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Abstract. We study analytically the dynamics of two-dimensional rectangular lattices with pe-
riodic boundary conditions. We consider anisotropic initial data supported on one low-frequency
Fourier mode. We show that, in the continuous approximation, the resonant normal form of the
system is given by integrable PDEs. We exploit the normal form in order to prove the existence of
metastability phenomena for the lattices. More precisely, we show that the energy spectrum of the
normal modes attains a distribution in which the energy is shared among a packet of low-frequencies
modes; such distribution remains unchanged up to the time-scale of validity of the continuous ap-
proximation.
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1. Introduction
intro

In this paper we present an analytical study of the dynamics of two-dimensional rectangular lattices
with nearest-neighbour interaction and periodic boundary conditions, for initial data with only one low-
frequency Fourier mode initially excited. We give some rigorous results concerning the relaxation to a
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metastable state, in which energy sharing takes place among low-frequency modes only.

The study of metastability phenomena for lattices started with the numerical result by Fermi, Pasta
and Ulam (FPU)

fermi1995studies
[?], who investigated the dynamics of a one-dimensional chain of particles with nearest

neighbour interaction. In the original simulations all the energy was initially given to a single low-
frequency Fourier mode with the aim of measuring the time of relaxation of the system to the `thermal
equilibrium' by looking at the evolution of the Fourier spectrum. Classical statistical mechanics pre-
scribes that the energy spectrum corresponding to the thermal equilibrium is a plateau (the so-called
theorem of equipartition of energy). Despite the authors believed that the approach to such an equilib-
rium would have occurred in a short time-scale, the outcoming Fourier spectrum was far from being �at
and they observed two features of the dynamics that were in contrast with their expectations: the lack
of thermalization displayed by the energy spectrum and the recurrent behaviour of the dynamics.

Both from a physical and a mathematical point of view, the studies on FPU-like systems have a long
and active history: a concise survey of this vast literature is discussed in the monograph

gallavotti2007fermi
[?]. For a more

recent account on analytic results on the `FPU paradox' we refer to
bambusi2015some
[?].

In particular, we mention the papers
bambusi2006metastability
[?] and

bambusi2008resonance
[?], in which the authors used the techniques of canonical

perturbation theory for PDEs in order to show that the FPU α model (respectively, β model) can be
rigorously described by a system of two uncoupled KdV (resp. mKdV) equations, which are obtained as
a resonant normal form of the continuous approximation of the FPU model; moreover, this result allowed
to deduce a rigorous result about the energy sharing among the Fourier modes, up to the time-scales
of validity of the approximation. If we denote by N the number of degrees of freedom for the lattice
and by µ ∼ 1

N
� 1 the wave-number of the initially excited mode, if we assume that the speci�c energy

ε ∼ µ4 (resp. ε ∼ µ2 for the FPU β model), then the dynamics of the KdV (resp. mKdV) equations
approximates the solutions of the FPU model up to a time of order O(µ−3). However, the relation
between the speci�c energy and the number of degrees of freedom implies that the result does not hold
in the thermodynamic limit regime, namely for large N and for �xed speci�c energy ε (such a regime is
the one which is relevant for statistical mechanics).

Unlike the extensive research concerning one-dimensional systems, it seems to the authors that the
behaviour of the dynamics of two-dimensional lattices is far less clear; it is expected that the interplay
between the geometry of the lattice and the speci�c energy regime could lead to di�erent results.

Benettin and collaborators
benettin1980stochastic
[?]

benettin2005time
[?]

benettin2008study
[?] studied numerically a two-dimensional FPU lattice with trian-

gular cells and di�erent boundary conditions in order to estimate the equipartition time-scale. They
found out that in the thermodynamic limit regime the equipartition is reached faster than in the one-
dimensional case. The authors decided not to consider model with square cells in order to have a
spectrum of linear frequencies which is di�erent with respect to the one of the one-dimensional model;
they also added (see

benettin2008study
[?], section B.(iii) )

There is a good chance, however, that models with square lattice, and perhaps a di�erent potential
so as to avoid instability, behave di�erently from models with triangular lattice, and are instead more
similar to one-dimensional models. This would correspond to an even stronger lack of universality in the
two-dimensional FPU problem.

Up to the authors' knowledge, the only analytical results on the dynamics of two-dimensional lattices
in this framework concern the existence of breathers

wattis1994solitary
[?]

butt2006discrete
[?]

butt2007discrete
[?]

yi2009discrete
[?]

wattis2014discrete
[?]

bambusi2010existence
[?].

In this paper we study two-dimensional rectangular lattices with (2N1 + 1)× (2N2 + 1) sites, square
cell, nearest-neighbour interaction and periodic boundary conditions, and we show the existence of
metastability phenomena as in

bambusi2006metastability
[?]. More precisely, if we denote by µ � 1 the wave-number of the

Fourier mode initially excited and by σ the ratio between the sides of the lattice, we obtain for a 2D
Electrical Transmission lattice (ETL) either a system of two uncoupled KP-II equations for µ � 1
and σ = 2, or a system of two uncoupled KdV equations for µ � 1 and 2 < σ < 5 as a resonant
normal form for the continuous approximation of the lattice, while for the 2D Klein-Gordon lattice with
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quartic defocusing nonlinearity we obtain a one-dimensional cubic defocusing NLS equation for µ � 1
and 1 < σ < 7. Since all the above PDEs are integrable, we can exploit integrability to deduce a
mathematically rigorous result on the formation of the metastable packet.

We would like to emphasize that, depending on the geometry of the lattice which is encoded in
the parameter σ, the dynamics is almost 1-dimensional for highly anisotropic lattices and genuinely
2-dimensional for low values of σ. In this picture, the edge case σ = 2 has a genuinely 2-dimensional
normal form equation (as it happens for σ ≤ 2) which is integrable (as for σ ≥ 2).

Up to the authors' knowledge, this is the �rst analytical result about metastable phenomena in
two-dimensional Hamiltonian lattices with periodic boundary conditions; in particular, this is the �rst
rigorous result for two-dimensional lattices in which the dynamics of the lattice in a genuinely two-
dimensional regime is described by a system of two-dimensional integrable PDEs.

Some comments are in order:

i. we have that the time-scale of validity of our result is of order O(µ−3) for the 2D ETL lattice,
and of order O(µ−2) for the 2D Klein-Gordon lattice;

ii. the ansatz about the small amplitude solutions gives a relation between the speci�c energy of
the system ε and the wave-number µ ∼ 1

N1
of the Fourier mode initially excited. More precisely,

we obtain ε ∼ µ4 for the 2D ETL lattice as in
bambusi2006metastability
[?], and ε ∼ µ2 for the 2D Klein-Gordon lattice.

