τ )) is analytic in a complex strip of width ρ(t). Taking the minimum
of such quantities one gets the coefficient ρ appearing in the statement of Theorem 2.2. Applying
Proposition 6.6, we can deduce the corresponding result for the discrete model (8) and the specific
quantities (13). �

6.3. The one-dimensional NLS regime. Let β > 0 and let I be as in (79), we define the Fourier
coefficients of the function q : I → R by

q̂(j) :=
1

2

∫

I

q(y1, y2)e
−iπ(j1y1+j2y2)dy1 dy2,(220)

and similarly for the Fourier coefficients of the function p.

Lemma 6.7. Consider the lattice (24) in the regime (1D NLS) and with interpolanting function (129).
Then for a state corresponding to (q, p) one has

Eκ =
µ2

2

∑

L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|p̂K+L|2 + ω2
k|q̂K+L|2, ∀k : κ(k) = (µK1, µ

σK2)(221)

(where the ωk are defined as in (30)), and Eκ = 0 otherwise.
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Proof. First we introduce a (2N1 +1)(2N2 +1)-periodic interpolating function for Qj , namely a smooth
function Q : (t, x) 7→ Q(t, x) such that

Qj(t) = Q(t, j), ∀t, j,
Q(t, x1 + 2N1 + 1, x2 + 2N2 + 1) = Q(t, x), ∀t, x,

and similarly for Pj . We denote by

Q̂(j) :=
1

(2N1 + 1)1/2(2N2 + 1)1/2

∫

[−(N1+
1
2 ),(N1+

1
2 )]×[−(N2+

1
2 ),(N2+

1
2 )]

Q(x)e
−i j·x 2π

(2N1+1)1/2(2N2+1)1/2 dx,

(222)

so that by the interpolation property we obtain

Qj(t) = Q(t, j) =
1

(2N1 + 1)1/2(2N2 + 1)1/2

∑

k∈Z2

Q̂(j)e
i j·k 2π

(2N1+1)1/2(2N2+1)1/2

=
1

(2N1 + 1)1/2(2N2 + 1)1/2

×
∑

k=(k1,k2)∈Z2
2N+1


 ∑

h=(h1,h2)∈Z2

Q̂(k1 + (2N1 + 1)h1, k2 + (2N2 + 1)h2)


 e

i j·k 2π

(2N1+1)1/2(2N2+1)1/2 ,

hence

Q̂k =
∑

h∈Z2

Q̂(k1 + (2N1 + 1)h1, k2 + (2N2 + 1)h2).(223)

The relation between Q̂(k) and q̂k can be deduced from (129),

Q(j) = µq(µj1, µ
σj2);

Q̂k =
1

2
µ(σ+1)/2

∫
[

− 1
µ
, 1
µ

]

×
[

− 1
µσ , 1

µσ

]

Q(x1, x2)e
−iπ(k1x1µ+k2x2µ

σ)dx1 dx2

(129)
=

1

2
µ(σ+1)/2

∫
[

− 1
µ
, 1
µ

]

×
[

− 1
µσ , 1

µσ

]

µ q (µx1, µ
σx2) e

−iπ(k1x1µ+k2x2µ
σ)dx1 dx2

=
1

2
µ(1−σ)/2

∫

I

q(y)e−iπ(k1y1+k2y2)dy

= µ(1−σ)/2q̂k,(224)

and similarly

P̂k = µ(1−σ)/2p̂k.(225)

By using (29), (13) and (223)-(225) we have

Eκ
(13)
= µσ+1 1

2

∑

L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|P̂K+L|2 + ω2
k|Q̂K+L|2

(224),(224)
= µσ+1 µ1−σ 1

2

∑

L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|p̂K+L|2 + ω2
k|q̂K+L|2

for all k such that κ(k) = (µK1, µ
σK2), and this leads to (221). �

Proposition 6.8. Fix ρ > 0 and 0 < δ ≪ 1. Consider the normal form equation (144), and define the
Fourier coefficients of (ψ, ψ̄) through the following formula

ψ(y) =
1

2

∑

h∈Z2

ψ̂he
ih·yπ.(226)
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Consider (ψ, ψ̄) ∈ Hρ,0, and denote by Eκ the specific energy of the normal mode with index κ as defined
in (12)-(13). Then for any positive µ sufficiently small

∣∣∣∣∣Eκ − µ2 |ψ̂K |2
2

∣∣∣∣∣ ≤ Cµ2+ 6
5 ‖(ψ, ψ̄)‖2Hρ,0(227)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ C µ8‖(ψ, ψ̄)‖2Hρ,1(228)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

We defer the proof of the above Proposition to Appendix C.

Now, consider the normal form equation, namely the following cubic defocusing one-dimensional NLS

−iψt = − ∂2
y1ψ +

3β

4
|ψ|2ψ.(229)

and consider a solution (ψ̃a,
¯̃
ψa) such that it belongs to Hρ,n, for some n > 0.

We consider the approximate solutions (Qa, Pa) of the KG lattice (24) (in the following τ = µ2t)

Qa(τ, y) :=
µ√
2

[
eiτ ψ̃a(τ, y1, y2) + e−iτ ¯̃

ψa(τ, y1, y2)
]

(230)

Pa(τ, y) :=
µ√
2i

[
eiτ ψ̃a(τ, y1, y2) + e−iτ ¯̃

ψa(τ, y1, y2)
]

(231)

(232)

We need to compare the difference between the approximate solution (177)-(178) and the true solution

of (24). Let consider an initial datum (Q0, P0) with corresponding Fourier coefficients (Q̂0,k, P̂0,k) given
by (9), where

Q0,k 6= 0 only if κ(k) = (µK1, µ
σK2).(233)

We also assume that there exist C, ρ > 0 such that

|P̂0,k|2 + ω2
k|Q̂0,k|2

N
≤ Ce−2ρ|(κ1(k)/µ,κ2(k)/µ

σ)|.(234)

Moreover, we define an interpolating function for the initial datum (Q0, P0) by

Q0(y) =
1

(2N1 + 1)(2N2 + 1)

∑

K:(µ2|K1|2+µ2σ |K2|2)
1/2

=|κ(k)|≤1

Q̂0,ke
iπ(µK1y1+µσK2y2),

and similarly for y 7→ P0(y).

Proposition 6.9. Consider (24) with σ > 1 and γ > 0 such that σ + 2γ < 7. Let us assume that the
initial datum satisfies (233)-(234), and denote by (Q(t), P (t)) the corresponding solution. Consider the

approximate solution (ψ̃a(t, x),
¯̃
ψa(t, x)) with the corresponding initial datum. Assume that (ψ̃a,

¯̃
ψa) ∈

Hρ,n for some ρ > 0 and for some n ≥ 0 for all times, and fix T0 > 0 and 0 < δ ≪ 1.

