arXiv:1911.12648v2 [math.DS] 9 Apr 2020

METASTABILITY PHENOMENA IN TWO-DIMENSIONAL RECTANGULAR
LATTICES WITH NEAREST-NEIGHBOUR INTERACTION

M. GALLONE(") AND S. PASQUALI®™)

ABsTRACT. We study analytically the dynamics of two-dimensional rectangular lattices with pe-
riodic boundary conditions. We consider anisotropic initial data supported on one low-frequency
Fourier mode. We show that, in the continuous approximation, the resonant normal form of the
system is given by integrable PDEs. We exploit the normal form in order to prove the existence of
metastability phenomena for the lattices. More precisely, we show that the energy spectrum of the
normal modes attains a distribution in which the energy is shared among a packet of low-frequencies
modes; such distribution remains unchanged up to the time-scale of validity of the continuous ap-
proximation.
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In this paper we present an analytical study of the dynamics of two-dimensional rectangular lattices
with nearest-neighbour interaction and periodic boundary conditions, for initial data with only one low-
frequency Fourier mode initially excited. We give some rigorous results concerning the relaxation to a
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metastable state, in which energy sharing takes place among low-frequency modes only.

The study of metastability phenomena for lattices started with the numerical result by Fermi, Pasta
and Ulam (FPU) [FPU95]|, who investigated the dynamics of a one-dimensional chain of particles with
nearest neighbour interaction. In the original simulations all the energy was initially given to a single
low-frequency Fourier mode with the aim of measuring the time of relaxation of the system to the
‘thermal equilibrium’ by looking at the evolution of the Fourier spectrum. Classical statistical mechanics
prescribes that the energy spectrum corresponding to the thermal equilibrium is a plateau (the so-
called theorem of equipartition of energy). Despite the authors believed that the approach to such an
equilibrium would have occurred in a short time-scale, the outcoming Fourier spectrum was far from
being flat and they observed two features of the dynamics that were in contrast with their expectations:
the lack of thermalization displayed by the energy spectrum and the recurrent behaviour of the dynamics.

Both from a physical and a mathematical point of view, the studies on FPU-like systems have a long
and active history: a concise survey of this vast literature is discussed in the monograph [Gal07]. For a
more recent account on analytic results on the ‘FPU paradox’ we refer to [BCMM15].

In particular, we mention the papers [BP06] and [Bam08], in which the authors used the techniques of
canonical perturbation theory for PDEs in order to show that the FPU a model (respectively, 8 model)
can be rigorously described by a system of two uncoupled KdV (resp. mKdV) equations, which are
obtained as a resonant normal form of the continuous approximation of the FPU model; moreover, this
result allowed to deduce a rigorous result about the energy sharing among the Fourier modes, up to the
time-scales of validity of the approximation. If we denote by N the number of degrees of freedom for
the lattice and by p ~ + < 1 the wave-number of the initially excited mode, if we assume that the
specific energy ¢ ~ pu* (resp. ¢ ~ pu? for the FPU 3 model), then the dynamics of the KAV (resp. mKdV)
equations approximates the solutions of the FPU model up to a time of order (9(;f3). However, the
relation between the specific energy and the number of degrees of freedom implies that the result does
not hold in the thermodynamic limit regime, namely for large N and for fixed specific energy e (such a
regime is the one which is relevant for statistical mechanics).

Unlike the extensive research concerning one-dimensional systems, it seems to the authors that the
behaviour of the dynamics of two-dimensional lattices is far less clear; it is expected that the interplay
between the geometry of the lattice and the specific energy regime could lead to different results.

Benettin and collaborators [BVT80] [Ben05] [BGO08| studied numerically a two-dimensional FPU lat-
tice with triangular cells and different boundary conditions in order to estimate the equipartition time-
scale, and they found out that in the thermodynamic limit regime the equipartition is reached faster
than in the one-dimensional case. The authors decided not to consider model with square cells in order
to have a spectrum of linear frequencies which is different with respect to the one of the one-dimensional
model; they also added (see [BG08], section B.(iii) )

There is a good chance, however, that models with square lattice, and perhaps a different potential
so as to avoid instability, behave differently from models with triangular lattice, and are instead more
similar to one-dimensional models. This would correspond to an even stronger lack of universality in the
two-dimensional FPU problem.

Up to the authors’ knowledge, the only analytical results on the dynamics of two-dimensional lattices
in this framework concern the existence of breathers [Wat94] [BW06] [BWO07] [YWSC09] [WJ14] [BPP10].

In this paper we study two-dimensional rectangular lattices with (2N7 + 1) x (2Nz + 1) sites, square
cell, nearest-neighbour interaction and periodic boundary conditions, and we show the existence of
metastability phenomena as in [BP06]. More precisely, under some suitable assumptions on the ratio
between the sides of the lattice and on the type of small-amplitude solution we want to describe, we
obtain for a 2D Electrical Transmission lattice (ETL) either a system of two uncoupled KdV equations or
a system of two uncoupled KP-II equations as a resonant normal form for the continuous approximation
of the lattice, while for the 2D Klein-Gordon lattice with quartic defocusing nonlinearity we obtain a



one-dimensional cubic defocusing NLS equation. Since all the above PDEs are integrable, we can exploit
integrability to deduce a mathematically rigorous result on the formation of the metastable packet.

Up to the authors’ knowledge, this is the first analytical result about metastable phenomena in
two-dimensional Hamiltonian lattices with periodic boundary conditions; in particular, this is the first
rigorous result for two-dimensional lattices in which the dynamics of the lattice in a genuinely two-
dimensional regime is described by a system of two-dimensional integrable PDEs.

Some comments are in order:

i. denoting by u < 1 the wave-number of the Fourier mode initially excited, we have that the
time-scale of validity of our result is of order O(u~%) for the 2D ETL lattice, and of order
O(u~?) for the 2D Klein-Gordon lattice;

ii. the ansatz about the small amplitude solutions gives a relation between the specific energy of
the system € and the wave-number p ~ Nil of the Fourier mode initially excited. More precisely,
we obtain € ~ p* for the 2D ETL lattice as in [BP06|, and € ~ p? for the 2D Klein-Gordon
lattice. This implies that the result does not hold in the thermodynamic limit regime;

iii. our result can be easily generalized to higher-dimensional lattices (see Remark 2.8 and Remark
2.9), such as the physical case of three-dimensional rectangular lattices with cubic cells.

To prove our results we follow the strategy of [BP06]. The first step consists in the approximation of
the dynamics of the lattice with the dynamics of a continuous system. As a second step we perform a
normal form canonical transformation and we obtain that the effective dynamics is given by a system of
integrable PDEs (KdV, KP-II, NLS depending on the lattice and the relation between N1 and N2). Next,
we exploit the dynamics of these integrable PDEs in order to construct approximate solutions of the
original discrete lattices, and we estimate the error with repect to a true solution with the corresponding
initial datum. Finally, we use the known results about the dynamics of the above mentioned integrable
PDEs in order to estimate the specific energies for the approximate solutions of the original lattices.

The novelties of this work are: on the one side, a mathematically rigorous proof of the approximation
of the dynamics of the ETL lattice by the dynamics of certain integrable PDEs (among these integrable
PDE:s, there is one which is genuinely two-dimensional, the KP-II equation) and of the dynamics of the
two-dimensional KG lattice by the dynamics of the one-dimensional nonlinear Schrédinger equation; on
the other side, there are two technical differences with respect to previous works, namely the normal
form theorem (which is a variant of the technique used in [BCP02| [Bam05] [Pas19]) and the estimates
for bounding the error between the approximate solution and the true solution of the lattice (which need
a more careful study than the ones appearing in [SW00] [BP06| for the one-dimensional case).

2. MAIN RESULTS

2.1. The Electrical transmission lattice. We describe a lossless periodic two-dimensional electrical
transmission lattice (ETL), given by a rectangular configuration of repeating units, each made up of two
linear inductors and a nonlinear capacitor; in the non-periodic setting, the model has been studied in
[BWO06]. We define lattice nodes by the locations of capacitors. We denote

(1) 23, Ny = {(j1,J2) : j1,d2 € Z,|j1| < Nu,|j2| < Na};

we also write e1 := (1,0), ez := (0,1) and Z% := Z3 -

The variable V;(t), j € Z?vlyNz, denotes the voltage across the j-th capacitor, @;(¢) denotes the charge
stored on the j-th capacitor and I;(¢) denotes the current through the j-th inductor along direction e;.
To derive the equations for the voltage V; and the charge (); in the lattice one can proceed as follows.
Considering a section of the lattice and applying Faraday’s law and Lenz’s law, the difference in shunt
voltage at site j and site j + e; is given by

dl;

(2) Vite, = V; =— TR
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where L is the inductance, which we assume to be constant. Assuming the capacitance C' to be an
analytic function of the voltage V' we can expand it in Taylor series, obtaining for small voltages

(3) Ci(V) ~ Co(1 + 2aV; + 3bV}),

where Cp := C}(0), a and b are real constants determined by the physical realisation of the network.

Using standard relations between electrical quantities we finally obtain a closed equation for the charge
4?Q; 1 2 3

4 L = A i

( ) dt2 LCO( 1(Q+QQ +/BQ ))]7

(5) (A1Q); = (Qjter —2Q;5 + Qj—er) + (Qiter — 2Q5 + Qj—es)-

where «, 8 are real parameters related to a and b. Up to a rescaling of time, we can set LCy = 1 without
loss of generality. The Hamiltonian associated to (4) is given by

(6) HQP)= 3 —3P(MP)+(FQ),
™ (F@)i = L +al 4L

We refer to (6) as a + 8 model (respectively, 8 model) if o # 0 (respectively o = 0). With the above
Hamiltonian formulation the equations of motion associated to (6) are given by

{QJ =—(A1P);
P =—(F'(Q)); '

(®) Q; = (A1F'(Q));.
We also introduce the Fourier coeflicients of @ via the following standard relation,
) Q)= : > lei<2N1+1)1j/§<2212+1)1/2 jeZi N
J ’ 1,N2»
V2N +1)(2N2 + 1) ke
and similarly for P;. We denote by
215 (2 A 2
wi | Pr|” +
(10) By = Ic| k' 5 |Qk| ,
2 a2 kim s 2 ko
(11) wy = 4sin <2N1+1 + 4sin N, £ 1)

the energy and the square of the frequency of the mode at site k = (k1, k2) € Z?Vl N, For states described
by real functions, one has Ei, k,) = E(—ky ko) a0d E(iy ko) = Eiy,—1y) for all k = (k1,k2), so we will
consider only indexes in

Ty Nyt = {(k1,k2) € ZX, N, : k1, k2 > 0}

It is also convenient to introduce the following specific quantities,

(12) m:n(k):( LI ’“)
Ni+5 No+3

Ey,
(M +3) (N2 +3)°
where (13) is the specific energy of the normal mode with index .

We want to study the behaviour of small amplitude solutions of (8), with initial data in which only
one low-frequency Fourier mode is excited.

(13) Er 1=



We assume N; < Nz, and we introduce the quantities

2
14 -
(14) b= N T
1
(15) o= lOgN1+% (N2 + 5) )

which play the role of parameters in our construction.
We study the a + 8 model of (8) in the following regimes:

(KdV) the very weakly transverse regime, where the effective dynamics is described by a system of
two uncoupled Korteweg-de Vries (KdV) equations. This corresponds to taking p < 1 and
2<0<b;

(KP) the weakly transverse regime, where the effective dynamics is a described by a system of two
uncoupled Kadomtsev-Petviashvili (KP) equation. This corresponds to taking u < 1 and o = 2.

From now on, we denote by ko := (ﬁ, m) = (p, 7).

Theorem 2.1. Consider (8) with a #0, 2 <o <5.
Fizr1 <~< 7_7" and two positive constants Co and To, then there exist positive constants po, Cv and

Cy (depending only on v, Co and on Ty) such that the following holds. Consider an initial datum with

(16) Ero(0) = Cop’, €x(0) =0, Vi = (K1, k2) # Ko,

and assume that pn < po. Then there exists p > 0 such that along the corresponding solution one has
o T

(17) E.(t) <Oy H46*P‘(“1/IJ‘7“2/M 4oy Iu4+w7 It| < Iu_g

for all k. Moreover, for any ne with 0 < ny < Na there exists a sequence of almost-periodic functions
(F")”:("I’W)EZ?VI,NZ,+ such that, if we denote

(18) Fro = 1 Fa, F.=0  Ve#nkro
then

T
(19) ) - A0 < o™, 1o < B,

Theorem 2.2. Consider (8) with o # 0, 0 = 2.
Fizrl <vy< g and two positive constants Co and To, then there exist positive constants uo, C1 and
Cy (depending only on v, Co and on Ty) such that the following holds. Consider an initial datum with

(20) Exo(0) = Cop’,  Ex(0)=0 VK= (k1,kK2) # Ko,
and assume that (o < po. Then there exists p > 0 such that along the corresponding solution one has
(21) E.(t) < Cy M%—ﬁ\(m/umz/u")\ +Cy M4+'Y7 It] < 23
%
for all k.

Remark 2.3. In Theorem 2.2 we do not mention the existence of a sequence of almost-periodic func-
tions approximating the specific energies of the modes. This is related to the construction of action-
angle/Birkhoff coordinates for the KP equation, which is an open problem in the theory of integrable
PDEFs.

2.2. The 2D Klein-Gordon lattice. Among the lattices that have received a great amount of atten-
tion, we mention the class of Klein-Gordon (KG) lattices, which combine the nearest-neighbour potential
with an on-site one. The Hamiltonian of the system with 2/NV + 1 particles in the one-dimensional case is

5 (=)’
(22 Hirs) = 3 5+ U0l g,
j=—
e 22P+2
(23) Ulx)=m"—=+0 m>0,p>1.
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We now pass to two-dimensional KG lattices: the scalar model

Pz 1 o 2
(24) mer= Y Dyloy @@l sy,
jeZ?VlyNz j’kEZ?\fl,Nz jeZ%\’lJ\b
li—k|=1
2x2 22 +2

2 - T >1
(25) Ux) =m +ﬁ2p+27 m >0, B>0,p>1,

2

can be used to describe rigid rotating molecules in the lattice plane (@ being the angle of rotation), where
each molecule interacts with its neighbors and with the periodic substrate potential U; alternatively, Q
can represent the transverse motion of a planar lattice [Ros03].

Using the operator A; introduced in (5), the Hamiltonian (24) can be rewritten as

(26) QP = Y il oy ocae+r T v

jez?\flvf\b jEZ?VlJ\b jeZ?\’lez
the associated equations of motion are

N 2 2p+1 . 2
(27) Qj = (A1Q); —m*Q; — BQ™,  jEZN, N,
If we take p = 1, we obtain a generalization of the one-dimensional ¢* model.

We also introduce the Fourier coefficients of @ via the following relation,

jk2m

1 A .
) @ VN + 1)(2N; + 1) D Que CNIDIECNDIE e 7R
kE€ZZ N1y
and similarly for P;, and we denote by
Pol? + w2|04?
kim ko
2 2 .2 1 .2 2
= 4 — 4 _
(30) wi :=m" + 4sin <2N1+1)+ sin (2N2+1)’

the energy and the square of the frequency of the mode at site k = (k1, k2) € Z?VI,N2~
In the rest of the paper we will assume that m = 1.