This implies that the result does not hold in the thermodynamic limit regime;
iii. our result can be easily generalized to higher-dimensional lattices (see Remark 2.12 and Remark

2.13), such as the physical case of three-dimensional rectangular lattices with cubic cells;
iv. the upper bounds for σ in the KdV regime and in the NLS regime come from a technical

assumption in the approximation results (see Proposition 6.5, Proposition 6.2 and Proposition
6.9). The approximation of solutions for the lattice with solutions of integrable PDEs in one-
dimensional lattices was obtained through a detailed analysis in order to bound the error, and
this is also the case for two-dimensional lattices, (see Proposition 6.5, Proposition 6.9, Appendix
C and Appendix E), where one has to do very careful estimates in order to bound the di�erent
contributions to the error.

To prove our results we follow the strategy of
bambusi2006metastability
[?]. The �rst step consists in the approximation of

the dynamics of the lattice with the dynamics of a continuous system. As a second step we perform a
normal form canonical transformation and we obtain that the e�ective dynamics is given by a system of
integrable PDEs (KdV, KP-II, NLS depending on the lattice and the relation between N1 and N2). Next,
we exploit the dynamics of these integrable PDEs in order to construct approximate solutions of the
original discrete lattices, and we estimate the error with repect to a true solution with the corresponding
initial datum. Finally, we use the known results about the dynamics of the above mentioned integrable
PDEs in order to estimate the speci�c energies for the approximate solutions of the original lattices.

The novelties of this work are: on the one side, a mathematically rigorous proof of the approximation
of the dynamics of the ETL lattice by the dynamics of certain integrable PDEs (among these integrable
PDEs, there is one which is genuinely two-dimensional, the KP-II equation) and of the dynamics of the
two-dimensional KG lattice by the dynamics of the one-dimensional nonlinear Schrödinger equation; on
the other side, there are two technical di�erences with respect to previous works, namely the normal
form theorem (which is a variant of the technique used in

bambusi2002nonlinear
[?]

bambusi2005galerkin
[?]

pasquali2018dynamics
[?]) and the estimates for bounding the

error between the approximate solution and the true solution of the lattice (which need a more careful
study than the ones appearing in

schneider2000counter
[?]

bambusi2006metastability
[?] for the one-dimensional case).

The paper is organized as follows: in Section 2 we introduce the mathematical setting of the models
and we state our main results, Theorem 2.1, Theorem 2.4 and Theorem 2.6. In Section 3 we state
an abstract Averaging Theorem, which we prove in Section 3.2. In Section 4 we apply the averaging
Theorem to the two-dimensional lattices, deriving the integrable approximating PDEs in the di�erent
regimes. In Section 5 we review some results about the dynamics of the normal form equation. In Section
6 we use the normal form equations in order to construct approximate solutions (see Proposition 6.5,
Proposition 6.2 and Proposition 6.9), and we estimate the di�erence with respect to the true solutions
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with corresponding initial data in Proposition 6.6, Proposition 6.3 and Proposition 6.10. In Appendix
A we prove the technical Lemma 3.6; in Appendix B we prove Proposition 6.5; in Appendix C we prove
Proposition 6.6; in Appendix D we prove Proposition 6.9; in Appendix E we prove Proposition 6.10.

2. Main Results
results

We consider a periodic two-dimensional rectangular lattice, called ETL lattice, which in the non-
periodic setting has been studied in

butt2006discrete
[?] (see Remark 2.9 for a physical motivation of such a model), and

which can be regarded as a simpler version of a 2D rectangular FPU model. We denote

Z2
N1,N2

:= {(j1, j2) : j1, j2 ∈ Z, |j1| ≤ N1, |j2| ≤ N2};Z2Z2 (1)

we also write e1 := (1, 0), e2 := (0, 1) and Z2
N := Z2

N,N .
The Hamiltonian describing the ETL lattice is given by

H(Q,P ) =
∑

j∈Z2
N1,N2

−1

2
Pj (∆1P )j + (F (Q))j ,HamQHamQ (2)

(∆1P )j := (Pj+e1 − 2Pj + Pj−e1) + (Pj+e2 − 2Pj + Pj−e2),Delta1Delta1 (3)

(F (Q))j =
Q2
j

2
+ α

Q3
j

3
+ β

Q4
j

4
.FQFQ (4)

We refer to (2) as α + β model (respectively, β model) if α 6= 0 (respectively α = 0). With the above
Hamiltonian formulation the equations of motion associated to (2) are given by{

Q̇j = −(∆1P )j

Ṗj = −(F ′(Q))j
;

Q̈j = (∆1F
′(Q))j .2DETLeq2DETLeq (5)

We also introduce the Fourier coe�cients of Q via the following standard relation,

Qj :=
1√

(2N1 + 1)(2N2 + 1)

∑
k∈Z2

N1,N2

Q̂ke
i j·k 2π
(2N1+1)(2N2+1) , j ∈ Z2

N1,N2
,fourierQfourierQ (6)

and similarly for Pj . We denote by

Ek :=
ω2
k|P̂k|2 + |Q̂k|2

2
,EnNormModeEnNormMode (7)

ω2
k := 4 sin2

(
k1 π

2N1 + 1

)
+ 4 sin2

(
k2 π

2N2 + 1

)
,FreqNormModeFreqNormMode (8)

the energy and the square of the frequency of the mode at site k = (k1, k2) ∈ Z2
N1,N2

(see Figure 1).
For states described by real functions, one has E(k1,k2) = E(−k1,k2) and E(k1,k2) = E(k1,−k2) for all
k = (k1, k2), so we will consider only indexes in

Z2
N1,N2,+ := {(k1, k2) ∈ Z2

N1,N2
: k1, k2 ≥ 0}.