Then there exists µ0 = µ0(T0, ‖(ψ̃a(0),
¯̃
ψa(0))‖Hρ,n) such that, if µ < µ0, we have that there exists

C > 0 such that

sup
j

|Qj(t)−Qa(t, j)|+ |Pj(t)− Pa(t, j)| ≤ Cµγ , |t| ≤ T0

µ2
,(235)

where (Qa, Pa) are given by (230)-(231). Moreover,
∣∣∣∣∣Eκ − µ2 |ψ̂K |2

2

∣∣∣∣∣ ≤ C µ2+γ(236)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ µ2+γ(237)
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for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

Proof. The argument follows along the lines of Appendix C in [BP06].
Exploiting the canonical transformation found in Theorem 3.3, we also define

ζa := (ψa, ψ̄a) = Tµ2(ψ̃a,
¯̃
ψa) = ζ̃a + φa(ζ̃a),(238)

where φa(ζ̃a) := (φξ(ζ̃a), φη(ζ̃a)); by (59) we have

sup
ζ∈Bρ,n(R)

‖φa(ζ)‖Hρ,n ≤ C′
nµ

2R.(239)

For convenience we define

qa(τ, y) :=
1√
2

[
eiτ ψ̃a(τ, y1, y2) + e−iτ ¯̃

ψa(τ, y1, y2)
]

(240)

pa(τ, y) :=
1√
2i

[
eiτ ψ̃a(τ, y1, y2)− e−iτ ¯̃

ψa(τ, y1, y2)
]
,(241)

We observe that the pair (qa, pa) satisfies

µ(qa)t = µpa + µ5Rq(242)

µ(pa)t = −µqa + µ∆1qa − µ3 β π0q
3
a + µ5Rp,(243)

where the operator ∆1 acts on the variable x, π0 is the projector on the space of the functions with zero
average, and the remainders are functions of the rescaled variables τ and y which satisfy

sup
Bρ,n(R)

‖Rq‖ℓ2ρ,0 ≤ C,

sup
Bρ,n(R)

‖Rp‖ℓ2ρ,1 ≤ C.

We now restrict the space variables to integer values; keeping in mind that qa and pa are periodic, we
assume that j ∈ Z

2
N,Nσ .

For a finite sequence Q = (Qj)j∈Z2
N,Nσ

we define the norm

‖Q‖2ℓ2
N,Nσ

:=
∑

j∈Z2
N,Nσ

|Qj |2.(244)

Now we consider the discrete model (8): we rewrite in the following form,

Q̇j = Pj(245)

Ṗj = −Qj + (∆1Q)j − β π0Q
3
j(246)

and we want to show that there exist two sequences E = (Ej)j∈Z2
N,Nσ

and F = (Fj)j∈Z2
N,Nσ

such that

Q = µ qa + µ1+γE, P = µpa + µ1+γF

fulfills (245)-(246), where γ > 0 is a parameter we will fix later in the proof. Therefore, we have that

Ė = F − µ5−1−γRq(247)

Ḟ = −E +∆1E − βπ0 (3µ
3+γ−1−γ q2aE + 3µ1+2+2γ−1−γ qaE

2 + µ3+3γ−1−γE3)− µ5−1−γRp,(248)

where we impose initial conditions on (E,F ) such that (q̃, p̃) has initial conditions corresponding to the
ones of the true initial datum,

µqa(0, µj1, µ
σj2) + µ1+γE0,j = Q0,j ,

µpa(0, µj1, µ
σj2) + µ1+γF0,j = P0,j .

We now define the operator ∂i, i = 1, 2, by (∂if)j := fj − fj−ei for each f ∈ ℓ2N,Nσ .
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• Claim 1: Let σ > 1 and γ > 0, we have

‖E0‖ℓ2
N,Nσ

≤ C′µ(3−2γ−σ)/2,

‖F0‖ℓ2
N,Nσ

≤ C′µ(3−2γ−σ)/2,

‖∂1E0‖ℓ2
N,Nσ

≤ C′µ(5−2γ−σ)/2,

‖∂2E0‖ℓ2
N,Nσ

≤ C′µ(3−2γ+σ)/2,

‖∂1F0‖ℓ2
N,Nσ

≤ C′µ(5−2γ−σ)/2,

‖∂2F0‖ℓ2
N,Nσ

≤ C′µ(3−2γ+σ)/2.

To prove Claim 1 we observe that

E0 = µ
ψa + ψ̄a − (ψ̃a +

¯̃
ψa)√

2µ1+γ
= µ−γ φξ + φη√

2
,

F0 = µ
ψa − ψ̄a − (ψ̃a − ¯̃

ψa)]√
2i µ1+γ

= µ−γ φξ − φη√
2i

,

from which we can deduce

‖E0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|E0,j |2 ≤ C 4Nσ+1 (µ2−γ)2 = C µ3−2γ−σ ,

‖F0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|F0,j |2 ≤ C 4Nσ+1 (µ2−γ)2 = C µ3−2γ−σ ,

‖∂1E0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂1E0,j |2 ≤ C 4Nσ+1 (µ2+1−γ)2 ≤ C µ5−2γ−σ ,

‖∂2E0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂2E0,j |2 ≤ C 4Nσ+1 (µ2+σ−γ)2 = C µ3−2γ+σ ,

‖∂1F0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂1F0,j |2 ≤ C 4Nσ+1 (µ2+1−γ)2 ≤ C µ5−2γ−σ ,

‖∂2F0‖2ℓ2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂2F0,j |2 ≤ C 4Nσ+1 (µ2+σ−γ)2 = C µ3−2γ+σ ,

and this leads to the thesis.

• Claim 2: Fix n ≥ 0, T0 > 0 and K∗ > 0, then for any µ < µs and for any σ > 1 and γ > 0 such
that σ + 2γ < 7 we have

‖E‖2ℓ2
N,Nσ

+ ‖F‖2ℓ2
N,Nσ

+ ‖∂1E0‖2ℓ2
N,Nσ

+ ‖∂2E0‖2ℓ2
N,Nσ

≤ K∗, |t| < T0

µ2
.(249)

To prove the claim, we define

F(E,F ) :=
∑

j∈Z2
N,Nσ

F 2
j + E2

j +Ej(−∆1E)j

2
+

3µ2βq2aE
2
j + 3µ2+γβqaE

3
j

2
,(250)

and we remark that

1

2
F(E,F ) ≤ ‖E‖2ℓ2

N,Nσ
+ ‖∂1F0‖2ℓ2

N,Nσ
+ ‖∂2F0‖2ℓ2

N,Nσ
≤ 2F(E,F ).
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Now we compute the time derivative of F . Exploiting (193)-(194)

Ḟ =
∑

j

Fj

[
−Ej + (∆1E)j − βπ0 (3µ

2 q2aEj + 3µ2+γ qaE
2
j + µ2+2γE3

j )− µ4−γ(Rp)j
]

(251)

+
∑

j

(Ej − (∆1E)j)
[
Fj − µ4−γ(Rq)j

]
(252)

+
∑

j

3µ2 β q2aEj

[
Fj − µ4−γ(Rq)j

]
+ 3µ2βE2

j qa µ
∂qa
∂τ

(253)

+
∑

j

9

2
µ2+γβE2

j

[
Fj − µ4−γ(Rq)j

]
+

3

2
µ2+γβE3

j µ
∂qa
∂τ

(254)

=
∑

j

Fj

[
−βπ0 (3µ

2+γ qaE
2
j + µ2+2γE3

j )− µ4−γ(Rp)j
]

(255)

+
∑

j

Ej

[
−µ4−γ(Rq)j

]
− (∆1E)j

[
−µ4−γ(Rq)j

]
(256)

+
∑

j

3µ2 β q2aEj

[
−µ4−γ(Rq)j

]
+ 3µ2βE2

j qa µ
∂qa
∂τ

(257)

+
∑

j

9

2
µ2+γβE2

j

[
Fj − µ4−γ(Rq)j

]
+

3

2
µ2+γβE3

j µ
∂qa
∂τ

(258)

In order to estimate (255)-(258), we notice that

sup
j

|(∆1E)j | ≤ 2 sup
j

|(∂1E)j |+ |(∂2E)j | ≤ 4
√
F ,

‖Rq‖2ℓ2
N,Nσ

≤
∑

j

|(Rq)j |2 ≤ 4Nσ+1 sup
y

|Rq(y)|2 ≤ Cµ−1−σ ,

‖Rp‖2ℓ2
N,Nσ

≤ Cµ−1−σ ,

and that |(∂iRq)j | ≤ µ supy

∣∣∣∂Rq

∂y
(y)
∣∣∣, which implies

‖∂iRq‖2ℓ2
N,Nσ

≤ Cµ1−σ.