We study the two-dimensional KG lattice (24) in the following regime:
(1D NLS) the very weakly transverse regime, where the effective dynamics is described by a cubic one-
dimensional nonlinear Schrodinger (NLS) equation. This corresponds to taking p < 1 and
l<o<T.

Theorem 2.4. Consider (24) with 3 >0,1<0 < 7.
Fiz0 <~ < 7_7" and two positive constants Co and Ty, then there exist positive constants po, C1 and
Cy (depending only on v, Co and on Ty) such that the following holds. Consider an initial datum with

(31) Ery(0) = Cop®,  £.(0) =0, Yk = (K1, k2) # Ko,
and assume that p < po. Then there exists p > 0 such that along the corresponding solution one has
_ o Tt
(32) E.(t) < Cy M26 pllra/pma /) 4 o, M?-F’Y7 It| < _g
I

for all k. Moreover, for any na with 0 < ny < Na there exists a sequence of almost-periodic functions
(Fn)n:(nl,nz)e@vl ot such that, if we denote

(33) ]:fm = MQFn7 F. =0 Vn;«énno
then

34 Ea(t) — Fu(t)] < Oy 27 t <TO
(34) 1€x(t) — Fu(t)| < Cop™7, ||_F'



2.3. Further remarks.

Remark 2.5. The specific choice of the direction of longitudinal propagation in the regimes that we have
considered is not relevant.

Remark 2.6. Using the definition of o and p in (15), (14) we can read Theorems 2.1, 2.2 using, as
parameter, the total number of sites in the lattice N. The statement should read as follows:

Consider (8) witha #0 and2 <o < 5. Fiz1 <y < 7_70 and two positive constants Co and Ty, then
there exists positive constants No, C1 and Co (depending only on v,Co and Tp) such that if we consider
an initial datum with

(35) £ (0) = —20

= —, &x(0) =0 VK # ko
NTHs

with N > No. There exists p > 0 such that along the corresponding solution one has

(36) Ea(t) < —SelMmNera)l €2y oy
N1+o Nito
for all k.

Remark 2.7. We point out that the time of validity of Theorem 2.4 for the KG lattice is of order
O(u™?), which is different from the time of validity of Theorem 2.1 and Theorem 2.2 for the FPU
lattice. In the one-dimensional case it has been observed that, for a fixed value of specific energy ¢ and
for long-wavelength modes initially excited, the ¢* model reached equipartition faster than the FPU f3
model (see [LLPRO7|, sec. 2.1.8).

Remark 2.8. Theorem 2.1 and Theorem 2.2 can be generalized to higher dimensional lattices. Indeed,
let d < 4, define

(37) Z?Vl Ny ::{(‘7.17“47]'(1):‘]'174447‘]'(1€Z7|j1|S]\71,...,|jd|S]Vd}7

,,,,,

and consider the d-dimensional ETL

1
(38) HQ,P)= > —5 b5 (ALP); + (F(Q))s
JEZ?\Il ..... Ny
Q3 Q| .Qj .
(39) (F@) =L +aSl 152, el n,
We assume N1 < Na, ..., Ng, and we introduce the quantities
2
4 -
(40) Y AE
1 .
(41) U,'::logNhL% <Ni+1+§>, i=1,...,d—1.

Then we can describe the following regimes:

(KdV-d) the a4+ 8 model, in the very weakly transverse regime with up < 1 and 2 < o1,...,04-1 < 5;
(KP-d) the ao+ B model, in the weakly transverse regime with p < 1 and 01 =2, 2 < 02,...,04-1 < 5.

Moreover, in order to obtain Theorem 2.1 and Theorem 2.2 we will have to assume that

d—1

(42) 29+ o <T.

i=1

which, together with the fact that oy > 2 for alli =1,...,d—1, is consistent with the assumption d < 4.
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Remark 2.9. Theorem 2.4 can be generalized to higher dimensional lattices. Indeed, let d < 6, define
Z‘]i\flwyNd as in (37) and consider the d-dimensional NLKG lattice

P o1 (Q; — Qr)*
4 H P) = s Z i) %R )
(43) @P)= dZ >+ 5 Z gt dZ U(Q;),
JELYN, ... Ny IRELN, ... Ny JELYN, ... Ny
li—kl=1
L z? 22PF2
44 = — >1
(44) U(z) =m 2+ﬁ2p+2, m>0, >0, p>1,
We assume N1 < Na,...,Nq_1, and we introduce the quantities p and o; (1 <i<d—1) as in (40) and
(41).

Then we can describe the following regime:
(IDNLS-d) the model (43) with m = 1 and p = 1 in the very weakly transverse regime, with p < 1,
1<o01y...,00-1 < 7;

Moreover, in order to obtain Theorem 2.4 we will have to assume that
d—1

(45) 2y + Z o < T.
i=1

which, together with the fact that o; > 1 for alli=1,...,d—1, is consistent with the assumption d < 6.

Remark 2.10. There are other interesting regimes for (8) and (27) especially for their relation with the
modified KdV equation and two-dimensional Non-Linear Schridinger equation respectively. These will
be discussed in Remark 4.7 and Remark 4.12 respectively.

3. GALERKIN AVERAGING

3.1. An Averaging Theorem. Following [Pasl9] (see also [BP06] and [Bam05]) we use a Galerkin
averaging method in order to approximate the solutions of the continuous approximation of the lattice
with the solutions of the system in normal form.

To this end we first have to introduce a topology in the phase space. This is conveniently done in
terms of Fourier coefficients.

Definition 3.1. Fiz two constants p > 0 and s > 0. We will denote by Ei’s the Hilbert space of complex
sequences v = (Un)nEZQ\{O} with obvious vector space structure and with scalar product

(46) (v, whp,s == Z mwne%\n\mfﬁ
nez2\{0}
and such that
(47) [olZe = (@ 0)ps = D [oale®|nf>
n€Z2\{0}
is finite. We will denote by ¢ the space &2)70.

We will identify a 2-periodic function v with the sequence of its Fourier coefficients {0n }n,

1 2 : A i T
U(y) = 5 Un€ y7
nez?

and we will say that v € €,2)75 if the sequence of its Fourier coefficients belong to 6,2,’8.

Now fix p > 0 and s > 1, and consider the scale of Hilbert spaces H”® = (2 x €2, > ¢ = (&),
endowed with one of the following symplectic forms:

0 i -0;' 0
) o (00, e (B L)

Observe that ., : H”® — HP*T7™! (y = 1,2) is a well-defined operator. Moreover, s is well-defined on
the space of functions with zero-average with respect to the x1-variable, i.e. on those functions {(z1,z2)
such that for every x2 we have fil ¢(z1,z2)dz1 = 0.



If we fix v € {1,2}, s and Us C Eﬁ’s open, we define the gradient of K € C*°(Us,R) with respect to

¢ e 6,2,’8 as the unique function s.t.
(VeK,hy =deKh,  Vhel,.
Similarly, for an open set Us C H”*® the Hamiltonian vector field of the Hamiltonian function H €
C* (U, R) is given by
Xnu(¢) =95 VeH(Q).

The open ball of radius R and center 0 in ¢, will be denoted by B, (R); we write B, (R) =
B, s(R) X Bps(R) C HF®.

Now, we introduce the Fourier projection operators 7; : Ei s — Ei s
, ,

N vy if j—1< |n| <J .

49 i ((Vn), = ) > 1,
(49) 5 ((vn) €Z2\{0}) {0 otherwise J =
the operators m; : H”® — H"*

50 i((Cn = , >1,
(50) 75 ((¢ )neZZ\{o}) {0 otherwise J =
and the operators Iy : H”® — HP®

Cno if n|l <M
(51) HM((Cn)neW\{O}) = { | | ) M > 0.

0  otherwise

Lemma 3.2. The projection operators defined in (50) and (51) satisfy the following properties for any
¢eHs:
i. forany j >0
¢=> m¢
j=0
ii. for any M >0
IMarCllaers < [ICllwees

1ii. the following equality holds

1/2
(52) Cleos = || | D 5% |ms¢l?
jEN
HPO
where |C], for ¢ € H"® is the element |¢| € H”® whose n-th element is
ICln = (€nl; nl)

and (C*)n := (&)
Now we consider a Hamiltonian system of the form
(53) H = ho+F,

where we assume that

(PER) ho generates a linear periodic flow @7 ~with period T,
ot =@ v,

which is analytic as a map from H”® into itself for any s > 1. Furthermore, the flow is an
isometry for any s > 1.
(INV) for any s > 1, &7, leaves invariant the space II;H”* for any j > 0. Furthermore, for any j > 0

T T
mj 0 By, = Py, o 7.
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Next, we assume that the vector field of F' admits an asymptotic expansion in § of the form
(54) F~> 97,
j=1
j—1
(55) Xp o~y 87 Xy,
i1
and that the following property is satisfied
(HVF) There exists R* > 0 such that for any j > 1
- X, is analytic from By st2j+~(R") to H”".
Moreover, for any r > 1 we have that
. XF,Z;:1 si—1p; is analytic from B, s a(r41)1+(R") to H”*.
The main result of this section is the following theorem.

Theorem 3.3. Fiz R > 0, s1 > 1. Consider (53), and assume (PER), (INV) and (HVF). Then 3
so > 0 with the following properties: for any s > s1 there exists 6s < 1 such that for any § < ds there
exists Ts : Bp,s(R/2) — By s(R) analytic canonical transformation such that

(56) Hi:=HoT;=ho+06Z +§ RW,

where 21 s in normal form, namely

(57) {Z1,ho} =0,

and there exists a positive constant C such that

sup || Xz, [lnes < C5,

Bp,s+30(R/2)

(58) sup [ Xra llaes < C,
Bpotsg(R/2)

(59) sup || 75 — id||ses < CL6.
Bp,s(R/2)

In particular,

(60) Z21(Q) = (F1) (0),
where (F1) (¢) := [} F1o®}, (¢)4r.

Remark 3.4. By using the same arguments of [Bam05] and [Pasl9] one can prove a more general
version of Theorem 3.3, in which the Hamiltonian is put in normal form up to order r, for any r > 1.
In this latter case, both §s and so will also depend on r.

3.2. Proof of the Averaging Theorem. The proof of Theorem 3.3 is actually an application of the
techniques used in [Pas19] and [BP06]).

First notice that by assumption (INV) the Hamiltonian vector field of ho generates a continuous flow
®7 which leaves I1;H”° invariant.

Now we set H = Hi,pm + Ri,m + R1, where

(61) Hi v oi=ho+ 6 Fim,
(62) Fy v o= Fyollyy,

and

(63) Ri,m :=ho +0F1 — Hi w1,
(64) Ri:=0(F —F).

The system described by the Hamiltonian (61) is the one that we will put in normal form.
In the following we will use the notation a < b to mean: there exists a positive constant K independent
of M and R (but eventually on s), such that a < Kb. We exploit the following intermediate results:
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Lemma 3.5. For any s > s1 there exists R > 0 such thatV o >0, M >0

1)
(65) sup X1 a0 (Ollrers S =57
By, sy+o42(R) o (M +1)°
(66) sup [ Xr, (Q)[lwes S 6%
Bp,sty+a(R)

Proof. We recall that Ri,p = ho +0F; — Hi, .
We first notice that ||id — Ias||yp.s+0 pes = (M 4+ 1)77: indeed, using (52) we obtain

1/2 1/2
> mf

. 2 — . 2
> 1imf] <MD DD T o
PETYEE T (S J=M+1 o i>M+1 o

(M + 1) fllppste,

whereas the inequality |[id — IIas||3p,s40 ppoe < (M +1)77 is obtained with a function which has non
zero components only for |[j| = M + 1, i.e. f=ma1f.
Inequality (65) follows from

IN

sup HXRLM (C)HH”'S
(OEBp, stry+2+0(R)

S NdXsr Lo B, ooy Ry e lid =Tl Loo (B, Ly oy o(R),By o tayq (R)
S6(M+1)77,
while estimate (66) is an immediate consequence of (HVF). O

Lemma 3.6. For any s > s1

F
sup || Xry 0 (Q)llaes < KD M,

Bp,s(R*)
where
K = sup || X5, (Q)llype-2-v < +o0.
Bp,s(R*)
Proof. Using (52) we have
1/2
(67) sup Z ThXFy (©) = sup Z |hs7ThXF1,M (C)'Q
(B, (R) || 57 (B (R) || | 3
HPS Hp,0
1/2
(68) <MFY sup SR X, (O
()EBp,s(R) h<M
< 200
(69) <M sup Xy (Ol = i) MO,
(QEBp,s(R)
where the last quantity is finite for R < R* by property (HVF). d

To normalize (61) we need a slight reformulation of Theorem 4.4 in [Bam99]. Here we report a
statement of the result adapted to our context which is proved in Appendix A.

Lemma 3.7. Let s > s1 +2+, R >0, and consider the system (61). Assume that 0 < %, and that

(70) 12TKS M5 <R
where

Kg) ‘= sup HXFl(C)HHPwS*Z*%
CeBp,s(R)



12 M. GALLONE() AND S. PASQUALI(*)

Then there exists an analytic canonical transformation ’7'(0) : B, s(R/2) — B, s(R) such that
Y SM * Pp, P

(71) , S T30 (€) = Cllaers < 2T KD M6,
pys LT

and that puts (61) in normal form up to a small remainder,
(72) Hiaro T = ho + 8257 + 6°RE),

with ZI(VP in normal form, namely {ho,m, ZI(VP} =0, and

(73) sup [|1X ) (Q)llaens < K{D MY
Bp,s(R/2) M ’

(74) sup (X, (Qllees < 15K M>T
Bp,s(R/2) M ’

Now we conclude with the proof of the Theorem 3.3.

Proof. If we define &, := min{, m} and we choose
1,s
so =042+ 7,
o> 2,

then the transformation 75 := 7:5(’?31 defined by Lemma 3.7 satisfies (56) because of (72).
Next, Eq. (57) follows from Lemma 3.7, Eq. (58) follows from (73) and (74), while (59) is precisely
(71). Finally, (60) can be deduced by applying Lemma A.6 to G = F}. a

4. APPLICATIONS TO TWO-DIMENSIONAL LATTICES

4.1. The KdV regime for the ETL lattice. We want to study the behaviour of small amplitude
solutions of (8), with initial data in which only one low-frequency Fourier mode is excited.