As is customary in lattices with a large number of degrees of freedom, especially in relation with
statistical mechanics, it is also convenient to introduce the following speci�c quantities,

κ := κ(k) =

(
k1

N1 + 1
2

,
k2

N2 + 1
2

)
,kappakappa (9)

Eκ :=
Ek(

N1 + 1
2

) (
N2 + 1

2

) ,enkappaenkappa (10)

where (10) is the speci�c energy of the normal mode with index κ.
We want to study the behaviour of small amplitude solutions of (5), with initial data in which only

one low-frequency Fourier mode is excited.
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Figure 1. The dispersion relation for the ETL lattice (2), namely ± ωk, k = (k1, k2),
vs the integer coordinates, for N1 = 10 and N2 = 100. fig:freq_ETL

We assume N1 ≤ N2, and we introduce the quantities

µ :=
2

2N1 + 1
,mumu (11)

σ := logN1+ 1
2

(
N2 +

1

2

)
,sigmasigma (12)

which play the role of parameters in our construction: we will use them in the asymptotic expansion of
the dispersion relation of the continuous approximation of the lattice (see (98)-(100), and (119)-(120))
in order to derive the integrable approximating PDEs in the regimes we are considering.

We study the α+ β model of (5) in the following regime:

(KP) the weakly transverse regime, where the e�ective dynamics is a described by a system of two
uncoupled Kadomtsev-Petviashvili (KP) equation. This corresponds to taking µ� 1 and σ = 2.

From now on, we denote by κ0 :=
(

1

N1+ 1
2

, 1

(N1+ 1
2

)σ

)
= (µ, µσ). Our main result is the following:

KPrThm Theorem 2.1. Consider (5) with α 6= 0, σ = 2.
Fix 1 ≤ γ < 5

2
and two positive constants C0 and T0, then there exist positive constants µ0, C1 and

C2 (depending only on γ, C0 and on T0) such that the following holds. Consider an initial datum with

Eκ0(0) = C0µ
4, Eκ(0) = 0 ∀κ = (κ1, κ2) 6= κ0,KPDataKPData (13)

and assume that µ < µ0. Then there exists ρ > 0 such that along the corresponding solution one has

Eκ(t) ≤ C1 µ
4e−ρ|(κ1/µ,κ2/µ

σ)| + C2 µ
4+γ , |t| ≤ T

µ3
EnModesKPEnModesKP (14)

for all κ.

ActAngKPrem Remark 2.2. Theorem 2.1 is the �rst rigorous result for two-dimensional lattices in which the dynamics
of the lattice in a genuinely two-dimensional regime is described by a system of two-dimensional integrable
PDEs. Moreover, in Theorem 2.1 we do not mention the existence of a sequence of almost-periodic
functions approximating the speci�c energies of the modes, and this is a di�erence with respect to Theorem
5.3 in

bambusi2006metastability
[?]. This is related to the construction of action-angle/Birkho� coordinates for the KP equation,

which is an open problem in the theory of integrable PDEs.

InDatarem Remark 2.3. For the sake of simplicity, we have proved Theorem 2.1 for initial data in which only one
low-frequency Fourier mode is excited. One can also prove that a variant of Theorem 2.1 holds also in the
case the higher harmonics of a low-frequency Fourier mode are excited, provided that the energy decreases
exponentially with respect to |(κ1/µ, κ2/µ

σ)|, and also for initial data in which the symmetrical modes
of a given low-frequency Fourier mode are excited. To summarize, we are only able to prove stability of
the solutions we constructed for initial data with vanishing speci�c energy for a time-scale O(µ−3).

We also point out that there are also other regimes in which the dynamics of a two-dimensional
lattice can be approximated by integrable PDEs. For example, we can consider α + β model of (5) in
the following regime:
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(KdV) the very weakly transverse regime, where the e�ective dynamics is described by a system of
two uncoupled Korteweg-de Vries (KdV) equations. This corresponds to taking µ � 1 and
2 < σ < 5.

The corresponding result one can prove in such a regime is the following.

KdVrThm Theorem 2.4. Consider (5) with α 6= 0, 2 < σ < 5.
Fix 1 ≤ γ ≤ 7−σ

2
and two positive constants C0 and T0, then there exist positive constants µ0, C1 and

C2 (depending only on γ, C0 and on T0) such that the following holds. Consider an initial datum with

Eκ0(0) = C0µ
4, Eκ(0) = 0, ∀κ = (κ1, κ2) 6= κ0,KdVDataKdVData (15)

and assume that µ < µ0. Then there exists ρ > 0 such that along the corresponding solution one has

Eκ(t) ≤ C1 µ
4e−ρ|(κ1/µ,κ2/µ

σ)| + C2 µ
4+γ , |t| ≤ T0

µ3
EnModesKdVEnModesKdV (16)

for all κ. Moreover, for any n2 with 0 ≤ n2 ≤ N2 there exists a sequence of almost-periodic functions
(Fn)n=(n1,n2)∈Z2

N1,N2,+
such that, if we denote

Fκ0 = µ4 Fn, Fκ = 0 ∀κ 6= nκ0AlmostPerKdVAlmostPerKdV (17)

then

|Eκ(t)−Fκ(t)| ≤ C2 µ
4+γ , |t| ≤ T0

µ3
.ApprEnModesKdVApprEnModesKdV (18)

Scalingrem Remark 2.5. We point out that in the statement of Theorem 2.4 the assumption σ > 2 comes from an
asymptotic expansion of the dispersion relation of the continuous approximation of the lattice (see (98)-
(100)), while the assumption σ < 5 comes from a technical assumption under which we can approximate
the dynamics of the lattice with the dynamics of the system of uncoupled KdV equations (see the statement
of Theorem 6.6).

We can also consider two-dimensional KG lattices, which combine the nearest-neighbour potential
with an on-site one: the scalar model

H(Q,P ) =
∑

j∈Z2
N1,N2

P 2
j

2
+

1

2

∑
j,k∈Z2

N1,N2
|j−k|=1

(Qj −Qk)2

2
+

∑
j∈Z2

N1,N2

U(Qj),Ham2KGsHam2KGs (19)

U(x) = m2 x
2

2
+ β

x2p+2

2p+ 2
, m > 0, β > 0, p ≥ 1,potKG2potKG2 (20)

can be used to describe rigid rotating molecules in the lattice plane (Q being the angle of rotation), where
each molecule interacts with its neighbors and with the periodic substrate potential U ; alternatively, Q
can represent the transverse motion of a planar lattice

rosenau2003hamiltonian
[?].

Using the operator ∆1 introduced in (3), the Hamiltonian (19) can be rewritten as

H(Q,P ) =
∑

j∈Z2
N1,N2

P 2
j

2
+

1

2

∑
j∈Z2

N1,N2

Qj (−∆1Q)j +
∑

j∈Z2
N1,N2

U(Qj),Ham2KGs2Ham2KGs2 (21)

the associated equations of motion are

Q̈j = (∆1Q)j −m2Qj − βQ2p+1
j , j ∈ Z2

N1,N2
.2DKGseq2DKGseq (22)

If we take p = 1, we obtain a generalization of the one-dimensional φ4 model.