Now, we can estimate (255) by

(259) C
(
µ2+γF3/2 + µ2+2γ F2 + µ4−γ µ−(1+σ)/2F1/2

)
.

Then, (256) can be bounded by

(260) C
(
µ4−γ−(1+σ)/2 F1/2 + µ4−γ+(1−σ)/2 F1/2

)
;

next, we can estimate (257) by

(261) C
(
µ6−γ−(1+σ)/2F1/2 + µ3F

)
,

while (258) can be bounded by

(262) C
(
µ2+γF3/2 + µ6−(1+σ)/2F + µ2+γF3/2

)
.

Hence, as long as F < 2K∗ we have
∣∣∣Ḟ
∣∣∣ ≤ C

[
µ2+γ K1/2

∗ + µ2+2γ K∗ + µ3 + µ2+γ K1/2
∗ + µ6−(1+σ)/2 + µ2+γ K1/2

∗

]
F(263)

+ C
[
µ4−γ µ−(1+σ)/2 + µ4−γ−(1+σ)/2 + µ4−γ+(1−σ)/2 + µ6−γ−(1+σ)/2

]
K1/2

∗(264)

σ+2γ<7

≤ C µ2 (1 +K1/2
∗ )F + C µ(7−2γ−σ)/2K1/2

∗(265)
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and by applying Gronwall’s lemma we get

F(t) ≤ F(0)eC (1+K
1/2
∗ )µ2t + eC (1+K

1/2
∗ )µ2t C (1 +K1/2

∗ )µ2t C µ(7−2γ−σ)/2K1/2
∗ ,(266)

from which we can deduce the thesis. �

Proof of Theorem 2.4. First we prove (32).
We consider an initial datum as in (31); when passing to the continuous approximation (128), this

initial datum corresponds to an initial datum (ψ0, ψ̄0) ∈ Hρ0,n. By Theorem 5.5 the corresponding
sequence of gaps belongs to Hρ0,n, and that the solution (ψ(τ ), ψ̄(τ )) is analytic in a complex strip of
width ρ(t). Taking the minimum of such quantities one gets the coefficient ρ appearing in the statement
of Theorem 2.4. Applying Proposition 6.9, we can deduce the corresponding result for the discrete model
(27) and the specific quantities (13).

Next, we prove (34). In order to do so, we exploit the Birkhoff coordinates (x, y) introduced in
Theorem 5.6; indeed, by rewriting the normal form system (144) in Birkhoff coordinates we get that
every solution is almost-periodic in time. Now, let us introduce the quantity

EK :=
1

2

∣∣∣ψ̂K

∣∣∣
2

,

then τ 7→ EK(x(τ ), y(τ )) is almost-periodic. Hence we can exploit (236) of Proposition 6.9 to translate
the results in terms of the specific quantities Eκ, and we get the thesis. �

Appendix A. Proof of Lemma 3.7

This appendix is devoted to the proof of the Lemma 3.7, which is a key step in order to normalize
the system (61). This result is an adaptation of Theorem 4.4 in [Bam99] and its proof is based on the
method of Lie transforms, briefly recalled in the following. Throughout this Section, we consider s ≥ s1
and ρ ≥ 0 to be fixed quantities.

Given an auxiliary function χ analytic on Hρ,s, we consider the auxiliary differential equation

ζ̇ = Xχ(ζ)(267)

and denote by Φt
χ its flow at time t.

Lemma A.1. Let χ and its vector field be analytic in Bρ,s(R). Fix δ < R, and assume that

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ δ.

Then, if we consider the time-t flow Φt
χ of Xχ we have that for |t| ≤ 1

sup
Bρ,s(R−δ)

‖Φt
χ(ζ)− ζ‖Hρ,s ≤ sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s .

Definition A.2. The map Φχ := Φ1
χ is called the Lie transform generated by χ.

Given G analytic on Hρ,s, let us consider the differential equation

ζ̇ = XG(ζ),(268)

where by XG we denote the vector field of G. Now define

Φ∗
χG(ζ̃) := G ◦ Φχ(ζ̃).

By exploiting the fact that Φχ is a canonical transformation, we have that in the new variable ζ̃ defined

by ζ = Φχ(ζ̃) equation (268) is equivalent to

˙̃ζ = XΦ∗
χG(ζ̃).(269)

Using the relation

d

dt
Φ∗

χG = Φ∗
χ{χ,G},(270)
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and the Poisson bracket formalism {G1, G2}(ζ) := dG1(ζ)[XG2(ζ)] we formally get

Φ∗
χG =

∞∑

ℓ=0

Gℓ,

G0 := G,

Gℓ :=
1

ℓ
{χ,Gℓ−1}, ℓ ≥ 1.

(271)

In order to estimate the vector field of the terms appearing in (271), we exploit the following results

Lemma A.3. Let R > 0, and assume that χ, G are analytic on Bρ,s(R) as well as their vector fields.
Then, for any d ∈ (0, R) we have that {χ,G} is analytic on Bρ,s(R− d), and

sup
Bρ,s(R−d)

‖X{χ,G}(ζ)‖Hρ,s ≤ 2

d

(
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

) (
sup

Bρ,s(R)

‖XG(ζ)‖Hρ,s

)
.(272)

Proof. Observe that

‖X{χ,G}(ζ)‖Hρ,s = ‖dXχ(ζ) XG(ζ)− dXG(ζ) Xχ(ζ)‖Hρ,s

≤ ‖dXχ(ζ) XG(ζ)‖Hρ,s + ‖dXG(ζ) Xχ(ζ)‖Hρ,s ,

and since for any d ∈ (0, R) Cauchy inequality gives

sup
Bρ,s(R−d)

‖dXχ(ζ)‖Hρ,s→Hρ,s ≤ 1

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ,

we finally get

sup
Bρ,s(R−d)

‖dXχ(ζ) XG(ζ)‖Hρ,s ≤ 1

d

(
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

) (
sup

Bρ,s(R)

‖XG(ζ)‖Hρ,s

)
.