As a first step, we introduce an interpolating function @ = Q(¢,z) such that

(A1) Q(t,5) = Q;(t), for all j € ZX,

(A2) @ is periodic with period 2N; + 1 in the z-variable, and periodic with period 2Ns + 1 in the
xo-variable;

(A3) Q has zero average, f[_(

(A4) Q fulfills

Wi+ )4 X[ () g 4] @I =09

(75) Q= A1(Q+aQ” +5Q°),
(76) A := 4sinh? (%) + 4 sinh? <8;2) .
It is easy to verify that (75) is Hamiltonian with Hamiltonian function
_P AlP + Q2 3 Q4
H P)= - - % X * d
(77) (Q7 ) /{——,l]x[_%,%] 9 +a 3 +8 4 )
wow noom

where P is a periodic function which has zero average and is canonically conjugated to Q.
First we consider (75), with a # 0, and we look for small amplitude solutions of the form

(78) Q(t,x) = p’q(ut, pa1, p’x2),

where ¢ : R x T? — R is a periodic function and y, o are defined in (14)-(15). We introduce the rescaled
variables 7 = ut, y1 = px1, y2 = pu°x2, and we denote

(79) I:=[-1,1].
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Plugging (78) into (75), we get

Apyio
0 0rr = S (g 4 o)
(81) Ay, .o = 4sinh® (ﬂgl) + 4sinh? <uo%> ,
which is a Hamiltonian PDE corresponding to the Hamiltonian functional
o A s 2 ¢
2 K _ [ ZP2uyieP 4 7
(82) 1(g,p) /1 g Tty dy,

and p is the variable canonically conjugated to gq.
Now, observe that the the operator A, y, - admits the following asymptotic expansion,

A o o— o—
(83) =R~ O TR+ Y e (w2 apim D 4 RO )
m>1
2
1 =
(84) m = Gl

which, up to terms of order O(u*), reads

A - 2

(85) B~ 05, + 00 + O,
(recall that o > 2). Therefore the Hamiltonian (82) admits the following asymptotic expansion
(86) Ki(g,p) ~ ho(g,p) + 1” Fi(q,p) + 1" R(a. ),

. _ 82 2
(87) (o) = [ I,

1

; P ¢

F = | ——— —dy.
(88) 1(q,p) /1 5 tagdy

Note that the nonlinearity of degree 4 does not affect the Hamiltonian up to order O(u?). Following the
approach of [BP06], we can introduce the following non-canonical change of coordinates

(89) &= %(q + 9y, p),

(90) ni= %(q — Oy, D).

Since the previous transformation is not canonical, the Poisson tensor in these new coordinates is

(o1) J=0, (‘01 ?) 7

and Hamilton equations associated to a Hamiltonian K; are

0K
0-§ = _ayld—gl
0K
dr = aylé—nl.

Remark 4.1. The explicit expression of the Poisson tensor (91) let us compute straightforwardly Casimir
invariants associated to J, which are

1 1

(92) Cén=A+B [ &ry,y2)dyr +C [ n(r,y1,y2)dy1,

-1 -1

where A, B and C are arbitrary real constants.



14 M. GALLONE() AND S. PASQUALI(*)

Since Casimir invariants are constants of motion, we can restrict our analysis on the subspace defined
by

1
(93) / 5(7-7 y17y2) - 77(7-7 Y1, y2)dy1 =0 vr € R, |y2| <L
-1
However, by recalling (89)-(90) one sees that (93) implies
1
(94) / Oy, p(Tyy1,y2)dy1 =0 V1 eR, |y2| <1,
-1

which is true due to periodic boundary conditions.

Moreover, if we write K in (§,n) coordinates we have

(95) Kl(fﬂ?) NhO(&n)+1U'2F1(£77])+}144R(f,n),
(96) h0(£777)=/16 —2“7 dy,
(97) Fi(&n) :/I_[ayl(i; )] +0‘(§,J;3n/)2 dy.

Now we apply the averaging Theorem 3.3 to the Hamiltonian (95), with § = p?: observe that the
equations of motion of hg have the following simple form:

{& = —8y,€ {ﬁ(w) = to(yr — 7,2)
Ny = 0yn n(r,y)  =no(yr +7,92)

(98)

Proposition 4.2. The average of F1 in (95) with respect to the flow of ho in (96) is given by

(99) (R (6 = - [ ot O gy 4 o e+ 1,

where we denote by [f’] the average I; I (y)%.

The proof of this proposition is a straightforward application of the following two lemmas.

Lemma 4.3. Given two functions u,v € L*([—1,1])

/_11 dy /_11 dsu(y + s)v(y Fs) = /_11 u(y)dy /_11 w(y) dy.

Proof. Denoting with {@x}r and {0x}r the Fourier series of u and v respectively and using Plancherel
theorem one obtains

1 1 1 1

1 ; o

/ dy [ dsu(yxs)v(yFs) = —/ dy/ ds E Ty €™ FED) TR WF) — 4555,
-1 -1 2/ -1 kkez

and thus Lemma is proved. d

Lemma 4.4. Given a function u € L*([—1,1]) then
1t 1 1
= / ds dy u(y £ s) = / u(z) dz
2/ o -1

Proof. The thesis follows by a simple change of coordinates z := y + s. g

Proof of Proposition 4.2. For the computation of (F1)(€,n) one can exchange the order of the integrations
and apply Lemma 4.3 and 4.4. O

Corollary 4.5. The equations of motion associated to ho(€,1) + p* (F1) (€,1) are given by

2 2
{& = =0y, € — 500, £ — £20,, (&)

(100) ) 2
N = Oy + 5705, + 57 Oy, (1)
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The latter is a system of two uncoupled KdV equations in translating frames with respect to the
y1-direction, for each fixed value of the coordinate ya.
Remark 4.6. If one considers a square lattice, namely
1
(101) H(Q,P)= Y —5P (AP); + (F(Q);,
Jjez,

with F(Q) as in (7), with its continuous approzimation

_ 2 3 4
(102) R s =
{,L L]Q 2 3 4
np
and makes the ansatz (78) about the solution, one gets the rescaled Hamiltonian
P Duyop | & 20" | 5 ad’

1 K = B 13 3 S LCE < 1 243
(103) 1(¢,p) /IM pa T g Ty B rdy,
(104) Apys.o = 4sinh? (%) + 4sinh? (u”%) :

(105) Lo = [-1,1] x [=7 7,
which, combined with the fact that
1
(106) E(royn,y2) = n(T,y,y2)dyy =0 VT ER, |ya| <p”7,

-1
leads to the system (100) of two uncoupled KdV equations in translating frames with respect to the
y1-direction.
Remark 4.7. One can also study the 8 model (namely, (75) with « = 0 and 8 # 0) in the following
regime,
(mKdV) the B model in the very weakly transverse regime,
(107) Q(t,x) = pa(pt, pw1, p’2),
where p K 1, 2 < 0.

Let us introduce again the rescaled variables T = pt, y1 = px1, y2 = pu°x2, and the domain I as in
(79); plugging (107) into (75), we get

Ay o
(108) Grr = “ﬂ—-’; (¢+12Bq°)

where Ay, 0 is the operator introduced in (81). Eq. (108) is a Hamiltonian PDE with the following
corresponding Hamiltonian,

—pDuyiop | ¢ 2q"
1 K = i 4 4
(109) 2(g,p) /1 oM + g B dy,

where p is the variable canonically conjugated to q.
Recalling that (93) holds true, we exploit again the non-canonical change of coordinates (89)-(90) and
the Poisson tensor (91), obtaining that

(110) Ka(&m) ~ ho(&n) + p* Fi(€,m) + ' R(E ),
where ho is the same as in (96), while
V2 4

Applying Theorem 3.3 to the Hamiltonian (110) with 6§ = u®, we get that the equations of motion
associated to ho(&,n) 4+ p? (F1) (&,m) are given by

(112) {57 == (1+207°]) 9u.€ —2“5—255’15 —2’%@ 9, (€%)
e = (14 3E%) Oun + 57050 + 457 0y, (n)
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which is a system of two uncoupled mKdV equations in translating frames with respect to the yi-direction.
The integrability properties of the mKdV equation and the existence of Birkhoff coordinates for this model
have been proved in [KSTO08|.

4.2. The KP regime for the ETL lattice. For this regime we consider (75), with o # 0, and we look
for small amplitude solutions of the form

(113) Qt,z) = MQQ(MtvumhMQx?)?

with u as in (14). We introduce the rescaled variables 7 = ut, y1 = px1, yo = p 2.
Plugging (113) into (75), leads to

(114) Grr = A: U (q+ pPaq®)

(115) Apyy = 4sinh? <N82y1> + 4 sinh? ( 8;2> )
which is a Hamiltonian PDE corresponding to the Hamiltonian functional,
(116) Ks(q,p) = /1 % +5 +ap’ = +,3u4q dy,

where [ is as in (79), and p is the variable canonically conjugated to q.
Now, observe that the the operator A, ,, admits the following asymptotic expansion up to terms of
order O(p*),

(117) AZ;“ 9, +p0y, + 8 L+ O,
Therefore the Hamiltonian (116) admits the following asymptotic expansion
(118) K3(¢,p) ~ ho(a,p) + 1* Fi(a,p) + 1 R(a, p),
(119) fzo(qm):/wd%
I
- poyp  p,p ¢
(120) Fi(g,p) = /1_ S~ o tagdy.

By exploiting again the non-canonical change of coordinates (q,p) — (§,7) introduced in (89)-(90)
and the Poisson tensor (91), and

(121) / oy, y2) = n(T,y1,y2)dyr =0 VT ER, Jyo <1,

we obtain

(122) Ks(&,1m) ~ ho(€&,n) + p* Fi(€,m) + p'R(E,m),

(123 e = [ S Tay,

(12 PYTR  CE S Rl S N S

where (124) is well defined because of (121).
Now we apply the averaging Theorem 3.3 to the Hamiltonian (122), with 6 = u?

Proposition 4.8. The average of Fy in (122) with respect to the flow of ho in (122) is given by

(125) (F1) (¢,m) = /I _ (04, 6) Z’S(Gym) + (8?;28@/_1 3) jl_ (avzay_l n) dy + T 33/2 ([53] + [773])

where we denote by [f’] the average I; fj(y)d%.



17

Corollary 4.9. The equations of motion associated to ho(€,1) + u? (F1) (€,1) are given by

2 2 au?
{& = —0n€ — 505,650,100, — 5520y, ()

(126) 2 ; 3
N =0y + 585, 05,0 + 57051 + 545 0y, (n?)

More explicitly, we observe that (126) is a system of two uncoupled KP equations on a two-dimensional
torus in translating frames.

4.3. The one-dimensional NLS regime for the KG Lattice. We want to study small amplitude
solutions of (27) , with initial data in which only one low-frequency Fourier mode is excited.

Analogously to the procedure of the previous sections, the first step is to introduce an interpolating
function @ = Q(¢,x) such that

(B1) Q(t,5) = Q;(1), for all j € Z, ny;

(B2) Q is periodic with period 2N; + 1 in the xi-variable, and periodic with period 2Nz + 1 in the

xro-variable;
(B3) @ fulfills

(127) O =21Q-Q-BQ",
where A; is the operator defined in (76) (recall that we also assumed m =1 in (25)).

It is easy to verify that (127) is Hamiltonian with Hamiltonian function

2 2
(128) H(Q,P):/ L@ QA 4
gl 22 2

Q2p+2
d
pt 2"

where P is a periodic function and is canonically conjugated to Q.
Starting from the Hamiltonian (24), where p = 1, we look for small amplitude solutions of the form
(129) Q(t,x) = pq(u’t, pwr, p”x2) .

where ¢ : R x T? — R is a periodic function and o, u1 are defined respectively in (15)-(14).
We introduce the rescaled variable y1 = px1 and y2 = p’x2, and we define I as in (79). The
Hamiltonian (24) in the rescaled variable is given by

A

2 2 4

p q q Bpyy,09 24
130 K =[P % _912wy.0d )
(130) 1(q,p) /12 +3 5 + B T

with the operator A, y,,- as in (81), and p is the variable canonically conjugated to g. The corresponding
equation of motion is given by

(131) Gre = =4+ Dyyr.od — BHq".

Recall that

A g o— ? o—
WY1, N8§1+M2( 1)8§2+%831+(’)(u2(2 1))7

12
hence the Hamiltonian (130) admits the following asymptotic expansion
(132) Ka(q,p) ~ ho(g,p) + 1’ Fi(a,p) + 1** " R(, p),
2 2
7 +
(133) ho(a.p) = [ P—Tay,
I
R qa2 q 4
(134) Fitg.n) = [ -2+ 6% ay,
I

and the equation of motion associated to ho+ F3 is given by the following cubic one-dimensional nonlinear
Klein-Gordon (NLKG) equation,

(135) aun = —(q— 1*0;5,q) — u*Bq’.
We now exploit the change of coordinates (q,p) +— (¢,1) given by
1 )
(136) Y= —=(q—1ip),

S
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therefore the inverse change of coordinates is given by

1 _
(137) q= E(¢+¢),
(138) p= %i(w—d?),
while the symplectic form is given by —idy A dep. With this change of variables the Hamiltonian takes
the form
(139) Ka(w,9) ~ ho($,9) + " Fa (v, ) + 7 IR (1, D),
(140) ho(0.5) = [ widy,
I
a2 -

Now we apply the averaging Theorem 3.3 to the Hamiltonian (139)7 with § = p?. Observe that hg
generates a periodic flow,

—10p = 1
(142) b(t,y) = e"o(y).
Proposition 4.10. The average of F\ in (139) with respect to the flow of ho (133) is given by
3
(143) ) ) = [ E5 0y 2 [urtay

Corollary 4.11. The equations of motion associated to ho(1,¥) + p* (F1) (¥, 1) are given by a cubic
one-dimensional nonlinear Schrédinger equation for each fized value of ya2,

. 3
(144) it = — i B+ S .
Remark 4.12. Let us consider the Hamiltonian (24) in the following regime,
(2-D NLS) the scalar model (24) withm =1, p=1 and

(145) Q(t,z) = pa(p’t, p),
where p K 1 and o = 1.

If we introduce the rescaled variable y = pux and we define I as in (79), we have that the Hamiltonian
takes the following form (we denote by p the variable canonically conjugated to q)

(146) K5(q,p):/l‘z§+§,%+ﬁu2§dy7

(147) A, = 4sinh’ (“32M> + 4sinh? ( ‘92&) .

By expanding the operator A, and by exploiting the change of variable (136), we get
(148) Ks(4,9) ~ ho(v,9) + u* Fi(v,9) + u' R, ),

(149) ho(w) = [ iy,

(150) Fi (s, 9) :/;ww) [—4A(1/)+1/))] +5(w+1/))

By applying Theorem 3.3 to the Hamiltonian (139), with § = p?, we obtain that the equation of motion
associated to ho (1, ) + u (F1) (¥,) is given by the cubic nonlinear Schrédinger (NLS) equation

(151) it = — i A+ 2 g,

The local well-posedness of the NLS equation (151) in the Sobolev space H*(T?), s > 0, has been
discussed by Bourgain in [Bou93al; along with the conservation laws, this implies the global existence in
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the defocusing case (B > 0), and the global existence for small solutions in the focusing case (8 < 0).
The long time dynamics of the NLS equation has also been studied, in relation with the transfer of energy
among Fourier modes and with the growth of Sobolev norms [CKS™10] [CF12] [Han14] [GK15] [GHP16].

5. DYNAMICS OF THE NORMAL FORM EQUATION

5.1. The KdV equation. In this section we recall some known facts on the dynamics of the KdV
equation with periodic boundary conditions. The interested reader can find more detailed explanations
and proofs in [KP03].

Consider the KdV equation

(152) &=~ 5 50m (). web)

Through the Lax pair formulation of the evolution problem (152) one get that the periodic eigenvalues
(An)nen of the Sturm-Liouville operator

(153) Le := =0y, + 6V2(T,y1)

are conserved quantities under the evolution of the KdV equation (152). Moreover, if we define the gaps
of the spectrum vm := A2m — Aam—1 (m > 1), it is well known that the squared spectral gaps (fyfn)mzl
form a complete set of constants of motion for (152).