Now introduce the Fourier coe�cients of Q as in (6), and similarly for Pj , and denote by

Ek :=
|P̂k|2 + ω2

k|Q̂k|2

2
,EnNormModeKGEnNormModeKG (23)

ω2
k := m2 + 4 sin2

(
k1 π

2N1 + 1

)
+ 4 sin2

(
k2 π

2N2 + 1

)
,FreqNormModeKGFreqNormModeKG (24)
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Figure 2. The dispersion relation for the KG lattice (21), namely ± ωk, k = (k1, k2),
vs the integer coordinates, for N1 = 10 and N2 = 100. fig:freq_KG

the energy and the square of the frequency of the mode at site k = (k1, k2) ∈ Z2
N1,N2

(see Figure 2).
In the rest of the paper we will assume that m = 1.

We consider the two-dimensional KG lattice (19) in the following regime:

(1D NLS) the very weakly transverse regime, where the e�ective dynamics is described by a cubic one-
dimensional nonlinear Schrödinger (NLS) equation. This corresponds to taking µ � 1 and
1 < σ < 7.

1DNLSrThm Theorem 2.6. Consider (19) with β > 0, 1 < σ < 7.
Fix 0 < γ ≤ 7−σ

2
and two positive constants C0 and T0, then there exist positive constants µ0, C1 and

C2 (depending only on γ, C0 and on T0) such that the following holds. Consider an initial datum with

Eκ0(0) = C0µ
2, Eκ(0) = 0, ∀κ = (κ1, κ2) 6= κ0,1DNLSData1DNLSData (25)

and assume that µ < µ0. Then there exists ρ > 0 such that along the corresponding solution one has

Eκ(t) ≤ C1 µ
2e−ρ|(κ1/µ,κ2/µ

σ)| + C2 µ
2+γ , |t| ≤ T0

µ2
EnModes1DNLSEnModes1DNLS (26)

for all κ. Moreover, for any n2 with 0 ≤ n2 ≤ N2 there exists a sequence of almost-periodic functions
(Fn)n=(n1,n2)∈Z2

N1,N2,+
such that, if we denote

Fκ0 = µ2 Fn, Fκ = 0 ∀κ 6= nκ0AlmostPer1DNLSAlmostPer1DNLS (27)

then

|Eκ(t)−Fκ(t)| ≤ C2 µ
2+γ , |t| ≤ T0

µ2
.ApprEnModes1DNLSApprEnModes1DNLS (28)

InDataKGrem Remark 2.7. In Theorem 2.6 we are able to prove stability of the solutions we constructed for initial
data with vanishing speci�c energy for a time-scale O(µ−2).

ScalingKGrem Remark 2.8. As for Theorem 2.4, in the statement of Theorem 2.6 the assumption σ > 1 comes
from an asymptotic expansion of the dispersion relation of the continuous approximation of the lattice
(see (119)-(120)), while the assumption σ < 5 comes from a technical assumption under which we can
approximate the dynamics of the lattice with the dynamics of the system of uncoupled NLS equations (see
the statement of Theorem 6.10).

2.1. Further remarks.

ETLrem Remark 2.9. The ETL lattice (2) describes a lossless periodic two-dimensional electrical transmission
lattice (ETL), given by a rectangular con�guration of repeating units, each made up of two linear inductors
and a nonlinear capacitor, and lattice nodes denote the locations of capacitors. The Hamiltonian (2)
comes from the following computations (see also

butt2006discrete
[?]): assume that Vj(t), j ∈ Z2

N1,N2
, denotes the voltage

across the j-th capacitor, Qj(t) denotes the charge stored on the j-th capacitor and Ij(t) denotes the
current through the j-th inductor along direction e1. To derive the equations for the voltage Vj and the
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charge Qj in the lattice one can proceed as follows. Considering a section of the lattice and applying
Faraday's law and Lenz's law, the di�erence in shunt voltage at site j and site j + e1 is given by

Vj+e1 − Vj = −LdIj
dt
,Ve1Ve1 (29)

where L is the inductance, which we assume to be constant. Assuming the capacitance C to be an analytic
function of the voltage V we can expand it in Taylor series, obtaining for small voltages

Cj(V ) ∼ C0(1 + 2aVj + 3bV 2
j ),expCexpC (30)

where C0 := Cj(0), a and b are real constants determined by the physical realisation of the network.
Using standard relations between electrical quantities we �nally obtain a closed equation for the charge

d2Qj
dt2

=
1

LC0
(∆1(Q+ αQ2 + βQ3))j ,eqQ2eqQ2 (31)

where ∆1 is the operator de�ned in (3), and α, β are real parameters related to a and b. Up to a rescaling
of time, we can set LC0 = 1 without loss of generality; one can check that the Hamiltonian associated to
(31) is precisely (2).

Anisorem Remark 2.10. The speci�c choice of the direction of longitudinal propagation in the regimes that we
have considered is not relevant.

FPUNLKGrem Remark 2.11. We point out that the time of validity of Theorem 2.6 for the KG lattice is of order
O(µ−2), which is di�erent from the time of validity of Theorem 2.4 and Theorem 2.1 for the FPU
lattice. In the one-dimensional case it has been observed that, for a �xed value of speci�c energy ε and
for long-wavelength modes initially excited, the φ4 model reached equipartition faster than the FPU β
model (see

lichtenberg2007dynamics
[?], sec. 2.1.8).

HigherDimRem Remark 2.12. Theorem 2.1 and Theorem 2.4 can be generalized to higher dimensional lattices. Indeed,
let d ≤ 4, de�ne

ZdN1,...,Nd := {(j1, . . . , jd) : j1, . . . , jd ∈ Z, |j1| ≤ N1, . . . , |jd| ≤ Nd},ZdZd (32)

and consider the d-dimensional ETL

H(Q,P ) =
∑

j∈Zd
N1,...,Nd

−1

2
Pj (∆1P )j + (F (Q))j ,dDHamdDHam (33)

(F (Q))j =
Q2
j

2
+ α

Q3
j

3
+ β

Q4
j

4
, j ∈ ZdN1,...,Nd .dDFdDF (34)

We assume N1 ≤ N2, . . . , Nd, and we introduce the quantities

µ :=
2

2N1 + 1
,dmudmu (35)

σi := logN1+ 1
2

(
Ni+1 +

1

2

)
, i = 1, . . . , d− 1.dsigmadsigma (36)

Then we can describe the following regimes:

(KdV-d) the α+ β model, in the very weakly transverse regime with µ� 1 and 2 < σ1, . . . , σd−1 < 5;
(KP-d) the α+ β model, in the weakly transverse regime with µ� 1 and σ1 = 2, 2 < σ2, . . . , σd−1 < 5.