With a similar estimate for the other term we obtain the thesis. �

Lemma A.4. Let R > 0, and assume that χ, G are analytic on Bρ,s(R) as well as their vector fields.
Let ℓ ≥ 1, and consider Gℓ as defined in (271); for any d ∈ (0, R), Gℓ is analytic on Bρ,s(R− d) as well
as it vector field, and

sup
Bρ,s(R−d)

‖XGℓ (ζ)‖Hρ,s ≤
(
2e

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

)ℓ

sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s .(273)

Proof. Fix ℓ, and denote δ := d/ℓ. We look for a sequence C
(ℓ)
m such that

sup
Bρ,s(R−mδ)

‖XGm (ζ)‖Hρ,s ≤ C(ℓ)
m , ∀m ≤ ℓ.

Lemma A.3 ensures that the following sequence satisfies this property.

C
(ℓ)
0 := sup

Bρ,s(R)

‖XG(ζ)‖Hρ,s ,

C(ℓ)
m =

2

δm
C

(ℓ)
m−1 sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

=
2ℓ

dm
C

(ℓ)
m−1 sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s .

One has

C
(ℓ)
ℓ =

1

ℓ!

(
2ℓ

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

)ℓ

sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s ,

and by using the inequality ℓℓ < ℓ!eℓ one obtains the estimate (273). �



36 M. GALLONE(†) AND S. PASQUALI(∗)

Before stating the next Lemma, we point out that the Poisson tensor Ω−1
2 , obtained by inversion from

the associated symplectic form Ω2 in (48), is not a bounded operator on Hρ,s. We thus have to weaken
the hypothesis of Theorem 4.4 in [Bam99]; indeed, we just assume that

‖Ω−1f‖Hρ,s ≤ ‖f‖Hρ,s+1 .

This property is satisfied by both Ω−1
1 and Ω−1

2 .

Lemma A.5. Let χ and F be analytic on Bρ,s(R) as well as their vector fields. Fix d ∈ (0, R), and
assume also that

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ d/3 .

Then for |t| ≤ 1

sup
Bρ,s(R−d)

‖X(Φt
χ)∗F−F (ζ)‖Hρ,s≤9

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s .(274)

Proof. Since the bound on the norm of Xχ implies that Φt
χ(ζ) ∈ Bρ,s(R) when ζ ∈ Bρ,s(R− d/3), using

Cauchy inequality and Lemma A.1

sup
Bρ,s(R−d)

‖dΦ−t
χ (Φt

χ(ζ))− id‖Hρ,s→Hρ,s ≤ sup
Bρ,s(R−2d/3)

‖dΦ−t
χ (ζ)− id‖Hρ,s→Hρ,s

≤ 3

d
sup

Bρ,s(R−d/3)

‖Φ−t
χ (ζ)− ζ‖Hρ,s

≤ 3

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

Since Φt
χ is a canonical transformation, a direct computation shows

Ω−1d(F ◦ Φt
χ)(ζ) = (dΦ−t

χ (Φt
χ(ζ))− id)Ω−1dF (Φt

χ) + Ω−1dF (Φt
χ(ζ))

whence

sup
Bρ,s(R−d)

‖X(Φt
χ)∗F−F (ζ)‖Hρ,s = sup

Bρ,s(R−d)

‖Ω−1d(F (Φt
χ(ζ))− F (ζ))‖Hρ,s

≤ sup
Bρ,s(R−d)

‖(dΦ−t
χ (Φt

χ(ζ))− id)Ω−1dF (Φt
χ) + Ω−1d(F (Φt

χ(ζ))− F (ζ))‖Hρ,s

≤ sup
Bρ,s(R−d)

‖dΦ−t
χ (Φt

χ(ζ))− id‖Hρ,s→Hρ,s sup
Bρ,s(R−d)

‖XF (Φ
t
χ(ζ))‖Hρ,s

+ sup
Bρ,s(R−d)

‖XF (Φ
t
χ(ζ))−XF (ζ)‖Hρ,s

≤ 3

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s

+ sup
Bρ,s(R−d)

‖
∫ t

0

[Xχ, XF ](Φ
s
χ(ζ))ds‖Hρ,s

To estimate the last term we use Cauchy inequality

sup
Bρ,s(R−d)

‖
∫ t

0

[Xχ, XF ](Φ
s
χ(ζ))ds‖Hρ,s ≤ 2 sup

Bρ,s(R−2d/3)

‖[Xχ, XF ](ζ)‖Hρ,s

≤ 6

2d
2 sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s

≤ 6

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s .

Then the thesis follows. �
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Lemma A.6. Assume that G is analytic on Bρ,s(R) as well as its vector field, and that h0 satisfies
(PER). Then there exists χ analytic on Bρ,s(R) and Z analytic on Bρ,s(R) with Z in normal form,
namely {h0, Z} = 0, such that

{χ, h0} + G = Z.(275)

Such Z and χ are given explicitly by

Z(ζ) =
1

T

∫ T

0

G(Φt
h0
(ζ)) dt ,(276)

χ(ζ) =
1

T

∫ T

0

t
[
Z(Φt

h0
(ζ))−G(Φt

h0
(ζ))

]
dt .(277)

Furthermore, we have that the vector fields of χ and Z are analytic on Bρ,s(R), and satisfy

sup
Bρ,s(R)

‖XZ(ζ)‖Hρ,s ≤ sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s ,

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ 2T sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s .(278)

Proof. We check directly that the solution of (275) is (277). Indeed,

{χ, h0}(ζ) = d

ds |s=0
χ(Φs

h0
(ζ))

=
1

T

∫ T

0

t
d

ds |s=0

[
Z(Φt+s

h0
(ζ))−G(Φt+s

h0
(ζ))

]
dt

=
1

T

∫ T

0

t
d

dt

[
Z(Φt

h0
(ζ))−G(Φt

h0
(ζ))

]
dt

=
1

T

[
tZ(Φt

h0
(ζ))− tG(Φt

h0
(ζ))

]T
t=0

− 1

T

∫ T

0

[
Z(Φt

h0
(ζ))−G(Φt

h0
(ζ))

]
dt

= Z(ζ)−G(ζ).

In the last step we used the explicit expression of Z provided in (276). Finally, the first estimate in (278)
follows from the explicit expression of Z in (276) while for the second estimate we write explicitly the
vector field Xχ:

Xχ(ζ) =
1

T

∫ T

0

tDΦ−t
h0

(Φt
h0
(ζ)) ◦XZ−G(Φt

h0
(ζ)) dt .