The following relation between the sequence of the spectral gaps and the regularity of the correspond-
ing solution to the KdV equation holds (see Theorem 9, Theorem 10 and Theorem 11 in [KPO08]; see also
[Pos11])

Theorem 5.1. Assume that £ € L2, then £ € Z%ys if and only if its spectral gaps satisfy

5 ¥l < +oc.

m>1
Moreover if £ € 6,2,’3, then
(154) Z m>*e*" ym|® < +oo;
m>1

conversely, if (154) holds, then & € Ei’,o for some p’ > 0.

Kappeler and Poschel constructed the following global Birkhoff coordinates (see Theorem 1.1 in
[KP03])

Theorem 5.2. There exists a diffeomorphism Q : L? — 3(2),1/2 X 3(2),1/2 such that:

o () is bijective, bianalytic and canonical;
e for each s > 0, the restriction of Q) to 5(2),3, namely the map

2 2 2
Q:ly s — 60,s+1/2 X ZO,s+1/2

is bijective, bianalytic and canonical;
e the coordinates (z,y) € £3’3/2 X 5(2)73/2 are Birkhoff coordinates for the KdV equation, namely they
form a set of canonically conjugated coordinates in which the Hamiltonian of the KdV equation

; o T TYm
t m = .
(152) depends only on the action I B} (m, > 1)

The dynamics of the KAV equation (152) in terms of the variables (z,y) is trivial: it can be immedi-
ately seen that any solution is periodic, quasiperiodic or almost periodic, depending on the number of
spectral gaps (equivalently, depending on the number of actions) initially different from zero.
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5.2. The KP equation. In this section we recall some known facts on the dynamics of the KP equation
on the two-dimensional torus
(155) € = 5100, — 50106 % 9, (€3), a = £1, y € T? := R?/(27Z)°.

The KP equation has been introduced in order to describe weakly-transverse solutions of the water
waves equations; it has been considered as a two-dimensional analogue of the KdV equation, since also the
KP equation admits an infinite number of constants of motions [LC82] [CLL83] [CL87]. It is customary
to refer to (155) as KP-I equation when ow = —1, and as KP-II equation when a = 1.

The global-well posedness for the KP-II equation on the two-dimensional torus has been discussed
by Bourgain in [Bou93b]. The main point of the result by Bourgain consists in extending the local
well-posedness result to a global one, even though the L?-norm is the only constant of motion for the
KP-II equation that allows an a-priori bound for the solution (see Theorem 8.10 and Theorem 8.12 in
[Bou93b]).

Theorem 5.3. Consider (155) with o = 1.
Let p >0 and s > 0, and assume that the initial datum £(0,-,-) = & € €5 ;. Then (155) is globally
well-posed in 6,2,’3. Moreover, the £2-norm of the solution is conserved,

(156) 1€ lez = lI€ollez,
while
(157) 6@l . << leollz .

where C' depends on s.

Remark 5.4. As pointed out by Bourgain in Sec. 10.2 of [Bou93b|, a global well-posedness result for
sufficiently smooth solution of the KP-I equation (namely, (155) with « = —1) on the two-dimensional
torus can be obtained by generalizing the argument in [SJ87] for small data and by using the a-priori
bounds given by the constants of motion for the KP-I equation.

For the KP equation the construction of action-angle/Birkhoff coordinates is still an open problem.

5.3. The one-dimensional cubic NLS equation. In this section we recall some known facts on the
dynamics of the one-dimensional cubic defocusing NLS equation with periodic boundary conditions. The
interested reader can find more detailed explanations and proofs in [GKK14| [Mol14].

Consider the cubic defocusing NLS equation

(158) i = —05 P + 2P, y €T :=R/(2n7Z).

Eq. (158) is a PDE admitting a Hamiltonian structure: indeed, we can set H”® = (2 x £, as
the phase space with elements denoted by ¢ = (¢1, $2), while the associated Poisson bracket and the

Hamiltonian are given by

(159) {F, G} = —i/ (8¢1F8¢2G — 8¢1G8¢2F) dyl,
T

(160) Hnps(¢1,¢2) = /3y1¢1 Dyy b2 + 105 dyi.
T

The defocusing NLS equation (158) is obtained by restricting (160) to the invariant subspace of states
of real type,

(161) HE® ={pEH” : g2 =1}

The above Hamiltonian (160) is well-defined on H”® with s > 1 and p > 0, while the initial value
problem for the NLS equation (158) is well-posed on H*? = % x £2.

It is well known from the work by Zakharov and Shabat that the NLS equation (158) has a Lax pair,
and that it admits infinitely many constants of motion in involution. More precisely, for any ¢ € H%°
consider the Zakharov-Shabat operator

(162) vo = (5 2o+ (s %),
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where we call ¢ the potential of the operator L(¢). The spectrum of L(¢) on the interval [0, 2] with peri-
odic boundary conditions is pure point, and it consists of the following sequence of periodic eigenvalues

(163) PP RS WP NED HIPD WE D WIS

where the quantities v, := AJ, — A\, (m € Z) are called gap lengths. It has been proved that the squared
spectral lengths (72,)mez form a complete set of analytic constants of motion for (158).

Grébert, Kappeler and Mityagin proved the following relation between the sequence of the squared
spectral gaps and the regularity of the corresponding potential (see Theorem in [GKM98|).

Theorem 5.5. Let p > 0 and s > 0, then for any bounded subset B C Eﬁ,s X Eﬁ,s there exists no > 1 and
M > 1 such that for any |k| > no and any (¢1, ¢2) € B, the following estimate holds

(164) ST+ )P M < M,
[k|>no
Moreover, Grébert and Kappeler constructed the following global Birkhoff coordinates (see Theorem
20.1 - Theorem 20.3 in [GKK14])

Theorem 5.6. There exists a diffeomorphism 0 : L2 — H®? such that:
o () is bianalytic and canonical;
e for each s > 0, the restriction of Q to HO®, namely the map
QO H?’S — H?’S
s again bianalytic and canonical;

e the coordinates (z,y) € HY' are Birkhoff coordinates for the NLS equation, namely they form
a set of canonically conjugated coordinates in which the Hamiltonian of the NLS equation (158)

2 2
depends only on the action I, = = ;y - (m € 7).

The dynamics of the NLS equation (158) in terms of the variables (z,y) is trivial: it can be immediately
seen that any solution is periodic, quasiperiodic or almost periodic, depending on the number of spectral
gaps (equivalently, depending on the number of actions) initially different from zero.

6. APPROXIMATION RESULTS

In this section we show how to use the normal form equations in order to construct approximate solu-
tions of (8) and (27), and we estimate the difference with respect to the true solutions with corresponding
initial data.

The approach is the same for all the regimes (78), (113) and (129). First, we have to point out a
relation between the energy of normal mode Fj, (defined in (10) for (8), and in (10) for (27)) , k € Z3x 41,
and the Fourier coefficients of the solutions of the normal form equations. Then we have to prove that
the approximate solutions approximate the energy of the true normal mode Ej up to the time-scale in
which the continuous approximation is valid, and finally we can deduce the result about the dynamics
of the lattice.

6.1. The KdV regime. Let I = [1,1]? be as in (79), we define the Fourier coefficients of the function
q:1—Rby
165 A7) — 1 —im(f1y1+i2v2) 4,
(165) () =5 [ alyiy2)e y1 dys,
I

and similarly for the Fourier coefficients of the function p.

Lemma 6.1. Consider the lattice (6) in the regime (KdV) and with interpolanting function (78). Then
for a state corresponding to (q,p) one has
2

PEALY ks w(k) = (uKy, 17 Ko)

4
(166)  E.=E > larc+l® +wi

L=(L1,L2)E€72: Ly, Lo €27

(where the wy, are defined as in (11) and the £ in (13)), and Ex = 0 otherwise.
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Proof. First we introduce a (2N1 + 1)(2N2 4 1)-periodic interpolating function for @;, namely a smooth
function @ : (¢,x) — Q(¢,x) such that

Q(t, 1,22 +2N2 + 1) = Q(¢, @), vt, x,
Q(t7$1 +2N; +17x2) :Q(t7m)7 Vt,m,

and similarly for P;. We denote by
(167)

jow2m

L Q(ﬂc)e_z<2N1+1>1/2<2Nz+1)1/2 dz,

@0 = (2N1 + 1)1/2(2N2 + 1)1/2 /[—(Nﬁ-%),(Nﬁ—%)]><[—(Nz+%),(Nz+%)]

so that by the interpolation property we obtain

J-k2m

1 A i
(1) = t. 7)) = Neo (2N1+1)1/2(2Ny+1)1/2
QJ( ) Q( 7]) (2N1 + 1)1/2(2N2 + 1)1/2 kgz:z Q(])e 1 2
. 1
T (2N1 4+ 1D)V2(2N, + 1)1/2
N i jok2m
x> ST Qe+ 2Ny + Dha ke + 2Nz + Dha) | ¢GRI RN TR
k:(kl,kg)eZ§N+l h=(hy,ho)€Z2
hence
(168) Qr=>_ Q1+ (2N1 + 1)h1, ka2 + (2N2 + 1)ha).
hezZ?
The relation between Q(k) and Gx can be deduced from (78),
Q) = 1 alujr, 17 j2);
Op = Lplot1/2 Oy, ws)e—imF1otnTR2m25)) 4o 4z
2 [_l L]X[_L o
nop no o pus
_ lu((”rl)/? ,U2 q (pa, ,Ltol'g) e*iﬂ(k111#+k212#“)dxl dzs
2 [,l L]X[,L L]
nop no o pus
(78) %H(C**U)/?/q(y)e*iﬂ(klyﬁkzyz)dy
I
(169) = M(S_U)/qu7
and similarly
(170) Py = p 2y
By using (10), (13) and (168)-(170) we have
13) a1 1 A .
£ 2 pott 3 Z |Qx+1] + wi| Prrr
L=(L1,L3)€Z2:uLq,u° Lo€2Z
. 2
169),(169) o1 N
ORIyt e > Jdrerrl” + wf |PEEE

L=(L1,L2)EZ2: Ly ,u Lo €27

for all k such that x(k) = (uK1, n” K2), and this leads to (166). a
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Proposition 6.2. Fiz p > 0 and 0 < § < 1. Consider the normal form system (100), and define the
Fourier coefficients of (§,7m) through the following formula

1 s ih-ym
(171) Ew) =5 D e,
hez?
1 ~  thym
(172) n(y) =5 > e,
hezZ?

Consider (£,m) € H"°, and denote by &, the specific energy of the normal mode with index k as defined
n (12)-(13). Then for any positive u sufficiently small

1 €k |? + ik |?
-t el

(173) Ex < CU )& )30

or all k such that k(k) = (uK1, u’ K2) and |K1| + |K2| < @+49)|log ] Moreover,
f K, p 7

(174) |Ex] < Cu®l1(€m) 1500
for all k such that (k) = (uK1, u’ K2) and |K1| + | K2| > m, and &, = 0 otherwise.
P

We defer the proof of the above Proposition to Appendix B.

Now, consider the following system of uncoupled KdV equations

1 o
(175) & = —570n& — 5 50 (),
1 o
(176) = 5700+ 2—\/53“(772),

and consider a solution (7,y) — (€4(7,¥),7a(7,y)) such that it belongs to H”™, for some n > 1.
We consider the approximate solutions (Qa, P.) of the FPU model (75)

2

(177) QG(T7 y) = % [ga(lfﬂ Yy — 7, y2) + 7771(#27'7 Y1 + T, y2)]
(178) Oy, Pa(1,y) = % [5;(#277 Y1 — T, y2) — a (T, y1 + 7, yz)] ,

We need to compare the difference between the approximate solution (177)-(178) and the true solution

of (8). Let consider an initial datum (Qo, Po) with corresponding Fourier coefficients (Qo,x, Po,x) given
by (9), where

(179) Qo #0 only if k(k) = (uK1, p° Ka).
We also assume that there exist C, p > 0 such that

A 2 21 D 2
(180) (|2Q]$’k|+ IF)(U;I}LPO::|1) < e 21051 () a0/
1 2

Moreover, we define an interpolating function for the initial datum (Qo, Po) by

1 o ,
— im(pKy1y1+p° K2y2)
Qo(y) (2N; + 1)(2Ns + 1) > Qo.re :

K (12| K1 24027 | K2 |2) 2 =|w(k) <1
and similarly for y — Py(y).

Proposition 6.3. Consider (8) with o > 2 and v > 1 such that o + 2y < 7. Let us assume that the
initial datum satisfies (179)-(180), and denote by (Q(t), P(t)) the corresponding solution. Consider the
approzimate solution ({a (t,2),na(t, z)) with the corresponding initial datum. Assume that (§~a, Na) € HP"
for some p > 0 and for some n > 1 for all times, and fix To > 0 and 0 < § < 1.
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Then there exists o = po(To, ||(€a(0), 7a(0))|[20.m) such that, if p < po, we have that there exists
C > 0 such that

. . T
(181) sup [Q; (t) — Qa(t, §)| + |Pj(t) — Pa(t,5)] < Cp?, |t < H—g
J
where (Qa, Pa) are given by (177)-(178). Moreover,
S 12 12
(182) £ — u‘*% < cptt

or all k such that k(k) = (LK1, u° K2) and |K1| + |K2| < CHdllogul - proreover

[ Pk, p 7 )

(183) €| < '™

or all k such that k(k) = (LK1, u° K2) and |K1| + |K2| > @4d)llogpl 4 d E. = 0 otherwise.
f pK, p PR

Proof. The argument follows along the lines of Appendix C in [BP06].
Exploiting the canonical transformation found in Theorem 3.3, we also define

(184) Ca = (€asma) = Tp2 (6ara) = Ca+va(Ca),
where wa(fa) = (1/)5(5(1),1#77(5,1)); by (59) we have
(185) sup |t (¢)[[rem < Crpi® R.
€Bp n(R)
For convenience we define
1
(186) 4(T.y) = 5 [€ali® 00 — 7, y2) + na (47,91 + 7, 92)]
1
(187) Oy, pa(T,y) = —= [La(p® 01 — 7, 92) — ma (T 01 + 7 02)]
V2
We observe that the pair (¢a, pa) satisfies
(188) 12(qa)e = — A1 ppa + 1°Ry
(189) ((pa)t = —p’qa — 1" amogs + Ry,

where the operator A; acts on the variable z, ¢ is the projector on the space of the functions with zero
average, and the remainders are functions of the rescaled variables 7 and y which satisfy

sup Rz, <€,

P

sup_ [Ryllez, < C.

Bp,n

We now restrict the space variables to integer values; keeping in mind that g, and p, are periodic, we
assume that j € Z?V’Na.