Moreover, in order to obtain Theorem 2.4 and Theorem 2.1 we will have to assume that

2γ +

d−1∑
i=1

σi < 7.TechAssumpTechAssump (37)

which, together with the fact that σi > 2 for all i = 1, . . . , d− 1, is consistent with the assumption d ≤ 4.
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HigherDimRemNLKG Remark 2.13. Theorem 2.6 can be generalized to higher dimensional lattices. Indeed, let d ≤ 6, de�ne
ZdN1,...,Nd

as in (32) and consider the d-dimensional NLKG lattice

H(Q,P ) =
∑

j∈Zd
N1,...,Nd

P 2
j

2
+

1

2

∑
j,k∈ZdN1,...,Nd
|j−k|=1

(Qj −Qk)2

2
+

∑
j∈Zd

N1,...,Nd

U(Qj),HamdKGsHamdKGs (38)

U(x) = m2 x
2

2
+ β

x2p+2

2p+ 2
, m > 0, β > 0, p ≥ 1,potKGdpotKGd (39)

We assume N1 ≤ N2, . . . , Nd−1, and we introduce the quantities µ and σi (1 ≤ i ≤ d− 1) as in (35) and
(36).

Then we can describe the following regime:

(1DNLS-d) the model (38) with m = 1 and p = 1 in the very weakly transverse regime, with µ � 1,
1 < σ1, . . . , σd−1 < 7;

Moreover, in order to obtain Theorem 2.6 we will have to assume that

2γ +

d−1∑
i=1

σi < 7.TechAssumpNLKGTechAssumpNLKG (40)

which, together with the fact that σi > 1 for all i = 1, . . . , d− 1, is consistent with the assumption d ≤ 6.

Remark 2.14. There are other interesting regimes for (5) and (22) especially for their relation with the
modi�ed KdV equation and two-dimensional Non-Linear Schrödinger equation respectively. These will
be discussed in Remark 4.8 and Remark 4.11 respectively.

3. Galerkin Averaging
galavsecBNFsubsec

3.1. An Averaging Theorem. Following
pasquali2018dynamics
[?] (see also

bambusi2006metastability
[?] and

bambusi2005galerkin
[?]) we use a Galerkin averaging method

in order to approximate the solutions of the continuous approximation of the lattice with the solutions
of the system in normal form.

To this end we �rst have to introduce a topology in the phase space. This is conveniently done in
terms of Fourier coe�cients.

defsigk De�nition 3.1. Fix two constants ρ ≥ 0 and s ≥ 0. We will denote by `2ρ,s the Hilbert space of complex
sequences v = (vn)n∈Z2\{0} with obvious vector space structure and with scalar product

〈v, w〉ρ,s :=
∑

n∈Z2\{0}

vnwne
2ρ|n||n|2s .(41)

and such that

‖v‖2ρ,s := 〈v, v〉ρ,s =
∑

n∈Z2\{0}

|vn|2e2ρ|n||n|2snormsigknormsigk (42)

is �nite. We will denote by `2 the space `20,0.

We will identify a 2-periodic function v with the sequence of its Fourier coe�cients {v̂n}n,

v(y) =
1

2

∑
n∈Z2

v̂ne
iπ n·y,

and, with a small abuse of notation, we will say that v ∈ `2ρ,s if the sequence of its Fourier coe�cients

belong to `2ρ,s.

Now �x ρ ≥ 0 and s ≥ 1, and consider the scale of Hilbert spaces Hρ,s := `2ρ,s × `2ρ,s 3 ζ = (ξ, η),
endowed with one of the following symplectic forms:

Ω1 :=

(
0 i
−i 0

)
, Ω2 :=

(
−∂−1

x1 0
0 ∂−1

x1

)
.eq:SymplecticFormseq:SymplecticForms (43)
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Observe that Ωγ : Hρ,s → Hρ,s+γ−1 (γ = 1, 2) is a well-de�ned operator. Moreover, Ω2 is well-de�ned on
the space of functions with zero-average with respect to the x1-variable, i.e. on those functions ζ(x1, x2)

such that for every x2 we have
∫ 1

−1
ζ(x1, x2) dx1 = 0.

If we �x γ ∈ {1, 2}, s and Us ⊂ `2ρ,s open, we de�ne the gradient of K ∈ C∞(Us,R) with respect to

ξ ∈ `2ρ,s as the unique function s.t.

〈∇ξK,h〉 = dξKh, ∀h ∈ `2ρ,s.

Similarly, for an open set Us ⊂ Hρ,s the Hamiltonian vector �eld of the Hamiltonian function H ∈
C∞(Us,R) is given by

XH(ζ) = Ω−1
γ ∇ζH(ζ).

The open ball of radius R and center 0 in `2ρ,s will be denoted by Bρ,s(R); we write Bρ,s(R) :=
Bρ,s(R)×Bρ,s(R) ⊂ Hρ,s.

Now, we introduce the Fourier projection operators π̂j : `2ρ,s → `2ρ,s

π̂j((vn)n∈Z2\{0}) :=

{
vn if j − 1 ≤ |n| < j

0 otherwise
, j ≥ 1,hatpihatpi (44)

the operators πj : Hρ,s → Hρ,s

πj((ζn)n∈Z2\{0}) :=

{
ζn if j − 1 ≤ |n| < j

0 otherwise
, j ≥ 1,smallpismallpi (45)

and the operators ΠM : Hρ,s → Hρ,s

ΠM ((ζn)n∈Z2\{0}) :=

{
ζn if |n| ≤M
0 otherwise

, M ≥ 0.bigpibigpi (46)

Lemma 3.2. The projection operators de�ned in (45) and (46) satisfy the following properties for any
ζ ∈ Hρ,s:

i. for any j ≥ 0

ζ =
∑
j≥0

πjζ;

ii. for any j ≥ 0

‖ΠMζ‖Hρ,s ≤ ‖ζ‖Hρ,s ;

iii. the following equality holds

‖ζ‖Hρ,s =

∥∥∥∥∥∥∥
∑
j∈N

j2s|πjζ|2
1/2

∥∥∥∥∥∥∥
Hρ,0

compnormscompnorms (47)

where |ζ|, for ζ ∈ Hρ,s is the element |ζ| ∈ Hρ,s whose n-th element is

|ζ|n := (|ξn|, |ηn|)

and (ζα)n := (ξαn , η
α
n).