Assumption (PER) ensures that Φt
h0

as well as its derivatives and the inverses are uniformly bounded

as operators from Hρ,s into itself. Moreover, for any t ∈ R, the map ζ 7→ Φt
h0
(ζ) is a diffeomorphism of

Bρ,s(R) into itself. Thus

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ T sup
t∈[0,T ]

sup
ζ∈Hρ,s

(
‖(DΦt

h0
(ζ))−1‖Hρ,s→Hρ,s

)
sup
Bρ,s

(‖XZ(ζ)‖Hρ,s + ‖XG(ζ)‖Hρ,s)

≤ 2T sup
t∈[0,T ]

sup
ζ∈Hρ,s

(
‖(DΦt

h0
(ζ))−1‖Hρ,s→Hρ,s

)
sup
Bρ,s

‖XG(ζ)‖Hρ,s

where in the last step we used the first inequality in (278). Since by assumption (PER) Φt
h0

is an

isometry, supt∈[0,T ] supζ∈Hρ,s

(
‖(DΦt

h0
(ζ))−1‖Hρ,s→Hρ,s

)
= 1 and the thesis follows. �

Lemma A.7. Assume that G and its vector fields are analytic on Bρ,s(R), and that h0 satisfies (PER).
Let χ and its vector field be analytic on Bρ,s(R), and assume that χ solves (275). For any ℓ ≥ 1 denote
by h0,ℓ the functions defined recursively as in (271) from h0. Then for any d ∈ (0, R) one has that h0,ℓ

and its vector field are analytic on Bρ,s(R − d), and

sup
Bρ,s(R−d)

‖Xh0,ℓ
(ζ)‖Hρ,s ≤ 2 sup

Bρ,s(R)

‖XG(ζ)‖Hρ,s

(
9

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

)ℓ

.(279)
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Proof. By using (275) one gets that h0,1 = Z −G is analytic on Bρ,s(R). Then by exploiting (274) one
gets the result. �

Lemma A.8. Assume that G and its vector field are analytic on Bρ,s(R), and that h0 satisfies (PER).
Let χ be the solution of (275), denote by Φt

χ the flow of the Hamiltonian vector field associated to χ and
by Φχ the corresponding time-one map. Moreover, denote by

F(ζ) := h0(Φχ(ζ))− h0(ζ)− {χ, h0}(ζ).

Let d < R, and assume that

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ d/3 .

Then we have that F and its vector field are analytic on Bρ,s(R− d), and

sup
Bρ,s(R−d)

‖XF (ζ)‖Hρ,s ≤ 18

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s .(280)

Proof. Since

h0(Φχ(ζ))− h0(ζ) =

∫ 1

0

{χ, h0} ◦ Φt
χ(ζ) dt

(275)
=

∫ 1

0

Z(Φt
χ(ζ))−G(Φt

χ(ζ)) dt,

if we define F (ζ) := Z(ζ) −G(ζ), we get

F(ζ) =

∫ 1

0

F (Φt
χ(ζ))− F (ζ)dt.

Now, we have

sup
Bρ,s(R−d)

‖XF (ζ)‖Hρ,s

= sup
Bρ,s(R−d)

‖Ω−1d

( ∫ 1

0

F (Φt
χ(ζ))− F (ζ)dt

)
‖Hρ,s

≤ sup
Bρ,s(R−d)

‖
∫ 1

0

(dΦ−t
χ (Φt

χ(ζ))− id)Ω−1dF (Φt
χ) + Ω−1d(F (Φt

χ(ζ))− F (ζ)) dt‖Hρ,s

≤ sup
Bρ,s(R−d)

‖
∫ 1

0

(dΦ−t
χ (Φt

χ(ζ))− id)Ω−1dF (Φt
χ) dt‖Hρ,s

+ sup
Bρ,s(R−d)

‖
∫ 1

0

XF (Φ
t
χ(ζ))−XF (ζ) dt‖Hρ,s

and by dominated convergence we can bound the last quantity by

sup
Bρ,s(R−d)

sup
t∈[0,1]

‖dΦ−t
χ (Φt

χ(ζ))− id‖Hρ,s→Hρ,s sup
Bρ,s(R−d)

‖XF (Φ
t
χ(ζ))‖Hρ,s

+ sup
Bρ,s(R−d)

sup
t∈[0,1]

‖XF (Φ
t
χ(ζ))−XF (ζ)‖Hρ,s

≤ sup
t∈[0,1]

sup
Bρ,s(R−d)

‖dΦ−t
χ (Φt

χ(ζ))− id‖Hρ,s→Hρ,s sup
Bρ,s(R−d)

‖XF (Φ
t
χ(ζ))‖Hρ,s

+ sup
t∈[0,1]

sup
Bρ,s(R−d)

‖XF (Φ
t
χ(ζ))−XF (ζ)‖Hρ,s

≤ 3

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s + sup
t∈[0,1]

sup
Bρ,s(R−d)

‖
∫ t

0

[Xχ, XF ](Φ
s
χ(ζ))ds‖Hρ,s ,
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where we can estimate the last term by Cauchy inequality

sup
Bρ,s(R−d)

‖
∫ t

0

[Xχ, XF ](Φ
s
χ(ζ))ds‖Hρ,s ≤ 2 sup

Bρ,s(R−2d/3)

‖[Xχ, XF ](ζ)‖Hρ,s

≤ 6

2d
2 sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s

≤ 6

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s .

By the above computations and (278) we obtain

sup
Bρ,s(R−d)

‖XF (ζ)‖Hρ,s ≤ 9

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s

(278)

≤ 18

d
sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s .

�

Lemma A.9. Let s ≥ s1 ≫ 1, R > 0, m ≥ 0, and consider the Hamiltonian

H(m)(ζ) = h0(ζ) + δZ(m)(ζ) + δm+1F (m)(ζ).(281)

Assume that h0 satisfies (PER) and (INV), and that

sup
Bρ,s(R)

‖XF (0) (ζ)‖Hρ,s ≤ F.

Fix d < R
m+1

, and set Rm := R −md (m ≥ 1).

Assume also that Z(m) is analytic on Bρ,s(Rm), and that

sup
Bρ,s(Rm)

‖XZ(0) (ζ)‖Hρ,s = 0,

sup
Bρ,s(Rm)

‖XZ(m) (ζ)‖Hρ,s ≤ F
m−1∑

i=0

δiKi
0, m ≥ 1,(282)

sup
Bρ,s(Rm)

‖XF (m) (ζ)‖Hρ,s ≤ F Km
0 , m ≥ 1,(283)

with K0 ≥ 15 and d > 3TδF .

Then, if δK0 < 1/2 there exists a canonical transformation T (m)
δ analytic on Bρ,s(Rm+1) such that

sup
Bρ,s(Rm+1)

‖T (m)
δ (ζ)− ζ‖Hρ,s ≤ 2Tδm+1Km

0 F,(284)

H(m+1) := H(m) ◦ T (m) has the form (281) and satisfies (283) with m replaced by m+ 1.

Proof. The key point of the proof is to look for T (m)
δ as the time-one map of the Hamiltonian vector

field of an analytic function δm+1χm. Hence, consider the differential equation

ζ̇ = Xδm+1χm
(ζ).(285)

By standard theory we have that, if ‖Xδm+1χm
‖Bρ,s(Rm) is small enough (e.g. ‖Xδm+1χm

‖Bρ,s(Rm) ≤
md
m+1

) and ζ0 ∈ Bρ,s(Rm+1), then the solution of (285) exists for |t| ≤ 1.
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Therefore we can define T t
m,δ : Bρ,s(Rm+1) → Bρ,s(Rm), and in particular the corresponding time-one

map T (m)
δ := T 1

m,δ , which is an analytic canonical transformation, δm+1-close to the identity. We have

(T (m)
δ )∗ (h0 + δZ(m) + δm+1F (m)) = h0 + δZ(m)

+ δm+1
[
{χm, h0}+ F (m)

]
+

+
(
h0 ◦ T (m)

δ − h0 − δm+1{χm, h0}
)
+ δ

(
Z(m) ◦ T (m)

δ − Z(m)
)

(286)

+ δm+1
(
F (m) ◦ T (m)

δ − F (m)
)
.(287)

It is easy to see that the first two terms are already normalized, that the term in the second line is the
non-normalized part of order m + 1 that can be normalized through the choice of a suitable χm, and
that (286)-(287) contain all the terms of order higher than m+ 1.