For a finite sequence Q = (Q;) we define the norm

jez?vaa
2 2

(190) IRl ., = > Qi

J€LY No

Now we consider the discrete model (8): we rewrite in the following form,

(191) Q; = —(A1P);
(192) Pj = —Qj - Oéﬂ'oQ?
and we want to show that there exist two sequences E = (Ej)jezif o and F = (F) )J'EZ?V o such that

Q=1 q+p"E, P = pp.+p*F
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fulfills (191)-(192), where v > 0 is a parameter we will fix later in the proof. Therefore, we have that
(193) E — _Al F— M6—2—7Rq
(194) F=-E—am(p*2q.E + " E?) — TR,

where we impose initial conditions on (F, F') such that (g, p) has initial conditions corresponding to the
ones of the true initial datum,

12 qa (0, g, 1% G2) + > Eo j = Qo
ppa(0, i, p7j2) + 7 Fo = Poj.
We now define the operator 0;, i = 1,2, by (95 f); := f; — fi—e, for each f € K?V’Na.
e Claim 1: Let 0 > 2 and v > 0, we have
||E0HK§V . < C/M(3—2'y—a)/27
3—2vy—0)/2
101 Follz, , < C'pl72772,

1-2v+0)/2
||82F0H£?V’Nd < Clﬂ( y+o)/ .
To prove Claim 1 we observe that

E _H2‘£a+77a_(ga+77a) _lufwl/){‘f'l/)n

V2p2+y V2

. ﬂ?l[fa — 0 — (€= 7ia)] _ H,Hw

V2pu2ty V2 ’

from which we can deduce

1Eollz, ., < > [Bogl” < CANTT(W*7)? = Cp?™077,

JET3 no
[0 Follz, < D0 [0nFsl" < CANTT(uPT)P < Ot
C e
102l < D |0aFosl? < CANTT () = ot T
C e

and this leads to the thesis.

e Claim 2: Fix n > 1, To > 0 and K. > 0, then for any p < ps and for any ¢ > 2 and v > 1 such
that o + 2y < 7 we have

To
(195) 1B, ..+ Wi FI, |+ 0PI, < Koy < D

To prove the claim, we define

E} + Fj(=AF); | 2u’aqa; B}
2 + 2 ’

(196) F(E,F):= >

: 2
JEZN,N"’

and we remark that, using the boundedness of ¢q,j,

1
SFEF) < Bl okl +10:Fllz, < 4F(B, F).



26 M. GALLONE() AND S. PASQUALI(*)

Now we compute the time derivative of F. Exploiting (193)-(194)

(197) F= Z Ej [~(ALF); — 17 (Ry);]
(198) + Z —AF); [—Ej — o(p*2qa, By + 1 EY) — 1777 (Ry)5]
(199) Z 2# aqai B (AlF) 4_7 (Rq)j}
(200) + Z [ aE? q‘“
(201) = Z Ej 1" (Re)i + Y (=ALF); [—ap® B} — 77 (Ry);]
J
(202) =D 2% g B T (Re)s + Y pwiaE] p agi’j
3 i

In order to estimate (201)-(202), we notice that

su_pl(AlF)ﬂ < 2811_P|(51F)j| +(02F);] < 4VF,

IRally o € SNRI < AN sup Ro )P < Coi™'™

and that [(9:Rp);| < psup, ‘63—72"(31) ;

l0:Ry |5 < Ol

N,N@

Now, the first sum in (201) is estimated by CF/2u("=27=9)/2 : the second sum in (201) can be
bounded by

C(H2+q}-3/2 + lu(772wfo')/2]_-1/2).

Recalling that ¢q ; is bounded, the first sum in (202) can be bounded by CFY2(M1=27=9)/2 while the
second one is estimated by Cu®F. Hence, as long as F < 2K, we have

‘]_-‘ <C ’fl/Qu(7—2’y—o)/2 + M2+»y]_-3/2 + M(7—2~,—a)/2]_-1/2 + fl/Qu(ll—Q’y—o)/Q + MS}—
(203) S C(lu2+’y \/EK:/Q +lu3)]:-+c(2lu(772’770')/2 +ﬂ(1172/770)/2)\/§Ki/27

>1
(204) 2 P VIKYAF 4 03uTm /2 B 12

and by applying Gronwall’s lemma we get
1/2 1/2
(205) F(t) < F(0)eC2V2E w0t | (OWIKLTW o /5 12 3¢ 03T /2 /R K12,

from which we can deduce the thesis. O

Proof of Theorem 2.1. First we prove (17).

We consider an initial datum as in (16); when passing to the continuous approximation (75), this
initial datum corresponds to an initial data (£o,70) € H”*™ for some po > 0 and n > 1. By Theorem 5.1
the corresponding sequence of gaps belongs to H”%'™, and that the solution (§(7),n(7)) is analytic in a
complex strip of width p(¢). Taking the minimum of such quantities one gets the coefficient p appearing
in the statement of Theorem 2.1. Applying Proposition 6.3, we can deduce the corresponding result for
the discrete model (8) and the specific quantities (13).

Next, we prove (19). In order to do so, we exploit the Birkhoff coordinates (z,y) introduced in
Theorem 5.2; indeed, by rewriting the normal form system (100) in Birkhoff coordinates we get that
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every solution is almost-periodic in time. Now, let us introduce the quantities

€k
2 L2

B = |ix|?,

2
)

Eg) =

then 7 — ES)(x(T),y(T)) and 7 — Eg)(ib(’]'), y(7)) are almost-periodic. If we set Ex := 3 (Eg) + Eg)),

we can exploit (182) of Proposition 6.3 to translate the results in terms of the specific quantities ., and
we get the thesis. (]

6.2. The KP regime. Similarly to Lemma 6.1, Proposition 6.2 we can prove the following results

Lemma 6.4. Consider the lattice (6) in the regime (KP) and with interpolanting function (113). Then
for a state corresponding to (q,p) one has
2

, Yk (k) = (uK1, p? Ko)

4
(206)  E.=HE > larcr ol + wi

L=(L1,L3)€Z2:uLq,u2Lo€2Z

(where the wi are defined as in (11)), and &, = 0 otherwise.

PK+L

Proposition 6.5. Fiz p > 0 and 0 < § < 1. Consider the normal form system (126), and define the
Fourier coefficients of (§,7m) through the following formula

1 & th-ym
(207) €)= 5 D ne™T,
hez2
1 ~ dh-ym
(208) ) =5 > e
hez?

Consider (£,m) € H"°, and denote by &, the specific energy of the normal mode with index k as defined
n (12)-(13). Then for any positive u sufficiently small

2 Ex? + ik |?
-yt B e

(209) Ex < CU )& m) oo

for all k such that (k) = (uK:1, > K2) and |K:1| + |Ka| < w. Moreover,
(210) |Ex] < CHEII(E ) 500
for all k such that k(k) = (uK1, p*K2) and |K7 + K3|"/? > %, and E. = 0 otherwise.

Now, consider the following systems of uncoupled KP equations

_7L 3 71 —192 o O 2
(211) & = —5700€ — 50y, 058 Wi 9y, (€7),
1, 1 o
(212) e = 50 O + g7 m + o O ():

and consider a solution (7,y) — (51(7', Y),Ma(7,y)) such that it belongs to H”", for some n > 1.
We consider the approximate solutions (Qa, P.) of the FPU model (75)
2

(213) Qa(r,y) = % [@(uQT, y1 — 7, y2) + Ga (1T, 1 + 7, yz)]
(214) Oy, Pa(1,y) = % [&Z(MQT, y1 — 7, y2) — Na(p’T,y1 + 7, yz)] 4

We need to compare the difference between the approximate solution (213)-(214) and the true solution

of (8). Let us consider an initial datum (Qo, Po) with corresponding Fourier coefficients (Qo &, Po,x) given
by (9), where

(215) Qox # 0 only if k(k) = (uK1, u*K>).
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We also assume that there exist C, p > 0 such that

A2 215 |2
(216) Qo™ + Wil Pok” o —2pl(s1 (k) /1t (0)/142)
N <
Moreover, we define an interpolating function for the initial datum (Qo, Po) by
Qoly) = 1 Z Qo keiﬂ(uK1y1+u2K2y2)

(2N1 —+ 1)(2N2 —+ 1) 1/2

K:(p2| K1 |24p4 K2 |2) (k) |<1

and similarly for y — Py (y).
Arguing as for Proposition 6.3, we obtain

Proposition 6.6. Consider (8) with 0 = 2, and fixr 1 < v < % Let us assume that the initial
datum for (8) satisfying (215)-(216), and denote by (Q(t), P(t)) the corresponding solution. Consider
the approrimate solution (gl,%) with the corresponding initial datum. Assume that (51,7?}) € H”™ for
some p > 0 and for some n > 1 for all times, and fir To >0 and 0 < 6 < 1.

Then there exists o = po(To, ||(€a(0), 7a(0))|[20m) such that, if p < po, we have that there exists
C > 0 such that

(217) 5up |Q; (1) — Qalt, )] + [P (t) — Palt, )] < Cu, [t < f—
J

where (Qa, P.) are given by (177)-(178). Moreover,

F 2 A 2
o I€x|” + k| < optt

(218) En 5 <

for all k such that r(k) = (uK1, u>K2) and |K1| + |Ka| < w. Moreover,
(219) [Exl < u*

for all k such that r(k) = (uK1, u>K2) and |K1| + |Ka| > w, and £, = 0 otherwise.

Proof of Theorem 2.2. First we prove (21).

We consider an initial datum as in (20); when passing to the continuous approximation (75), this
initial datum corresponds to an initial data (€o,70) € HP*™ for some po > 0 and n > 1. By Theorem 5.3
the corresponding solution (§(7),n(7)) is analytic in a complex strip of width p(¢). Taking the minimum
of such quantities one gets the coefficient p appearing in the statement of Theorem 2.2. Applying
Proposition 6.6, we can deduce the corresponding result for the discrete model (8) and the specific
quantities (13). a

6.3. The one-dimensional NLS regime. Let 8 > 0 and let I be as in (79), we define the Fourier
coefficients of the function ¢ : I — R by

o 1 —in(j j
(220) q(j) = §/q(y1,yz)e 113292 qyy dya,
I
and similarly for the Fourier coefficients of the function p.
Lemma 6.7. Consider the lattice (24) in the regime (1D NLS) and with interpolanting function (129).
Then for a state corresponding to (q,p) one has
(221) &= 3 sl + wildrsrl?, Y w(k) = (uKy, u” K2)
L=(L1,Ly)€Z2:uLq,1u° Ly €27

(where the wy, are defined as in (30)), and €. = 0 otherwise.
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Proof. First we introduce a (2N1 + 1)(2N2 + 1)-periodic interpolating function for @;, namely a smooth
function Q : (¢,z) — Q(¢, ) such that
Q(t,x1 4+ 2Ny + 1,22+ 2N2 + 1) = Q(¢,z), Vi, z,
and similarly for P;. We denote by
(222)

Q) =

jow2m

Q(ac)e_z N +D/2eN2 02 (g

1
(201 + 1)/2(2Ne + 1)1/2 /[—<N1+;>,<N1+;>]x[—<N2+;>,<Nz+;>l

so that by the interpolation property we obtain

j-k2m

. 1 ALy ¢ i/2 1732
(t) = t = (2N1+1) (2No+1)
QJ() Q(?J) (2N1+1)1/2(2N2+1)1/2 kEZZZQ(])e 1 2
. 1
T (2N1 + 1)V/2(2N, + 1)1/2
. . J-k2m
X Z Z Q(kl + (2N1 + 1)h17 k2 + (2N2 + 1)h2) 61(2N1+1)1/2(2N2+1)1/2 7
k:(kl,k2)€Z§N+1 h=(h1,h2)€Z2
hence
(223) Qr=Y_ Qk1+ (2N1 + 1)h1, ko + (2N + 1)hs).
hez?
The relation between Q(k) and i can be deduced from (129),
Q) = pa(ujn, n” j2);
Qk — lu(o+1)/2 Q(z1, x2)6—i7r(k1x1u+kzxzu“)dxl dzs
2 [,L L]X[,; a1
wop g
(1i9) lu(0+1)/2 / ©“q (ﬂmh /J/U$2) e—iﬂ'(klxuﬁ-’wxzﬂa)dxl dzs
? [t ][]
_ %Mu—ow/q(y)e—m<k1y1+k2yz)dy
I
(224) = 2,
and similarly
(225) Py = p 2y
By using (29), (13) and (223)-(225) we have
13) g1 1 . o
& & ot 5 > |Pret]? + wi| Qucy |
L=(L1,Ly)€Z2: Ly, Ly €2Z
(224),(224) o1 A N
=Tt > lprcr L) + witldrcr L)
L=(L1,L3)€Z2:uLq,n° Lo€2Z

for all k such that x(k) = (uK1, u° K2), and this leads to (221). O

Proposition 6.8. iz p > 0 and 0 < § < 1. Consider the normal form equation (144), and define the
Fourier coefficients of (1, 1) through the following formula

(226) b =5 O Ine™

hez2
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Consider (1,9) € H”Y, and denote by &, the specific energy of the normal mode with index k as defined
n (12)-(13). Then for any positive p sufficiently small
L2
gﬁ _ 2 |1/)K|
g

(227) < CpP | (1, 9) 300

for all k such that k(k) = (K1, u° K2) and |K1| + |K2| < w. Moreover,

(228) Exl < C ||, %) |5400
or all k such that (k) = (uK1, u° K2) and |K1| + | K2| > m, and £« = 0 otherwise.
1 Y P

We defer the proof of the above Proposition to Appendix C.
Now, consider the normal form equation, namely the following cubic defocusing one-dimensional NLS
. 3
(229) i == B+ 2 gy,

and consider a solution ({/)va, {/)_Va) such that it belongs to H”'™, for some n > 0.
We consider the approximate solutions (Qa, P.) of the KG lattice (24) (in the following 7 = p*t)

(230) Qa(1,y) = % [6”%(77 Y1, y2) + € al(r, yl,yz)]
(231) P.(1,y) = ﬁ [eh{b;(ﬂ Y1,Y2) + 6_”%(77 y17y2)]

(232)

We need to compare the difference between the approximate solution (177)-(178) and the true solution
of (24). Let consider an initial datum (Qo, Po) with corresponding Fourier coefficients (Qo,x, Po,k) given
by (9), where

(233) Qo # 0 only if k(k) = (uK1, p° Ko).
We also assume that there exist C, p > 0 such that

S |2 214, |2
(234) [Po.rl” + @il Qokl” -~ —2p1te1 () /12 (k) /)]
N < .
Moreover, we define an interpolating function for the initial datum (Qo, Po) by

1 A in(uK1y1+p” Kay2)
= e b

Qo(y) (2N1 T 1)(2N2 4 1) Z L QO,k

K (p2| K112 4+027 | K2|2) 2= |n(k) <1

and similarly for y — Py (y).
Proposition 6.9. Consider (24) with o > 1 and v > 0 such that o + 2y < 7. Let us assume that the
initial datum satisfies (233)-(234), and denote by (Q(t), P(t)) the corresponding solution. Consider the

approzimate solution ({b;(t?x)?zjl):(t?x)) with the corresponding initial datum. Assume that (%7%) €
HP™ for some p > 0 and for some n > 0 for all times, and fix To > 0 and 0 < 6 < 1.