Now we consider a Hamiltonian system of the form

H = h0 + δF,HamdecompHamdecomp (48)

where we assume that

(PER) h0 generates a linear periodic �ow Φτh0
with period T ,

Φτ+T
h0

= Φτh0
∀τ,

which is analytic as a map from Hρ,s into itself for any s ≥ 1. Furthermore, the �ow is an
isometry for any s ≥ 1.
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(INV) for any s ≥ 1, Φτh0
leaves invariant the space ΠjHρ,s for any j ≥ 0. Furthermore, for any j ≥ 0

πj ◦ Φτh0 = Φτh0 ◦ πj .
Next, we assume that the vector �eld of F admits an asymptotic expansion in δ of the form

F ∼
∑
j≥1

δj−1Fj ,expFexpF (49)

XF ∼
∑
j≥1

δj−1XFj ,expXFexpXF (50)

and that the following property is satis�ed

(HVF) There exists R∗ > 0 such that for any j ≥ 1
· XFj is analytic from Bρ,s+2j+γ(R∗) to Hρ,s.

Moreover, for any r ≥ 1 we have that
· XF−∑r

j=1 δ
j−1Fj

is analytic from Bρ,s+2(r+1)+γ(R∗) to Hρ,s.
The main result of this section is the following theorem.

gavthm Theorem 3.3. Fix R > 0, s1 � 1. Consider (48), and assume (PER), (INV) and (HVF). Then ∃
s0 > 0 with the following properties: for any s ≥ s1 there exists δs � 1 such that for any δ < δs there
exists Tδ : Bρ,s(R/2)→ Bρ,s(R) analytic canonical transformation such that

H1 := H ◦ Tδ = h0 + δZ1 + δ2 R(1),TransfHamTransfHam (51)

where Z1 is in normal form, namely

{Z1, h0} = 0,NFthmNFthm (52)

and there exists a positive constant C′s such that

sup
Bρ,s+s0 (R/2)

‖XZ1‖Hρ,s ≤ C
′
s,

sup
Bρ,s+s0 (R/2)

‖XR(1)‖Hρ,s ≤ C′s,RemthmRemthm (53)

sup
Bρ,s(R/2)

‖Tδ − id‖Hρ,s ≤ C′s δ.CTthmCTthm (54)

In particular,

Z1(ζ) = 〈F1〉 (ζ),averageaverage (55)

where 〈F1〉 (ζ) :=
∫ T

0
F1 ◦ Φτh0

(ζ) dτ
T
.

BNFprsubsec
3.2. Proof of the Averaging Theorem. The proof of Theorem 3.3 is actually an application of the
techniques used in

pasquali2018dynamics
[?] and

bambusi2006metastability
[?]).

First notice that by assumption (INV) the Hamiltonian vector �eld of h0 generates a continuous �ow
Φτ which leaves ΠMHρ,s invariant.

Now we set H = H1,M +R1,M +R1, where

H1,M := h0 + δ F1,M ,truncsystruncsys (56)

F1,M := F1 ◦ΠM ,(57)

and

R1,M := h0 + δF1 −H1,M ,remsysremsys (58)

R1 := δ (F − F1) .(59)

The system described by the Hamiltonian (56) is the one that we will put in normal form.
In the following we will use the notation a . b to mean: there exists a positive constant K independent
of M and R (but eventually on s), such that a ≤ Kb. We exploit the following intermediate results:
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truncest Lemma 3.4. For any s ≥ s1 there exists R > 0 such that ∀ σ > 0, M > 0

sup
Bρ,s+γ+σ+2(R)

‖XR1,M (ζ)‖Hρ,s .
δ

(M + 1)σ
,truncremttruncremt (60)

sup
Bρ,s+γ+4(R)

‖XR1(ζ)‖Hρ,s . δ2.expremestexpremest (61)

Proof. We recall that R1,M = h0 + δFj −H1,M .
We �rst notice that ‖id−ΠM‖Hρ,s+σ→Hρ,s = (M + 1)−σ: indeed, using (47) we obtain∥∥∥∥∥∥

∑
j≥M+1

πjf

∥∥∥∥∥∥
Hρ,s

=

∥∥∥∥∥∥∥
 ∑
j≥M+1

|jsπjf |2
1/2

∥∥∥∥∥∥∥
Hρ,0

≤ (M + 1)−σ

∥∥∥∥∥∥∥
 ∑
j≥M+1

|js+σπjf |2
1/2

∥∥∥∥∥∥∥
Hρ,0

≤ (M + 1)−σ‖f‖Hρ,s+σ ,

whereas the inequality ‖id− ΠM‖Hρ,s+σ→Hρ,σ ≤ (M + 1)−σ is obtained with a function which has non
zero components only for |j| = M + 1, i.e. f = πM+1f .

Inequality (60) follows from

sup
(ζ)∈Bρ,s+γ+2+σ(R)

‖XR1,M (ζ)‖Hρ,s

. ‖dXδF1‖L∞(Bρ,s+2+γ(R),Hρ,s)‖id−ΠM‖L∞(Bρ,s+2+γ+σ(R),Bρ,s+2+γ(R))

. δ (M + 1)−σ,

while estimate (61) is an immediate consequence of (HVF). �

pertestlemma Lemma 3.5. For any s ≥ s1

sup
Bρ,s(R∗)

‖XF1,M (ζ)‖Hρ,s ≤ K(F )
1,s M

2+γ ,

where

K
(F )
1,s := sup

Bρ,s(R∗)
‖XF1(ζ)‖Hρ,s−2−γ < +∞.