In order to normalize the terms in the second line we solve the homological equation

{χm, h0}+ F (m) = Zm+1,

with Zm+1 in normal form. Lemma A.6 ensures the existence of χm and Zm+1 as well as their explicit
expressions:

Zm+1(ζ) =
1

T

∫ T

0

F (m)(Φt
h0
(ζ)) dt ,

χm(ζ) =
1

T

∫ T

0

t[F (m)(Φt
h0
(ζ))− Zm+1(Φ

t
h0
(ζ))] dt .

The explicit expression of Xχm can be computed following the argument of Lemma A.6. Using this
explicit expression, the analyticity of the flow Φt

h0
ensured by (PER) and (278) one has

sup
Bρ,s(Rm)

‖Xχm (ζ)‖Hρ,σ ≤ 2T sup
Bρ,s(Rm)

‖XF (m)‖Hρ,σ ≤ 2TKm
0 F .(*)

Straightforwardly, from the explicit expression of Zm+1(ζ) and (283) one has

sup
Bρ,s(Rm)

‖XZm+1‖Hρ,s ≤ Km
0 F

Now define Z(m+1) := Z(m) + δmZm+1 and notice that as a consequence of the latter estimate and (282)
we have

sup
Bρ,s(Rm+1)

‖XZ(m+1) (ζ)‖ ≤ sup
Bρ,s(Rm+1)

‖XZ(m) (ζ)‖Hρ,s + sup
Bρ,s(Rm+1)

‖XδmZm+1(ζ)‖Hρ,s

≤ F

(
m−1∑

j=0

δjKj
0 + δmKm

0

)

Defining now T (m)
δ (ζ) := Φ1

δm+1χm
(ζ) we can apply Lemma A.1 and (*) to obtain

sup
Bρ,s(Rm+1)

‖T (m)
δ (ζ)− ζ‖Hρ,s = sup

Bρ,s(Rm+1)

‖Φ1
δm+1χm

(ζ)− ζ‖Hρ,s

≤ sup
Bρ,s(Rm)

‖Xδm+1χm
‖Hρ,s ≤ 2Tδm+1Km

0 F .

Let us set now δm+2F (m+1) := (286) + (287). Using Lemma A.5 one can estimate separately the
three pieces. We notice that supBρ,s(Rm) ‖Xδm+1χm

‖Hρ,s ≤ 2Tδm+1Km
0 F and since δK0 <

1
2

we have

supBρ,s(Rm) ‖Xδm+1χm
‖Hρ,s < TδF < d

3
≤ (m+1)d

3
. We can thus apply Lemma A.5 and Lemma A.8 to
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get

sup
B(Rm+1)

‖X
Z(m)◦T (m)

δ
−Z(m) (ζ)‖Hρ,s ≤ 27 δm+1

(m+ 1)d
sup

Bρ,s(Rm)

‖Xχm (ζ)‖Hρ,s sup
Bρ,s(Rm)

‖XZ(m)‖Hρ,s ,

sup
B(Rm+1)

‖X
F (m)◦T (m)

δ
−F (m)(ζ)‖Hρ,s ≤ 27 δm+1

(m+ 1)d
sup

Bρ,s(Rm)

‖Xχm (ζ)‖Hρ,s sup
Bρ,s(Rm)

‖XF (m)‖Hρ,s ,

sup
B(Rm+1)

‖X
h0◦T (m)

δ
−h0−δm+1{χm,h0}

‖Hρ,s ≤ 18 δ2m+2

(m+ 1)d
sup

Bρ,s(Rm)

‖Xχm (ζ)‖Hρ,s sup
Bρ,s(Rm)

‖XF (m) (ζ)‖Hρ,s .

By means of these inequalities, with the additional information ‖Xδm+1χm
‖Hρ,s ≤ (m+1)d

3
and the

hypotheses (282) and (283), we can estimate

sup
Bρ,s(Rm+1)

‖Xδm+2F (m+1)(ζ)‖Hρ,s ≤ 9δm+2 sup
Bρ,s(Rm)

‖XZ(m) (ζ)‖Hρ,s + 9 δ2m+2 sup
Bρ,s(Rm)

‖XF (m) (ζ)‖Hρ,s

+ 6 δ2m+2 sup
Bρ,s(Rm)

‖XF (m) (ζ)‖Hρ,s

≤ 9 δm+2F
m−1∑

i=0

δiKi
0 + 9 δ2m+2F Km

0 + 6 δ2m+2F Km
0

= δm+2

(
9F

m−1∑

i=0

δiKi
0 + 9δmF Km

0 + 6 δmF Km
0

)

If m = 0 the first term is not present and then

sup
Bρ,s(R1)

‖Xδ2F (1)‖Hρ,s ≤ δ2(9F + 6F ).

If m ≥ 1 we exploit the smallness condition δK0 <
1
2

to get
∑m−1

i=0 δiKi
0 < 2 and

sup
Bρ,s(Rm+1)

‖Xδm+2F (m+1)‖Hρ,s ≤ δm+2

(
6F + 9

F

2m
+ 6

F

2m

)
≤ 15 δm+2F.

�

Proof of Lemma 3.7. The Hamiltonian (61) satisfies the assumptions of Lemma A.9 with m = 0, F1,M

in place of F (0), F = K
(F )
1,s M

2+γ . So we apply Lemma A.9 with d = R/4, provided that

δ <
R

12 T F
=

R

12 T K
(F )
1,s M

2+γ

which is true due to (70). Hence there exists an analytic canonical transformation T (0)
δ,M : Bρ,s(3R/4) →

Bρ,s(R) with

sup
Bρ,s(3R/4)

‖T (0)
δ,M (ζ)− ζ‖Hρ,s ≤ 2T F δ,

such that

H1,M ◦ T (0)
δ,M = h0 + δZ

(1)
M + δ2R(1)

M ,(288)

Z
(1)
M := 〈F1,M 〉 ,(289)

δ2R(1)
M := δ2F (1)

=
(
h0 ◦ T (0)

δ,M − h0 − δ{χ1, h0}
)
+ δ

(
Z

(1)
M ◦ T (0)

δ,M − Z
(1)
M

)
+ δ2

(
F1,M ◦ T (0)

δ,M − F1,M

)
,(290)

sup
Bρ,s(3R/4)

‖X
Z

(1)
M

(ζ)‖Hρ,s ≤ F,(291)

sup
Bρ,s(3R/4)

‖XR(1)
N

(ζ)‖Hρ,s ≤ 15F.(292)

and K0 = 15, whence δ < 1
30

. �



42 M. GALLONE(†) AND S. PASQUALI(∗)

Appendix B. Proof of Proposition 6.2

In order to prove Proposition 6.2 we first discuss the specific energies associated to the high modes,
and then the ones associated to the low modes.