Then there exists po = pio(T0o, ||(4a(0), 9a(0))||me.n) such that, if p < po, we have that there exists
C > 0 such that

. . Tt
(235) sup |Q5 (1) = Qu(t, )| + |P;(8) = Pa(t, )] < Cu7, [t < -3,
J
where (Qa, P.) are given by (230)-(231). Moreover,
2 [ | 24
(236) 5;»;—1117 SC/J, v

or all k such that k(k) = (LK1, u° K2) and |K1| + |K2| < CHdllogul - proreover
[ Pk, p - )
(237) €| < >t
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or all k such that k(k) = (uK1,pu° K2) and |K1| + |K2| > m, and €. = 0 otherwise.
P

Proof. The argument follows along the lines of Appendix C in [BP06.
Exploiting the canonical transformation found in Theorem 3.3, we also define

(238) Ca 1= (Y Pa) = T2 (War Ya) = Ca + da(Ca),
where qﬁa(fa) = (qﬁg(fa),qﬁn(f@)); by (59) we have
(239) sup  [[¢a(Q)llrm < Crp® R.
€Bp n(R)
For convenience we define
(240) qa(T7 y) = % [6”{/;;(7': Y1, y2) + eiiT%(’n Y1, y2)]
(201) polrn) = = [ Thu(r ) — e Dulrn. )]

We observe that the pair (ga, pa) satisfies

(242) (1(ga)t = ppa + 1’ Ry
(243) 1(pa)t = —piga + pA1qa — 11 Bogy + Ry,

where the operator A; acts on the variable x, m( is the projector on the space of the functions with zero
average, and the remainders are functions of the rescaled variables 7 and y which satisfy

sup Rz, <€,

P

sup [|Rpll;z < C.
P,

Bpn(

We now restrict the space variables to integer values; keeping in mind that g, and p, are periodic, we
assume that j € Z?\;’NU.

For a finite sequence Q = (Q;) we define the norm

JELY No
2 2

(244) Il ., = > Qi

J€ELY no

Now we consider the discrete model (8): we rewrite in the following form,

(245) Q; = P;
(246) By =—=Qs+(MQ); — fmQ]
and we want to show that there exist two sequences F = (Ej)jez?v yo and F = (Fj)jez?v o Such that

Q=pqu+p B, P=pp.+pF
fulfills (245)-(246), where v > 0 is a parameter we will fix later in the proof. Therefore, we have that
(247) E=F - "R,
(248) F =—E+ME—BroBu*T T @E 43 T g B 4 PR — PR,

where we impose initial conditions on (E, F) such that (¢, p) has initial conditions corresponding to the
ones of the true initial datum,

11qa (0, g1, 1% j2) + 7 Eo j = Qo
1pa(0, pgn, 7 j2) + 7 Fo ;= Po ;.
We now define the operator 9;, i = 1,2, by (9;f); := f; — fj—e,; for each f € E?V,N<7~
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e Claim 1: Let o > 1 and v > 0, we have
1Eollez, , < C'u7772,
1Folles, ., < Cp72772,

101 Eolles, ., < O pB=2=/2,
l62Eolls, ., < C'uC27F2,
101 Folles, ., < O pB=2=/2

3—2 o)/2
||82F0H£fv’NU SCI,U( vy+o)/ )

To prove Claim 1 we observe that

V2ul+y V2
Yo — Pa — (Ya — Pa)] b — ¢n

= —yIs 7
V2iptt SR

By — platGo— W td) _ s dct oy

FQI[,L

from which we can deduce

HEOHEZNYN(, < Z |Eo ;| < CAN T () = Cp® 2777,

J€ELY No
2 2 o+1 /1 2—4\2 3—2y—0
HFOH@VN(, < Z |Fo,;1° < C4AN + (W) =Ccp T,
J€ELY No
2 2 041 [, 24+1—v\2 5—2y—0
||81E0H@VWN(, < Z |01Eo,;1° < C4N (w ”) < CpTme,
JELY no
||82EOH??\] No < Z |82E0,j|2 < C4No'+1 (,ul2+0'*ﬁ’)2 _ (311111372"#%0'7
J€ELY No
||81F0H§§V No < Z |((91F0,j|2 < C4N°H (,u2+17”)2 < Cuf’*%*o’
JELY No
||82FOH??\] No < Z |82F0,j|2 < C4No'+1 (,ul2+0'*ﬁ’)2 _ (311111372"#%0'7
JELY No

and this leads to the thesis.

e Claim 2: Fix n > 0, Tp > 0 and K. > 0, then for any p < ps and for any ¢ > 1 and v > 0 such
that o + 2y < 7 we have

To

E .

(249) 1B, L+ IF L+ 10uBolly, |+ 0Bl < K, il <

N,NO N,N°C

To prove the claim, we define

S BB BEAD), | 3G+ 3 bl

(250) F(BE,F) := 5 5 :

o 2
]€ZN,N°'
and we remark that

1
SFEF) < B+ okl | +0:Rllly, | < 2F(E,F).



Now we compute the time derivative of F. Exploiting (193)-(194)

(251) F= ZF —Ej + (A1E); — Bro (34° g2 E; + 3" o B} + p* T EY) — 17 (Rp);]
(252) + Z (Ej — (ALE))) [Fj — "7 (Ry)4]
J
_ Jdq.
253 3 BGE; [Fy — p* ™7 (Ry);] + 31> BES qa p——
( ) +ZH/B%J[J 1% (q)J]JFHﬁ]QFLaT
(254) + Z 3B [y — 1* T (Ry),) + S a2
’ I or
(255) = Z Fy [=Bmo (30" qu B} + p® T2 EY) — 177 (R,);]
(256) + ZEJ —1* T (Ry);] — (ALE); [=1" 77 (Ry);]
J
2 5 2 14— 2 o2 9qa
(257) + Z3H BaaEj [—1"""(Rq)s] + 31 5quwl¥
9 94ny p2 Ay 3 24y53 Oa
(258) + D GH T BES [Fy — ' (Ra)s) + St BE] p
J
In order to estimate (255)-(258), we notice that
sup (A E);| < 2SHP ((01E) | +1(0:E);| < 4VF,
IRl < S IR <IN supRA) < O™t
||Rp||z2 , = Cﬂ_l_ov
and that [(0iRq);| < usupy ‘ which implies
1—0o
1R, |, < Cu'=.
Now, we can estimate (255) by
(259) C (lf"'”/]:?’/2 + T F A M_(1+0)/2.7:1/2) 4
Then, (256) can be bounded by
(260) c <M4—'y—(1+o)/2 FUz M4—’y+(1—o’)/2 ]_-1/2) :
next, we can estimate (257) by
(261) c (,ﬁ‘”‘“*")/?fl“ + ;ﬁf) 7
while (258) can be bounded by
(262) c <M2+w]_—3/2 4002 E M2+w]_-3/2) 4
Hence, as long as F < 2K, we have
(263) ‘}" <C [ﬁﬂ KY? 4 2P K 4 P 4 2 K2 g S0 2 Ki/2] F
(264) +C [H47«, H7(1+o')/2 + lu47w7(1+0')/2 + Iu47’y+(170)/2 + H67w7(1+o’)/2i| Ki/Q

o+2v<7

(265) < O+ KYHFou TR Kl?

33
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and by applying Gronwall’s lemma we get

(266) Ft) < ]_-(0)60(1+Ki/2)#2t n 60(1+Ki/2)#2t 1+ K:/g) M2t Cu(772wfo')/2 K:/27

from which we can deduce the thesis. O

Proof of Theorem 2.4. First we prove (32).

We consider an initial datum as in (31); when passing to the continuous approximation (128), this
initial datum corresponds to an initial datum (vo,0) € H?*™. By Theorem 5.5 the corresponding
sequence of gaps belongs to H”°'™, and that the solution (1(7), (7)) is analytic in a complex strip of
width p(t). Taking the minimum of such quantities one gets the coeflicient p appearing in the statement
of Theorem 2.4. Applying Proposition 6.9, we can deduce the corresponding result for the discrete model
(27) and the specific quantities (13).

Next, we prove (34). In order to do so, we exploit the Birkhoff coordinates (x,y) introduced in
Theorem 5.6; indeed, by rewriting the normal form system (144) in Birkhoff coordinates we get that
every solution is almost-periodic in time. Now, let us introduce the quantity

11~ |2
Ex =5 [¥x|

then 7 — Ex(z(7),y(7)) is almost-periodic. Hence we can exploit (236) of Proposition 6.9 to translate

the results in terms of the specific quantities £., and we get the thesis. d

APPENDIX A. Proor oF LEMMA 3.7

This appendix is devoted to the proof of the Lemma 3.7, which is a key step in order to normalize
the system (61). This result is an adaptation of Theorem 4.4 in [Bam99| and its proof is based on the
method of Lie transforms, briefly recalled in the following. Throughout this Section, we consider s > s1
and p > 0 to be fixed quantities.

Given an auxiliary function x analytic on H”®, we consider the auxiliary differential equation

(267) ¢ = Xx(¢)

and denote by <I>§( its flow at time t¢.

Lemma A.1. Let x and its vector field be analytic in By s(R). Fiz 6 < R, and assume that
sup [1X0(Q) e < 6.

pys

Then, if we consider the time-t flow ®% of X, we have that for |t| <1

sup [ @3 (¢) = Cllrrs < sup (| Xy (Q)llnees
Bp,s(R—0) p,s(

Definition A.2. The map @ := <I>)1( is called the Lie transform generated by x.

Given G analytic on H”?, let us consider the differential equation
(268) ¢ =Xa(0),
where by X we denote the vector field of G. Now define

B,G(0) = G o By (0).
By exploiting the fact that ®, is a canonical transformation, we have that in the new variable f defined
by ¢ = ®+(() equation (268) is equivalent to

(269) ¢ =Xera(C).

Using the relation

d * *
(270) &@XG = o {x,G},
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and the Poisson bracket formalism {G1,G2}(¢) := dG1(¢)[Xa, (¢)] we formally get

.G => G,
£=0
(271) Go =G,
1
Gy = Z{X7Gl71}7 {>1.
In order to estimate the vector field of the terms appearing in (271), we exploit the following results

Lemma A.3. Let R > 0, and assume that x, G are analytic on B, s(R) as well as their vector fields.
Then, for any d € (0, R) we have that {x, G} is analytic on B, s(R —d), and

(272) sup )”X{X,G}(C)HHP’S S% < Sup)lXx(C)llw,s> < sup IIXG(C)IHP’5>-

Bp,s(R—d Bp,s(R pys
Proof. Observe that
X ¢x.a1 (s = [dX () Xa(() — dXa(C) Xy (Q)lars
< [dX5(€) Xa (Ol + [1dXa(€) Xy (Q)llaes,

and since for any d € (0, R) Cauchy inequality gives

1
sup  {|dXx (Q)llreswpes < o0 sup X (O,
By (R—d) By.o(R)

we finally get
1
sup  [|dXx () X (Ollwes < 5 | sup [ X (Q)llers sup || Xa(Q)llars | -
Bp,s(R—d) Bp,s(R) Bp,s(R)
With a similar estimate for the other term we obtain the thesis. O
Lemma A.4. Let R > 0, and assume that x, G are analytic on B,,s(R) as well as their vector fields.

Let £ > 1, and consider G as defined in (271); for any d € (0, R), G; is analytic on B, s(R — d) as well
as it vector field, and

Bp,s(R—d p,s pys

y
2e
(273) sup )I\XGE(C)HHP’SS <g Sup)IXx(C)Iw’s> Sup)IIXG(C)Hw’S-

Proof. Fix £, and denote § := d/¢. We look for a sequence CY such that

sup 1XGm (Ollwes < c¥ vm < e
Bp,s(R—md)

Lemma A.3 ensures that the following sequence satisfies this property.

Ce? = sup [ Xa(Q)llnns,

pys(
¢ 2 2
oy = =cll), sup 1 Xx(Ollwr-
20 e
- %Cfn)_l sup X (C)[l220-5.
One has
4
1 (2
Cée)zﬁ = sup X (Qllres | sup [ X6 (e,
! By, s(R) ps(R)

and by using the inequality £¢ < £le‘ one obtains the estimate (273). |
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Before stating the next Lemma, we point out that the Poisson tensor 25 ! obtained by inversion from
the associated symplectic form Q2 in (48), is not a bounded operator on H”*. We thus have to weaken
the hypothesis of Theorem 4.4 in [Bam99]; indeed, we just assume that

-1
1927 fllacrs <A1 fllagpostr -
This property is satisfied by both Q7' and Q5.

Lemma A.5. Let x and F be analytic on B, s(R) as well as their vector fields. Fiz d € (0, R), and
assume also that

sup || X5 (Q)[laers < d/3.
Bp,s(R)

Then for |t| <1

9
(274) sup || X (ot yrpp(Q)llrr=<5 sup [[Xy(Q)|lmrs sup | X#(C)l|rer
Bp,s(R—d) X d B, .(R) Bp,s(R)

Proof. Since the bound on the norm of X, implies that ®(¢) € B,,s(R) when ¢ € B, s(R — d/3), using
Cauchy inequality and Lemma A.1

sup Ay (@L(0)) — idllres < sup  [dDL(C) — idllpues s
Bp,s(R—d) Bp,s(R—2d/3)

7. s 9O = (e
Bp,s(R—d/3)

q sup HXX(C)HH”'S
By, s(R)

IN

IN

Since <I>§< is a canonical transformation, a direct computation shows

Q7HA(F 0 21)(¢) = (A2 "(23,(¢) — id)2 ™ dF(@}) + Q7 dF (2 (¢))

whence
sup Xty p(Qllans = sup Q7 AF@LC)) — F(O)aoe
B, s(R—d) Bp,s(R—d)
< R (B(0) — i) AR (@) +0 (F(@L () ~ F(O)es
P,S -
< sup [dTHBL(O) — idlsro e sup [ Xp(BLC) e
Bp,s(R—d) B, s(R—d)
+ sup [ Xp(D5(C) = Xr(CQ)llwes
Bp’s(Rfd)
3
<3 sup 1X(Olrs sup [Xe(Q)lre
Bp,s(R) Bp,s(R)
t
+ s | / (X, Xp](8%(C))ds 3
B, s(R—d) Jo

To estimate the last term we use Cauchy inequality

sup II/0 (X, Xp)(25(0))dslwes <2 sup  |[Xy, Xp](Q)[[2ere

Bp.s(R—d) Bp.s(R—2d/3)
6
< 552 sup (X (Ollees sup [1XF(C)laeee
Bp,s(R) Bp,s(R)

N

6
<8y IOl sup X (Ol
Bp,s(R) Bp,s(R)

Then the thesis follows. O
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Lemma A.6. Assume that G is analytic on B, s(R) as well as its vector field, and that ho satisfies
(PER). Then there ezxists x analytic on B, s(R) and Z analytic on B, s(R) with Z in normal form,
namely {ho, Z} = 0, such that

(275) {X,ho} + G = Z.
Such Z and x are given explicitly by
1 [T .
(276) 20 = 7 [ c@i©ar,
1 T t t
(217) (O =7 [t [2(81,0) - 6@k, @) dr.

Furthermore, we have that the vector fields of x and Z are analytic on B, s(R), and satisfy
sup || Xz(Q)llaes < sup [ Xa(C)llnes,

p,s(R p,s(R
(278) sup (| X (Qllrrs < 2T sup || XG(O)ll#rs
BP,S R) Bp,s )

Proof. We check directly that the solution of (275) is (277). Indeed,
d
-4 ®;
fooHO) = 4 x(@7,(0)

=5 [t (2@ - c@i )] a

ds|s=0

=1 [ 1210 - Gt )] a

= 7 [ 2(81,(0) 16, O Ly~ 7 | [2(84,(0) — 6@}, (0)] d
- 2(0) - G(O).