Proof. Using (47) we have

sup
(ζ)∈Bρ,s(R)

∥∥∥∥∥∥
∑
h≤M

πhXF1,M (ζ)

∥∥∥∥∥∥
Hρ,s

= sup
(ζ)∈Bρ,s(R)

∥∥∥∥∥∥∥
∑
h≤M

|hsπhXF1,M (ζ)|2
1/2

∥∥∥∥∥∥∥
Hρ,0

(62)

≤M2+γ sup
(ζ)∈Bρ,s(R)

∥∥∥∥∥∥∥
∑
h≤M

|hs−2−γπhXF1,M (ζ)|2
1/2

∥∥∥∥∥∥∥
Hρ,0

(63)

≤M2+γ sup
(ζ)∈Bρ,s(R)

‖XF1,M (ζ)‖Hρ,s−2−γ = K
(F )
1,s M

2+γ ,(64)

where the last quantity is �nite for R ≤ R∗ by property (HVF). �

To normalize (56) we need a slight reformulation of Theorem 4.4 in
bambusi1999nekhoroshev
[?]. Here we report a statement

of the result adapted to our context which is proved in Appendix A.

NFest Lemma 3.6. Let s ≥ s1 + 2 + γ, R > 0, and consider the system (56). Assume that δ < 1
30
, and that

12T K
(F )
1,s M

2+γδ < Rsmallcondsmallcond (65)

where

K
(F )
1,s := sup

(ζ)∈Bρ,s(R)

‖XF1(ζ)‖Hρ,s−2−γ .
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Then there exists an analytic canonical transformation T (0)
δ,M : Bρ,s(R/2)→ Bρ,s(R) such that

sup
Bρ,s(R/2)

‖T (0)
δ,M (ζ)− ζ‖Hρ,s ≤ 2T K

(F )
1,s M

2+γδ,CTlemmaCTlemma (66)

and that puts (56) in normal form up to a small remainder,

H1,M ◦ T (0)
δ,M = h0 + δZ

(1)
M + δ2R(1)

M ,steprstepr (67)

with Z
(1)
M in normal form, namely {h0,M , Z

(1)
M } = 0, and

sup
Bρ,s(R/2)

‖X
Z

(1)
M

(ζ)‖Hρ,s ≤ K(F )
1,s M

2+γ
itervf1itervf1 (68)

sup
Bρ,s(R/2)

‖XR(1)
M

(ζ)‖Hρ,s ≤ 15K
(F )
1,s M

2+γ
vecfremvecfrem (69)

Now we conclude with the proof of the Theorem 3.3.

Proof. If we de�ne δs := min{ 1
30
, R

12T K
(F )
1,s M

2+γ
} and we choose

s0 = σ + 2 + γ,

σ ≥ 2,

then the transformation Tδ := T (0)
δ,M de�ned by Lemma 3.6 satis�es (51) because of (67).

Next, Eq. (52) follows from Lemma 3.6, Eq. (53) follows from (68) and (69), while (54) is precisely
(66). Finally, (55) can be deduced by applying Lemma A.6 to G = F1. �

4. Applications to two-dimensional lattices
2DsecKPsubsec

4.1. The KP regime for the ETL lattice. We want to study the behaviour of small amplitude so-
lutions of (5), with initial data in which only one low-frequency Fourier mode is excited.

As a �rst step, we introduce an interpolating function Q = Q(t, x) such that

(A1) Q(t, j) = Qj(t), for all j ∈ Z2
N1,N2

;
(A2) Q is periodic with period 2N1 + 1 in the x1-variable, and periodic with period 2N2 + 1 in the

x2-variable;
(A3) Q has zero average,

∫
[−(N1+ 1

2 ),N1+ 1
2 ]×[−(N2+ 1

2 ),N2+ 1
2 ]Q(t, j)dj = 0 ∀t;

(A4) Q ful�lls

Q̈ = ∆1(Q+ αQ2 + βQ3),FPUeqcFPUeqc (70)

∆1 := 4 sinh2

(
∂x1
2

)
+ 4 sinh2

(
∂x2
2

)
.Delta1cDelta1c (71)

It is easy to verify that (70) is Hamiltonian with Hamiltonian function

H(Q,P ) =

∫
[
− 1
µ
, 1
µ

]
×
[
− 1
µ2
, 1
µ2

] −P ∆1P +Q2

2
+ α

Q3

3
+ β

Q4

4
dx,HamFPUcHamFPUc (72)

where P is a periodic function which has zero average and is canonically conjugated to Q.
We consider (70), with α 6= 0, and we look for small amplitude solutions of the form

Q(t, x) = µ2q(µt, µx1, µ
2x2),KPr1KPr1 (73)

with µ as in (11). We introduce the rescaled variables τ = µt, y1 = µx1, y2 = µ2x2.
Plugging (73) into (70), leads to

qττ =
∆µ,y1

µ2

(
q + µ2αq2) ,FPUeqKPr1FPUeqKPr1 (74)

∆µ,y1 := 4 sinh2

(
µ∂y1

2

)
+ 4 sinh2

(
µ2 ∂y2

2

)
,Delta1muDelta1mu (75)
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which is a Hamiltonian PDE corresponding to the Hamiltonian functional,

K3(q, p) =

∫
I

−p∆µ,y1p

2µ2
+
q2

2
+ αµ2 q

3

3
+ βµ4 q

4

4
dy,HamFPUcKPHamFPUcKP (76)

where

I := [−1, 1]2,II (77)

and p is the variable canonically conjugated to q.
Now, observe that the the operator ∆µ,y1 admits the following asymptotic expansion up to terms of

order O(µ4),

∆µ,y1

µ2
∼ ∂2

y1 + µ2∂2
y2 +

µ2

12
∂4
y1 +O(µ4),ex2Delta1ex2Delta1 (78)

Therefore the Hamiltonian (76) admits the following asymptotic expansion

K3(q, p) ∼ ĥ0(q, p) + µ2F̂1(q, p) + µ4R̂(q, p),asexp3asexp3 (79)

ĥ0(q, p) =

∫
I

−p (∂2
y1p) + q2

2
dy,h0KPh0KP (80)

F̂1(q, p) =

∫
I

−
p ∂4

y1p

24
−
p ∂2

y2p

2
+ α

q3

3
dy.F1KPF1KP (81)

Following the approach of
bambusi2006metastability
[?], we can introduce the following non-canonical change of coordinates

ξ :=
1√
2

(q + ∂y1p),xixi (82)

η :=
1√
2

(q − ∂y1p).etaeta (83)

which transforms the Poisson tensor into

J = ∂y1

(
−1 0
0 1

)
,PoissonPoisson (84)

and Hamilton equations associated to a Hamiltonian K1 are

∂τξ = −∂y1
δK1

δξ

∂τη = ∂y1
δK1

δη
.