First we remark that for all k such that κ(k) = (µK1, µ
σK2) we have

∣∣∣∣
ω2
k

µ2

∣∣∣∣
(11)
=

4

µ2

[
sin2

(
k1π

2N + 1

)
+ sin2

(
k2π

2N + 1

)]

=
4

µ2

[
sin2

(
µK1π

2

)
+ sin2

(
µσK2π

2

)]

≤ π2(K2
1 + µ2(σ−1)K2

2 );(293)

moreover, for K1 6= 0

|q̂K |2 + π2(K2
1 + µ2(σ−1)K2

2 )|p̂K |2
2

≤ π2 e−2ρ|K| |q̂K |2 + (K2
1 + µ2(σ−1)K2

2 )|p̂K |2
2

e2ρ|K|

≤ π2 e−2ρ|K|
(
1 + µ2(σ−1)K

2
2

K2
1

)
‖(ξ, η)‖2Hρ,0 ,(294)

while for |K2| ≤ |K1|

|q̂K |2 + π2(K2
1 + µ2(σ−1)K2

2 )|p̂K |2
2

|K2|≤|K1|
≤ 2π2 e−2ρ|K| ‖(ξ, η)‖2Hρ,0 .(295)

Hence, by (166) we obtain that for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ

Eκ

µ4

=
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

|K2+L2|≤|K1+L1|

(
|q̂K+L|2 + ω2

k

∣∣∣∣
p̂K+L

µ

∣∣∣∣
2
)

+
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

|K2+L2|>|K1+L1|

(
|q̂K+L|2 + ω2

k

∣∣∣∣
p̂K+L

µ

∣∣∣∣
2
)

(293),(295),(93)

≤ π2 ‖(ξ, η)‖2Hρ,0 2
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

|K2+L2|≤|K1+L1|

e−2ρ|K+L|

+ π2 ‖(ξ, η)‖2Hρ,0

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0

e−2ρ|K+L|
(
1 + µ2(σ−1) (K2 + L2)

2

(K1 + L1)2

)

+ π2 ‖(ξ, η)‖2Hρ,0

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1=0

e−2ρ|K2+L2|.
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Now,
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

e−2ρ|K+L|(296)

≤ e−2ρ|K| +
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L| +
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1 6=0,L2=0

e−2ρ|K+L|

+
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1,L2 6=0

e−2ρ|K+L|.(297)

We now estimate the last sum in (297); we point out that for L1, L2 6= 0 we have

|L| ≥ 2

µ
+

2

µσ
,

hence

2|K| ≤ |L|.(298)

Therefore, for any k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≥ (2+δ)| log µ|

ρ

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

L1,L2 6=0

e−2ρ|K+L| ≤
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

L1,L2 6=0

e−2ρ | |K|−|L| |

≤
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1,L2 6=0

e2ρ|K|e−2ρ|L|

≤ e2ρ|K| 2π

∫ +∞

2|K|
Re−2ρRdR

= 2π e2ρ|K|
(
−1

2

)
d

dρ

[∫ +∞

2|K|
e−2ρRdR

]

= −π e2ρ|K| d

dρ

(
e−4ρ|K|

2ρ

)

= −πe2ρ|K|
(
− 1

2ρ2
e−4ρ|K| − 2|K| e−4ρ|K|

)

=
π

2ρ

(
1

ρ
+ 4

)
e−2ρ|K|(299)

Next we estimate the second sum in (297); we have
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1 6=0,L2=0

e−2ρ|K+L| ≤ e−2ρ (|K1|+|K2|)
∑

ℓ∈Z\{0}
e−4ρ|ℓ|/µ,(300)

which is exponentially small with respect to µ. Similarly,
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L| ≤ e−2ρ (|K1|+|K2|)
∑

ℓ∈Z\{0}
e−4ρ|ℓ|/µσ

.(301)
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Then,

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0

e−2ρ|K+L| (K2 + L2)
2

(K1 + L1)2

≤ e−2ρ|K|
(
K2

K1

)2

+
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1 6=0,L2=0

e−2ρ|K+L| (K2 + L2)
2

(K1 + L1)2
+

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1=0,L2 6=0

e−2ρ|K+L| (K2 + L2)
2

(K1 + L1)2

+
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1,L2 6=0

e−2ρ|K+L| (K2 + L2)
2

(K1 + L1)2
.

(302)

First we estimate the last term in (302): we have that |L+K| ≥ |K|, hence

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1,L2 6=0

e−2ρ|K+L| (K2 + L2)
2

(K1 + L1)2

=

∫ +∞

|K|

∫ π/4

0

e−2ρ ξ ξ tan2 φ dφdξ

=
(
1− π

4

)
e−2ρ|K| 1 + 2ρ|K|

4ρ2

≤
(
1− π

4

)
µ4 e

−2ρ
[

|K|− 2| log µ|
ρ

− 1
2ρ

log(2ρ|K|)
]

δ<1−1/e

≤
(
1− π

4

)
µ4 e

−2ρ
[

δ|K|− 2| log µ|
ρ

]

(303)

=
(
1− π

4

)
µ8e−2ρδ|K|(304)

Now we bound the other two nontrivial terms in (302); on the one hand, we notice that

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1 6=0,L2=0

e−2ρ|K+L|L2
2

(305)
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vanishes, while on the other hand

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1=0,L2 6=0

e−2ρ|K+L|L2
2 ≤ e−2ρ|K| ∑

ℓ∈Z\{0}
e−4ρ|ℓ|/µσ ℓ2

µ2σ

≤ 2e−2ρ|K|
∫ +∞

1

e−4ρ|ℓ|/µσ ℓ2

µ2σ
dℓ,(306)

where the last integral is exponentially small with respect to µ.

On the other hand, for any k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ

∣∣∣∣∣
Eκ

µ4
− |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣

≤
∣∣∣∣
ω2
k − µ2 π2K2

1

2µ2

∣∣∣∣ |p̂K |2 + 1

2

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣
p̂K+L

µ

∣∣∣∣
2

,

(293)

≤ (µ2π4K4
1 + π2µ2(σ−1)K2

2 )|p̂K |2

+
1

2

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

|q̂K+L|2 + π2[(K1 + L1)
2 + µ2(σ−1)(K2 + L2)

2]|p̂K+L|2,

≤
(
π4 µ2K4

1 + π2µ2(σ−1) 9| log µ|2
ρ2

)
|p̂K |2

+
1

2

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

|q̂K+L|2 + π2[(K1 + L1)
2 + µ2(σ−1)(K2 + L2)

2]|p̂K+L|2,

≤
(
π4 µ2 + π2µ2(σ−1)

) 9| log µ|2
ρ2

2‖(ξ, η)‖2Hρ,0(307)

+
π2

2

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

e2ρ|K+L| (|ξ̂K+L|2 + |η̂K+L|2)
(
1 + 2µ2(σ−1) K2

2 + L2
2

(K1 + L1)2

)
e−2ρ|K+L|,(308)

and we can conclude by estimating (307) by exploiting the fact that | log µ| ≤ µ−2/5, while we can
estimate (308) by

π2

2
‖(ξ, η)‖2Hρ,0

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

(
1 + 2µ2(σ−1) K2

2 + L2
2

(K1 + L1)2

)
e−2ρ|K+L|

≤ π2

2
‖(ξ, η)‖2Hρ,0

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

(
1 + 2µ2(σ−1)K2

2 + 2µ2(σ−1) L2
2

)
e−2ρ|K+L|

≤ π2

2
‖(ξ, η)‖2Hρ,0

[
(1 + 2µ2(σ−1)K2

2 )2π

∫ +∞

2/µ

e−2ρℓ ℓdℓ+ 4π

∫ +∞

2/µ

e−2ρℓ ℓ3dℓ

]