In the last step we used the explicit expression of Z provided in (276). Finally, the first estimate in (278)
follows from the explicit expression of Z in (276) while for the second estimate we write explicitly the
vector field X, :

XQ) = 3 [ D@ (0) 0 Xamo (@ (0) .

Assumption (PER) ensures that @zo as well as its derivatives and the inverses are uniformly bounded
as operators from H?® into itself. Moreover, for any ¢ € R, the map ¢ — <I>§10 (¢) is a diffeomorphism of
B,,s(R) into itself. Thus

sup [ Xy (Q)llaers ST sup  sup ([[(D®h (¢) llwrssres) sup (|1 Xz () lles + [1Xa ()llers)

B,.s(R) t€[0,T) CEHP-S Bp.s
< 2T sup sup (H(D@ZU (C))_IHHp,s_,Hp,s) sup || Xc () ||we-s
te[0,T] CEHPS By, s

where in the last step we used the first inequality in (278). Since by assumption (PER) @} is an
isometry, sup;e (o, 7] SUP¢epp.s (I(D®},, (€)™ *llaers—mrs) =1 and the thesis follows. O

Lemma A.7. Assume that G and its vector fields are analytic on B, s(R), and that ho satisfies (PER).
Let x and its vector field be analytic on B, s(R), and assume that x solves (275). For any £ > 1 denote
by ho,¢ the functions defined recursively as in (271) from ho. Then for any d € (0, R) one has that ho
and its vector field are analytic on B, (R — d), and

¢

9

(279) sup [ Xng, (Ollres <2 sup [[Xe(Qllwes | 5 sup [ X (O)llaes |
Bp,s(R—d) Bp,s(R) Bp,s(R)
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Proof. By using (275) one gets that ho,1 = Z — G is analytic on B, s(R). Then by exploiting (274) one
gets the result. 0

Lemma A.8. Assume that G and its vector field are analytic on B, s(R), and that ho satisfies (PER).
Let x be the solution of (275), denote by @; the flow of the Hamiltonian vector field associated to x and
by @ the corresponding time-one map. Moreover, denote by

F(C) := ho(®x(C)) = ho(€) — {x; ho}(C)
Let d < R, and assume that

sup [ Xx (Q)[lrers < d/3.
Bp,s(R)

Then we have that F and its vector field are analytic on B, s(R — d), and

18
(280) sup [ XF(Qllwes < — sup [ Xx(Qllaees sup ([ Xa(Q)llaees

Bp,s(R—d) Bp,s(R) pos

Proof. Since
ho(@x () — ho(C) = / {x ho} 0 @4 (C) dt

(275) /0 Z(9%(0)) — G(®L(¢)) dt,

if we define F(¢) := Z(¢) — G(¢), we get

= [ P@lo) - Foa

Now, we have

sup | XF(Q)llnees
Bp’s(Rfd)

= s joa( [0 R@UE) - FO ) o

By, s(R—d)

< sup H/ (A2 (25() — i)™ dF(2}) + Q7 d(F(23,(C) = F(C)) dtl|e-s
By, s(R—d)

< sup |\/ (AP (D%(C)) — id)Q ™ dF (L) dt|3ee.
By, (R—d)

s [ Xe@40) - X (Q)
By, s(R—d) 0

and by dominated convergence we can bound the last quantity by

sup  sup [|d®y (DL (C)) — id|lrpssprs  sup [ XF(DL(C)[Iatere

Bp,s(R—d) t€[0,1] Bp,s(R—d)

+ supsup [ Xp(P4(C) — Xr(Q)lles
Bp,s(R—d) te[0,1]

< sup  sup  [ldOLN(RL(Q)) —idlmessmes sup (| Xp (@3 ()) e
t€[0,1] By, o (R—d) Bp,o(R—d)

+ sup  sup || Xp(D(C)) = Xp(Q)]lnes
t€[0,1] Bp,s(R—d)

3
<3 sup 1Ol swp [Xr(@lpwrs+ s sup | [0 X @3
Bp.s(R) Bp,s(R) t€[0,1] By, s(R—d)
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where we can estimate the last term by Cauchy inequality

t
sup II/[XX,XF](éi(C))dus,sﬂ sup [ Xo, XF](Q)llaer-s
Bp,s(R—d) Jo Bp,s(R—2d/3)

6

< 552 sup | Xy (Qllaes sup (| Xp(Q)]ers
2d 5, .(Rr) Bp.s(R)
6

<2 sup [IX(Ollres sup (1K (C)llreene
BPwS(R) Bp,s(R)

By the above computations and (278) we obtain

9
sup [ XF(Ollres < o sup [ Xo(Qlles sup [ Xp(Q)lsees

By, (R—d) o5 (R) Bp,s(R)
(278) 18
< 0 sup [IX(Ollwes sup [1XG(Q)llwes
By, s(R) Bp,s(R)

Lemma A.9. Let s> s1 > 1, R>0, m >0, and consider the Hamiltonian
(281) H™(¢) = ho(¢) +82"(¢) + 6™ F™ ().
Assume that ho satisfies (PER) and (INV), and that

sup || X g (Q)[lnes < F.
Bp,s(R)

Fiz d < %, and set Ry := R—md (m > 1).

Assume also that Z™ is analytic on Bp,s(Ry), and that

sup || X0 (Q)lnes =0,

Bp,s(Rm)
m—1 ) )
(282) sup X g (Qllwes < F Y 6Ky, m>1,
Bp,s(RWL) i=0
(283) sup [ Xpom) (Qllnee < FKg', m =1,
Bp,s(Rm)

with Ko > 15 and d > 3T F.
Then, if Ko < 1/2 there exists a canonical transformation 7;(7") analytic on By s(Rm+1) such that

(284) sup T (C) = Cllaes < 206 KGF,

Bp,s(Rm+1)

H™D .= g™ o 70 has the form (281) and satisfies (283) with m replaced by m + 1.

Proof. The key point of the proof is to look for ’7:;(7”) as the time-one map of the Hamiltonian vector

field of an analytic function 6™ x,,. Hence, consider the differential equation

(285) E = Xymrng, (O):

By standard theory we have that, if || Xsm+1,, 18, .(R,,) 15 small enough (e.g. || Xsm+1,, 8, (Rm) <

mm—fl) and (o € By s(Rm+1), then the solution of (285) exists for || < 1.
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Therefore we can define 7y}, 5 : Bp,s(Rm+1) — Bp,s(Rm), and in particular the corresponding time-one

(m) ,

map Ty = 7;,1175, which is an analytic canonical transformation, 6™*!-close to the identity. We have

(T (ho + 624 4 LR — hg 4 5207
+omTt [{me ho} + F(m)] +
(256) £ (oo T = ho = 6™ g ho} ) 48 (20 0 T — 20

(287) 4 omH (F“”) o TI™ — F“”)) .

It is easy to see that the first two terms are already normalized, that the term in the second line is the
non-normalized part of order m + 1 that can be normalized through the choice of a suitable x.,, and
that (286)-(287) contain all the terms of order higher than m + 1.

In order to normalize the terms in the second line we solve the homological equation

{Xm7h0}+F(m) = Zm+1,

with Z,,4+1 in normal form. Lemma A.6 ensures the existence of x»,, and Z,+1 as well as their explicit
expressions:

Zun(@) = 7 [ FO@ @),
(@) = 3 [P B(0) = Zua (8], (O))

The explicit expression of X,,, can be computed following the argument of Lemma A.6. Using this
explicit expression, the analyticity of the flow @}, ensured by (PER) and (278) one has

) sup || Xy (Ollrre <27 sup || Xpim) |ee < 2TKy'F .

Bp,s RTVL Bp,s
Straightforwardly, from the explicit expression of Z,,+1(¢) and (283) one has

sup || Xz, 1 llwes < Ko'F
BP,S(RWL)

Now define Z(™*+1 .= z(™) 1 §™ 7, | and notice that as a consequence of the latter estimate and (282)
we have

sup [ Xy (O < sup [ X g0 Qe + - sup ([ Xomz,, 4y (Ol

Bp,s(Rm+1) Bp,s(Rm+1) Bp,s(Rm+1)
m—1 ] ]
<F <Z &K+ 5'”;(5”)
3=0
Defining now 7:5(7”)(() = @;mﬂxm (¢) we can apply Lemma A.1 and (*) to obtain
sup [ T(Q) = Cllwre = sup [@5my, () = Cllne
Bp,s(Rm+l) Bp,s(Rm+1)
< sup || Xpmaiy,, lues < 206" HKGUF
Bp,s(Rm)
Let us set now 0™ F2F(™+D .— (286) + (287). Using Lemma A.5 one can estimate separately the
three pieces. We notice that supg_ _(g,,) | Xsmt1y,, 20 < 276™H K§"F and since Ko < % we have

SUPB, | (Ryp) [ Xsmt1y,, [#Hes <TOF < 4 < W. We can thus apply Lemma A.5 and Lemma A.8 to
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get

27 Mt
sup I Xy orm)_pomy (Ollaes < —= sup || Xy, (Qllaes  sup || Xz [lnes,
B(Ryyy) 20T =2 (m+1)d s, (R - z

27 mtt

——— sup || Xy (O|lmrs sup || X g ||2ees,
(D s, 0 [ X (Ol 5,0 X pem I

18 62m+2
sup  [|X, _om) " e < === sup [ Xy, (Ollwes  sup [[Xpom (Qllwess.
B(Rpys1) hooTg"™ —ho—8m+1{xm ho} (m+ 1)d Bp,s(Rm) x .5 (Rm F

Sup || X oy o) _ oy (O 2205 <
B(Rm+l)H F( )07*5 _Fp( )( )H

By means of these inequalities, with the additional information ||Xsm+1,,, [lse.s < W and the
hypotheses (282) and (283), we can estimate

sup [ Xgmr2pontn (Ollaes <95™2 sup | X pom (Qllaes +9 672 sup [ X pim) () e

Bp,s(Rm+1) Bp,s(Rm) Bp,s(Rm)
+667 sup || X pim) (Q)|l3ees
Bp,s(RWL)
m—1 ] ]
<98"PR Y Ko+ 96" F Kyt +6 6" F Ky
=0

m—1
= gmt2 <9F > 6K+ 9" FKG' +66™F K5">
=0

If m = 0 the first term is not present and then

sup || X2 o [|3es < 67(9F + 6 F).

Bp,s(R1

If m > 1 we exploit the smallness condition § Ko < % to get Zﬁgl 8K} < 2 and

F F

sup || Xsms2 poman [|pes <872 <6F +9— +6 —) < 156" F.

B R 2m 2m
p,s(Rm41)

|

Proof of Lemma 8.7. The Hamiltonian (61) satisfies the assumptions of Lemma A.9 with m = 0, Fi u
in place of F(O, F = Kg) M?*t7. So we apply Lemma A.9 with d = R/4, provided that
R R

0 < =
12TF 12TK§?M2+'Y

which is true due to (70). Hence there exists an analytic canonical transformation 7:5(’(1)\)4 : B, s(3R/4) —
B,..(R) with
sup TS5 (Q) = Cllos < 2T'F',

Bp,s(3R/4
such that
(288) Hia o Ty = ho + 0257 + 8°RS)
(289) ZW0 = (Fiu),
1

PR\ =82 FW
(290) = (ho ¢} 7:5(’(1)31 — ho — (5{)(1, ho}) +4 (Z](Vll) o 6(,(1)\)4 — Z](VII)) + (52 (FLM o 7:5(’(1)31 — Fl,M) ,
(291) sup || X, ) (Q)[[nes < F,

Bp,s(SR/4) M
(292) sup HXR(I) (C)HHP,S S 15F.

Bp,s(SR/4) N

and Ko = 15, whence § < 3—10. O
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APPENDIX B. PROOF OF PROPOSITION 6.2

In order to prove Proposition 6.2 we first discuss the specific energies associated to the high modes,
and then the ones associated to the low modes.

First we remark that for all k such that x(k) = (uK1, u° K2) we have

wi| an 4 2 _kim 4 sin? 2T
2 2 2N +1 2N +1
- o (25 e (2255
(293) <7 (K7 + p* VK3,

moreover, for K1 # 0

lgx|* + 7 (K3 + 0>V K3)[px | < 22 g 20IK] lare |” + (KT + HQ(ofl)K§)|ﬁK|2e2p\K\
2 - 2

] v K3
(294) <x?e (1 082 e o
1

while for |K2| < |Ki|

a2 2 2 2(0—1) 172\ 15 12 |Ko|<|K
+ (K7 + K. [K2|<[Kq] _
(295) |qK| T ( ! 2” 2)|pK| S 27T2€ 2IK] ||(£777)||'2HP’0

Hence, by (166) we obtain that for all k such that k(k) = (uK1, p” K2) and |K1| + |K2| > w

Ex
4
w
P 2 P 2
~ 2 2 K+L ~ 2 2 K+L
= > lgr+o]” +wi |——| | + > lgr+L]” + wi |[——
L=(L1,Ly)€Z% pLy,n Ly €2Z L=(Ly,Ly)€Z% pLy,n° Ly €2Z
| Ky |+ | K| > 240 toa u | K |+ Ko | > G0 los |
[Ko+Lo|<|K1+Lq| |Ko+Lo|>|K1+L1|
(293),(295),(93)
2 2 —2p|K+L|
< 7 1§ ) I3ge0 2 > e
L=(L1,Ly)€Z%:uLy,u° Lo€27
‘K1‘+‘K2‘>(2+5)\10gu\
|Ko+Lo|<|K1+L1]|
2
2 2 —2p|K+L| 2(o—1) (K2 + L2)
+ 77 |[(&m)[[3¢0.0 Z e 14+ p A Sl e
’ H 5 (K14 L1)?
L=(L1,Lo)€Z*:pLy,u° Lo€2Z
(2+49)| log p|
|K1 |+ Ka|> (2+4 I\)logu\
[Ko+La|>|K1+L1|
K1+L1#0
2 2 —2p|Ko+La|
7 () Euoo 3 c A

L=(L1,Lo)€Z?:puLy,u° Lo €27
(2+9)] log p|
[ K|+ K2|> -

|Ko+La|>|K1+Lq|
Ki+L1=0



Now,

—2p|K+L
(296) E e p|K+L|
L=(L1,L2)€Z%:pLy,u° Ly €2Z
(2+46)| log p|
[ K|+ K2]> -
—2p|K —2p|K+L
Se pl ‘+ E e pIK+ ‘+ E
L=(L1,L2)€Z% nLy,u° Ly €2Z L=(L1,Ly)€Z% pLy,n° Ly €2Z
2] 1 2] 1
Ky |+ K | > 2Hosul Ky |+ Ko | > 2Los el
L1=0,Ly#0 L1#0,Ly=0
—2p|K+L
(297) + > e 2PIKFLL

L=(L1,L2)€Z% pLy,u° Ly €2Z
2] 1
|K1 \+\K2\>%
L1,L2#0

We now estimate the last sum in (297); we point out that for L1, Ly # 0 we have

2 2
|L| 2 - + _07
nop
hence
(298) 2K < |LJ.