=
π2

2
‖(ξ, η)‖2Hρ,0×

[
2π

(
1 + 2µ2(σ−1) 9| log µ|2

ρ2

)
e−4ρ/µ µ+ 4ρ

4µρ2
+ 4π e−4ρ/µ 3µ3 + 12ρµ2 + 24ρ2µ+ 32ρ3

8µ3ρ4

]
.(309)
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Appendix C. Proof of Proposition 6.8

We argue as in the proof of Proposition (6.2).
First we remark that for all k such that κ(k) = (µK1, µ

σK2) we have

|ω2
k|

(30)
= 1 + 4

[
sin2

(
k1π

2N + 1

)
+ sin2

(
k2π

2N + 1

)]

= 1 + 4

[
sin2

(
µK1π

2

)
+ sin2

(
µσK2π

2

)]

≤ 1 + π2(µ2K2
1 + µ2σ K2

2 ),

≤ π2(1 + µ2K2
1 + µ2σ K2

2 ),(310)

hence

|p̂K |2 + π2(1 + µ2K2
1 + µ2σK2

2 )|q̂K |2
2

≤ π2 e−2ρ|K| |p̂K |2 + (1 + µ2K2
1 + µ2σK2

2 )|q̂K |2
2

e2ρ|K|

≤ π2 e−2ρ|K| (1 + µ2K2
1 + µ2σ K2

2

)
‖(ψ, ψ̄)‖2Hρ,0 .(311)

Hence, by (221) we obtain that for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ

Eκ

µ2

≤
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

(
|p̂K+L|2 + ω2

k |q̂K+L|2
)

(310),(311)

≤ π2 ‖(ψ, ψ̄)‖2Hρ,0 2
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

e−2ρ|K+L| [1 + µ2 (K1 + L1)
2 + µ2σ (K2 + L2)

2
]
,

(312)

where the sum in (312) can be rewritten as follows,
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

e−2ρ|K+L|(313)

+ µ2
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

e−2ρ|K+L|(K1 + L1)
2(314)

+ µ2σ
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

e−2ρ|K+L|(K2 + L2)
2.(315)

Now,
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

e−2ρ|K+L|

≤ e−2ρ|K| +
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L| +
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1 6=0,L2=0

e−2ρ|K+L|

+
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1,L2 6=0

e−2ρ|K+L|,(316)
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and we can estimate the above terms as for (297) in Proposition 6.2; indeed, by (299), (300) and (301)
we have that (316) is bounded by

e−2ρ|K| + π

(
1

2ρ2
+ 2|K|

)
e−2ρ|K| + e−2ρ (|K1|+|K2|)

∑

ℓ∈Z\{0}
e−4ρ|ℓ|/µ

+ e−2ρ (|K1|+|K2|)
∑

ℓ∈Z\{0}
e−4ρ|ℓ|/µσ

.(317)

Now we estimate (314). We have

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

e−2ρ|K+L| (K1 + L1)
2

≤ e−2ρ|K|K2
1

+
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1 6=0,L2=0

e−2ρ|K+L| (K1 + L1)
2 +

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L| K2
1

+
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

L1,L2 6=0

e−2ρ|K+L| (K1 + L1)
2.(318)

First we estimate the last term in (318): we have that |L+K| ≥ |K|, hence

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> (2+δ)| log µ|
ρ

L1,L2 6=0

e−2ρ|K+L| (K1 + L1)
2

=

∫ +∞

|K|

∫ 2π

0

e−2ρ ξ ξ cos2 φdφdξ

= π e−2ρ|K| 1 + 2ρ|K|
4ρ2

≤ π µ4 e
−2ρ

[

|K|− 2| log µ|
ρ

− 1
2ρ

log(2ρ|K|)
]

δ<1−1/e

≤ π µ4 e
−2ρ

[

δ|K|− 2| log µ|
ρ

]

(319)

Now we bound the other two nontrivial terms in (318); on the one hand, we notice that

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L|(K1 + L1)
2

≤ 2
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L|K2
1

+ 2
∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L| L2
1,(320)
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where the first sum can be bounded as the second term in (316), while

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L|L2
1 ≤ e−2ρ|K| ∑

ℓ∈Z\{0}
e−4ρ|ℓ|/µ ℓ2

µ2

≤ 2e−2ρ|K|
∫ +∞

1

e−4ρ|ℓ|/µ ℓ2

µ2
dl,(321)

where the last integral is exponentially small with respect to µ.

Similarly,

∑

L=(L1,L2)∈Z
2:µL1,µ

σL2∈2Z

|K1|+|K2|> 2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L|L2
2 ≤ e−2ρ|K| ∑

ℓ∈Z\{0}
e−4ρ|ℓ|/µσ ℓ2

µ2σ

≤ 2e−2ρ|K|
∫ +∞

1

e−4ρ|ℓ|/µσ ℓ2

µ2σ
dℓ,(322)

where the last integral is exponentially small with respect to µ.

On the other hand, for any k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ

∣∣∣∣∣
Eκ

µ2
− |ψ̂K |2

2

∣∣∣∣∣

≤
∣∣ω2

k − 1
∣∣ |q̂K |2 + 1

2

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

|p̂K+L|2 + ω2
k |q̂K+L|2 ,

(310)

≤ (µ2π2K2
1 + π2µ2σK2

2 )|p̂K |2

+
1

2

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

|p̂K+L|2 + |q̂K+L|2 + π2[µ2(K1 + L1)
2 + µ2σ(K2 + L2)

2]|q̂K+L|2,
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π2 µ2K2

1 + π2µ2σ K2
2

)
|p̂K |2

+ ‖(ψ, ψ̄)‖2Hρ,0

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

e−2ρ|K+L|[1 + π2µ2(K1 + L1)
2 + π2µ2σ(K2 + L2)

2]

≤ π2 µ2
(
1 + µ2(σ−1)

) 9| log µ|2
ρ2

‖(ψ, ψ̄)‖2Hρ,0(323)

+ ‖(ψ, ψ̄)‖2Hρ,0

∑

L=(L1,L2)∈Z
2\{0}

µL1,µ
σL2∈2Z

e−2ρ|K+L|(324)

+ π2µ2‖(ψ, ψ̄)‖2Hρ,0

∑
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2\{0}

µL1,µ
σL2∈2Z

e−2ρ|K+L|(K1 + L1)
2(325)
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2\{0}
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and we can conclude by estimating (323) by exploiting the fact that | log µ| ≤ µ−2/5, while we can
bound (324)-(325) by

π2

2
‖(ψ, ψ̄)‖2Hρ,0

∑

L=(L1,L2)∈Z
2\{0}
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2
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[
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1 ) 2π
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∫ +∞

2/µ

e−2ρℓ ℓ3dℓ

]

=
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e−4ρ/µ µ+ 4ρ

4µρ2
+ 4π µ2e−4ρ/µ 3µ3 + 12ρµ2 + 24ρ2µ+ 32ρ3

8µ3ρ4

]
,(327)

and we can estimate (326) by

π2

2
‖(ψ, ψ̄)‖2Hρ,0 µ
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.(328)
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