Therefore, for any k such that k(k) = (uK1, p° K2) and |K1| + |K2| > w

> 2

—2p|K+L —2p| |K|—|L
e 2PIK LI < 20| IKI=IL |

—2p|K+L
e 2PIK+LI

L=(L1,Ly)€Z%:uLy,u° Lo €27
2446)]| 1
Ky | By > (0 dem el
Ly,L2#0

L=(L1,L2)€Z>%: L ,u° Lo €27,
246)| 1
T e
Ly,La#0

2p| K| _—2p|L
2P Kl o —2p|L]

IN

>

L=(L1,Lo)€Z%:uLy,u Lo €27,
2|1
Ky |+ Ko | > 2Hosul
Lq,L27#0

2p| K
2P Kl on

= 27 21K <71> d /+oo e PR
2) dp | ok

= —grelKl d e trI¥]
dp 2p

_ 2Kl (,%e—mm 9K e—4p\K\>
2p

1 (l +4> e_QP‘K\
2p \p

Next we estimate the second sum in (297); we have

3 emHIKHE] < =20 (FAIHIRED §™ gmpltl/i

L=(L1,Ly)€Z%:uLy,u% Lo €27 LeZ\{0}
2] 1
Ky |+ Ko | > 2Hos il
L1#0,Ly=0

IN

(299) =

(300)

which is exponentially small with respect to p. Similarly,

3 eHIKHE < =20 (FKal+IRaD  §™ mdnlel/u”,

L=(L1,L3)€Z%: uLq,u’ Ly €27 LeZ\{0}
2| log
L e
L1=0,L3#0

(301)
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Then,
2
3 —2elirrl (B2 + La)”
5 (K14 L1)?
L=(L1,L3)EZ":pLy,u° Lo€2Z
[ |+ Kp > G0 ol
|Ko+Lo|>|K1+L1|
K1+L1#0
2
_ K>
<e 2p| K|
K
2 2
i Z 20 K+L| (K2 + L) n Z 20| K+L] (K2 + L)
> (K1 + Ly)? 5 (K1 + Ly)?
L=(L1,L2)€L":pL1,n” Lo €2L L=(L1,L2)€L":pnLq,n” L2 €2Z
Ky |+ Ko | > 2Hos il Ky |+ Ko | > 2Hos el
|[Ko+Lo|>|K1+L1| |Ko+Lo|>|K1+L1|
K1+L1#0 K1+L17#0
L1#0,L2=0 L1=0,L2#0
(302)
2
n Z 20l K+L] (K2 + Lo)
(K14 L1)?

L=(L1,Lo)€Z%:uLy,u° Lo €27
246)]| 1
\K1\+\K2\>( + 2[\) og u|
[Ko+La|>|K1+L1|

K1+L1#0
Lq,La7#0

First we estimate the last term in (302): we have that |L + K| > | K], hence

> o-2elictr] (K2 + Lo)®
> (K1 + L1)?
L=(L1,L2)EZ*:puL1,u° Lo€2Z
\K1\+\K2\>(2+5)Ll°g”‘
|K2+La|>|Ky+L1|
K1+L17#0
Ly,Ly#0
“+o00 /4 9 9
:/ / e 2Pt ¢tan® g dp de
Kl Jo
(1= T el 1 200K]
4 4p?
< (1 _ 1) it e 211 = 25— 5 tos(20l )]
- 4
6<l—1/e _ _ 2|log |
(303) < (1— %) b o2 [o11- 2]

(304) = (1 - %) B 200K
Now we bound the other two nontrivial terms in (302); on the one hand, we notice that

—2p|K+L| y2
E eﬂ\+\L2

L=(L1,Lo)€Z?:uLy,u° Lo €27
2] 1
Ky |+ Ko | > 2Hosel

[K2+La|>|Ky+L1|
K1+L;#0
L17#0,Lo=0

(305)
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vanishes, while on the other hand

2
—2p|K+L| 72 —2p|K _aplei/ue L
}: ep‘+‘L2§e p\\}:ep\\/uu%
L=(L1,Lo)€Z2: L1 ,u° Lo€2Z 2eZ\{0}
2|1
Ky |+ | Ko | > 2Hos kel
[Ko+La|>|K1+Lq|
Ki+L;#0
L1=0,L57#0

(306) < 9 2rIK] /+oo e el /n? ﬁ de,
1

20

=

where the last integral is exponentially small with respect to .
On the other hand, for any k such that (k) = (1K1, u” K2) and |K1| + |K2| < %’W

Ex €k + k|

pt 2
2 2 _ 272 A 2
wp — T KT . 1 . PK+L
’kTgl lpx|* + 3 > lgr+rl® + wi ;
L=(L1,L3)€Z?\{0}
uLy,p° La€27Z
(293)
< (WKL + TV KD
1 X o R
T3 > ke K+ L)+ % (K o La) e
L=(Ly,Ly)€Z*\{0}
pLy1,u Lo €22
_1 9|1 2
< (ﬂ_4 MQKil+7r2u2(o 1) | (;)%M )|Z§K|2
1 . o .
+3 > lawenP K+ L) 4 a2V (K + L)
L=(L1,Lp)eZ?\{0}
pL1,u Lo €22
o1\ 9 log u|?
(7)< (x4 e ) 2B 26 )
2 2 2
T WIK+L| /8 2, 4 2 2(0-1) Ko + L3 —2p|K+L|
308 — i 142 22
(308) +3 > e ([€x+L]” + [+l )( + 2 ETn b ;

L=(L1,Ly)€z?\{0}
pLy,u% Lo€2Z

and we can conclude by estimating (307) by exploiting the fact that |logu| < p~2/° while we can
estimate (308) by

2 o1y K3+ L3 —2p|K+L
— 1€, m13000 Z <1+2M2( Uﬁ) e IR
L=(Ly,L)€Z*\{0}

pL1,pu Lo €22

2
% &) Zm0 Z (1+2u2(071) K2 422D L%) o 2PIK+L|

L=(L1,L3)€Z*\{0}
pLy,u% Lo€2Z

[\V]

IN

2
T
< 5 ||(§777)||3r¢p,0

+oo —+oo
(1427 Y K3)2r / e 2P 4dl + 4n / e %t f’dé]
2/ 2/p
71'2 2
5 NE ml5z0.0 %

2 3 2 2 3
2(0—1) 9| 1og —ap/u B+ 4p —ap/p 3p” +12pp” +24p”p + 32p
(309) |:27T (14’2}14 T e P MW+4W6 prK 8M3p4 .
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AprPPENDIX C. PROOF OF PROPOSITION 6.8

We argue as in the proof of Proposition (6.2).
First we remark that for all k such that x(k) = (uK1, u° K2) we have

Wl @ 1 sin* (5 +) o (7
(5 ()]

<1472 (WP K2+ u> K2)

(310) <m? (14 p? Ki + p° K2)7

hence

)

[prcl® +7®(1 - p2 K + g2 Kd)ldrc? o 2pircy rcl® + (4 w2 KE 4y K3)|drc| ool
9 = 2
(311) < 7 672P‘K‘ (1 + /1«2 K12 + M20 K22) ||(w71/;)”§-¢/’0
Hence, by (221) we obtain that for all k such that k(k) = (uK1, p” K2) and |K1| + |K2| > (2+6)Llogu‘

IN RS

> (Ipr+2|® + wi lgre+2|?)

L=(L1,L2)€Z?:puLy,u Lo€27

T e
(312)

(310),(311) _ _ o
< w9 3o 2 > e T 442 (K + L) 4 0™ (K2 + L))

L=(Ly,L3)€Z% uLy,pn° Ly €2L
Ky |+ Ko | > (22 Jos 1l

where the sum in (312) can be rewritten as follows,

(313) > e 2PIK+L]

L=(L1,L2)€Z% pLy,n° Ly €2Z
2446)]| 1
|K1|+|Ko|> 3t )L og i

(314) + u® > e IR, 4 11)?

L=(L1,Lo)€Z%: Ly ,u Lo €27
246)]| 1
| K |+ Ko |> 3L 2/\3 og i

(315) + u* > e PIETLI K, + 1o)2.
L=(L1,Lo)€Z?:puLy,u° Ly €27
Ky |+ Ko |> o) loa il
Now,

—2p|K+L
E: e 2PIK+LI

L=(Ly,L2)€Z% pLy,n7 Ly€2Z
2446)| 1
\K1H-\K2\>( + zl\)ogu\

< e 2Kl E : e 2PIKHLL E : e 2PIK+LI
L=(Ly,L2)€Z% pLy,pn% Ly€2Z L=(L1,L2)€Z% pLy,n° Ly €2Z
2|1 2] 1
Ky |+ Ko | > 2Hos il K|+ Ko | > 2Hoskl
L1=0,Ly#0 L17#0,L3=0
—2p|K+L
(316) + E e~ 2P KHL]

L=(L1,Ly)€Z?:uLy,u° Lo€27
2|1
\K1\+\K2\>%
Ly,L2#0
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and we can estimate the above terms as for (297) in Proposition 6.2; indeed, by (299), (300) and (301)
we have that (316) is bounded by

- 201K] +7T<L+2|K|) WK | o UKD § 4ol /n

2 2
p (€7 {0}
—2p (|K K. —4 7
(317) + e 20 (K1l+]K2]) E: e~ drlel/
Lez\{0}
Now we estimate (314). We have
— 2
2 e I (K 1)
L=(L1,Lo)€Z?:uLy,u Lo €27,
\K1\+\Kz\>ﬂw
S 6*2P‘K‘ K12
Z —2p|K+L 2 Z —2p|K+L| 7-2
+ e p| K+ ‘(K1+L1) + e Pl ‘Kl
L:(LI,L2>ezzzuL1f¢’Lze2Z L:(Ll,Lz>eZZ:uL21fu"L2e2Z
K|+ Ko | > 2Hosel Ky |+ Ko | > 2Hosel
L17#0,L2=0 L1=0,L2#0

(318) + > e 2PIEHEL (K 4 Ly)2

L=(Ly,L2)€Z% pLy ,n7 Ly €2Z
2448) 1
| K, “HK?DM
Ly,La#0

First we estimate the last term in (318): we have that |L + K| > | K], hence

S e gLy

L=(L1,Lo)€Z?:puLy,u° Lo €27
1
|K1 |+ Ka|> (2+5)l\) og |
Ly,La#0

“+oo 27
:/‘K‘ /0 e %P8 £ cos® pdode

_ pe-2elx) L4 20|K]
4p?

<t o2 [ 1K 1= 2R — o os(20| K1)
6<1—1/e 2| log |
(319) P T ety 2

Now we bound the other two nontrivial terms in (318); on the one hand, we notice that

S ety

L=(L1,L2)€Z?% L ,u° Lo €27,
2|1
Ky |+ Ko | > 2Hos
L1=0,L5#0

—2p|K+L| 7-2
<92 E e 2PIK+ ‘Kl
L=(L1,L2)€Z% pLy,n° Ly €2Z
2] 1
\K1\+\K2\>%
L1=0,Ly7#0

(320) +2 > e 2IKFLI 2

L=(L1,Ly)€Z%: uL,u° Lo €27,
2|1
Ky |+ Ko | > 2Hos il
L1=0,Ly#0
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where the first sum can be bounded as the second term in (316), while

_ _ _ 2
Z e 2P\K+L\L§ <e 2p| K| Z e delel/p Z_
e
L=(L1,Lo)€Z2%: L1 ,u° Lo €27 2ezZ\{0}
Ky |+ Ko | > 2Hos ]
L1=0,Ly#0
2p| K Foo 4p|l 62
(321) < 262! \/ etotein £ g
1 H

where the last integral is exponentially small with respect to u.

Similarly,
“2p|K4LI 72~ —2p|K] —aple/ue £
Z e L2 S (& Z (& F
L=(L1,Lo)€Z?:uLy,u° Lo €27 LezZ\{0}
Ky |+ Ko | > 2Hos el
L1=0,L270
—+o0 - 62
(322) Sk—wm/ emtottin” £ gy

1 12

where the last integral is exponentially small with respect to pu.

On the other hand, for any k such that xk(k) = (1K1, u” K2) and |K1| + | K2| < w

Ex _ lxl
% 2

; 1 . .
< Jwi — 1] 1gx|* + 3 > lprrrl® +wi ldr+c]?,
L=(Ly,Ly)€Z*\{0}
puLy,n® La€2Z

(310)

S M2772K12 + WQMQUKQQ)lﬁK|2

—~

+ > pre+rl” + ldrrol® + 721 (K1 + L1)? + 07 (K2 + L2)*]|dxc+2 |,

L=(L1,Ly)€Z?\{0}
wuLy,u” Lo €27

S (7‘_2 M2K12 + 7T2/,L20 K22) |]§K|2
+ 110, D) 13400 > e 2PIEFLI 4 722 (K + L) + 72 p® (Ka + L2)?]
L=(Ly,L3)eZz*\{0}
puLy,p® La€2Z

o—1)\ 9]log u|? -
(323) <7l (1 +pe ) %II(WP)H%U

(324) + 1@, D) 1300 > e P
L=(Ly,Ly)€Z?\{0}
uLy,u% Lo€2Z

(325) + 7212 (%, D) 13400 > e PPIRHE (R + 1y)?

L=(Ly,L3)€z*\{0}
pL1,u Lo €22

(326) + 71 27)| (, ) 300 > e 2P (Ky + Ly)?

L=(Ly,Ly)€Z?\{0}
wuLy,u” Lo €27

N | =
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and we can conclude by estimating (323) by exploiting the fact that |log x| < p~2/°, while we can
bound (324)-(325) by

2
7.‘- ) —
o H("bﬂ/’)”?{p(} Z [1 + MQ(Kl + L1)2] e 2p|K+L|
L=(L1,L2)€z?\{0}
wLy,u” La€27
2
% ||(1/}7¢)||'2Hp,0 Z (1 + 2H2 K12 + 2H2 L%) 672P‘K+L‘

L=(Ly,Lp)€z*\{0}
pLy,u” La€2Z

71'2 —\ 12 2 2 “+oo apt ) +oo ot
< S 1@ D)o |(L+24° K7) 27 e 0l + dm o200 3y
2/p 2/
2
T _
= W D) o x
2 5 ) , ,
(327) 2 | 1+ 2H2M e 4P/ pt4p + 47T,LL26_4P/“ 3u” + 12pu” + 24p% 1 + 32p 7
P’ App? 83 ot
and we can estimate (326) by
2
% ”(1/171/’)”3{/3,0 HQ(U_I) Z (K2 + L2)2 e 2°IK+L
L=(L1,Ly)€Z*\{0}
wLy,pu% Lo€2Z
2
T _ o B
7 ||(¢71/))||3,¢po M2( R Z (2K22 + 2L§) e 2p|K+L)|
L=(L1,L3)€Z?\{0}
plLy,p? Lo€2Z
71'2 - +oo +oo
< S @ D)o 7Y 2KF 27 / e 4dl + 4n / et
2/pe 2/uc

7’ N2 2(0—1)
= 5 W, ) 0 17 x

9 log pl® —ap/ue 17 +4p + g o= 40/0 3’ + 12pp® + 24p% " + 32p°
p2 4/J‘Up2 8[/430/74 :

(328) 27 2
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