CasimirRem Remark 4.1. By the explicit expression of the Poisson tensor (84) we can compute straightforwardly
Casimir invariants associated to J , which are

C(ξ, η) = A(y2) +B(y2)

∫ 1

−1

ξ(τ, y1, y2)dy1 + C(y2)

∫ 1

−1

η(τ, y1, y2)dy1,CasimirKdVCasimirKdV (85)

where A, B and C are arbitrary functions of y2.
Since Casimir invariants are constants of motion, we can restrict our analysis on the subspace de�ned

by ∫ 1

−1

ξ(τ, y1, y2)− η(τ, y1, y2)dy1 = 0 ∀τ ∈ R, |y2| ≤ 1.ZeroAvy1KdVZeroAvy1KdV (86)

However, by recalling (82)-(83) one sees that (86) implies∫ 1

−1

∂y1p(τ, y1, y2)dy1 = 0 ∀τ ∈ R, |y2| ≤ 1,ZeroAvy1KdV2ZeroAvy1KdV2 (87)

which is true due to periodic boundary conditions.
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In the new coordinates the Hamiltonian takes the form

K3(ξ, η) ∼ h0(ξ, η) + µ2F1(ξ, η) + µ4R(ξ, η),asexp3xietaasexp3xieta (88)

h0(ξ, η) =

∫
I

ξ2 + η2

2
dy,h0KPxietah0KPxieta (89)

F1(ξ, η) =

∫
I

− [∂y1(ξ − η)]2

48
+

[∂y2∂
−1
y1 (ξ − η)]2

4
+ α

(ξ + η)3

3 · 23/2
dy,F1KPxietaF1KPxieta (90)

where (90) is well de�ned because of (104).
Now we apply the averaging Theorem 3.3 to the Hamiltonian (88), with δ = µ2: observe that the

equations of motion of h0 have the following simple form:

h0flowh0flow (91)

{
ξτ = −∂y1ξ
ητ = ∂y1η

;

{
ξ(τ, y) = ξ0(y1 − τ, y2)

η(τ, y) = η0(y1 + τ, y2)
.

F1avKPprop Proposition 4.2. The average of F1 in (88) with respect to the �ow of h0 in (88) is given by

〈F1〉 (ξ, η) =

∫
I

− (∂y1ξ)
2 + (∂y1η)2

48
+

(∂y2∂
−1
y1 ξ)

2 + (∂y2∂
−1
y1 η)2

4
dy +

α

3 · 23/2
([ξ3] + [η3])F1avKPF1avKP (92)

where we denote by [f j ] the average
∫
I
f j(y) dy

4
.

The proof of this proposition is a straightforward application of the following two lemmas.

lem:averaging1 Lemma 4.3. Given two functions u, v ∈ L2([−1, 1])∫ 1

−1

dy

∫ 1

−1

ds u(y ± s)v(y ∓ s) =

∫ 1

−1

u(y)dy

∫ 1

−1

v(y) dy.

Proof. Denoting with {ûk}k and {v̂k}k the Fourier series of u and v respectively and using Plancherel
theorem one obtains∫ 1

−1

dy

∫ 1

−1

ds u(y ± s)v(y ∓ s) =
1

2

∫ 1

−1

dy

∫ 1

−1

ds
∑
k,k′∈Z

ûkv̂k′e
πik(y±s)eπik

′(y∓s) = û0v̂0

and thus Lemma is proved. �

lem:averaging2 Lemma 4.4. Given a function u ∈ L1([−1, 1]) then

1

2

∫ 1

−1

ds

∫ 1

−1

dy u(y ± s) =

∫ 1

−1

u(x) dx

Proof. The thesis follows by a simple change of coordinates x := y ± s. �

Proof of Proposition 4.2. For the computation of 〈F1〉(ξ, η) one can exchange the order of the integrations
and apply Lemma 4.3 and 4.4. �

KPcor Corollary 4.5. The equations of motion associated to h0(ξ, η) + µ2 〈F1〉 (ξ, η) are given by

KPsysKPsys (93)

{
ξτ = −∂y1ξ − µ2

24
∂3
y1ξ −

µ2

2
∂−1
y1 ∂

2
y2ξ −

αµ2

2
√

2
∂y1(ξ2)

ητ = ∂y1η + µ2

2
∂−1
y1 ∂

2
y2η + µ2

24
∂3
y1η + αµ2

2
√

2
∂y1(η2)

.

More explicitly, we observe that (93) is a system of two uncoupled KP equations on a two-dimensional
torus in translating frames.
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KdVsubsec

4.2. The KdV regime for the ETL lattice. For this regime we consider (70), with α 6= 0, and we
look for small amplitude solutions of the form

Q(t, x) = µ2q(µt, µx1, µ
σx2),KdVr1KdVr1 (94)

where q : R × T2 → R is a periodic function and µ, σ > 2 are de�ned in (11)-(12). We introduce the
rescaled variables τ = µt, y1 = µx1, y2 = µσx2, and we denote I is as in (77). Plugging (94) into (70),
we get

qττ =
∆µ,y1,σ

µ2

(
q + µ2αq2) ,FPUeqKdVr1FPUeqKdVr1 (95)

∆µ,y1,σ := 4 sinh2

(
µ∂y1

2

)
+ 4 sinh2

(
µσ
∂y2
2

)
,Delta1sigmaDelta1sigma (96)

which is a Hamiltonian PDE corresponding to the Hamiltonian functional

K1(q, p) =

∫
I

−p∆µ,y1,σp

2µ2
+
q2

2
+ αµ2 q

3

3
dy,HamFPUcKdVHamFPUcKdV (97)

and p is the variable canonically conjugated to q.
Now, observe that the the operator ∆µ,y1,σ admits the following asymptotic expansion,

∆µ,y1,σ

µ2
∼ ∂2

y1 + µ2(σ−1)∂2
y2 +

∑
m≥1

cm
(
µ2m∂2(m+1)

y1 + µ2[(m+1)σ−1]∂2(m+1)
y2

)
,exDelta1sigmaexDelta1sigma (98)

where

cm :=
2

(2m)!
,cmcm (99)

and considering that σ > 2, we have

∆µ,y1,σ

µ2
∼ ∂2

y1 +
µ2

12
∂4
y1 +O(µ4) .ex2Delta1sigmaex2Delta1sigma (100)

Therefore the Hamiltonian (97) admits the following asymptotic expansion

K1(q, p) ∼ ĥ0(q, p) + µ2F̂1(q, p) + µ4R̂(q, p),asexp1asexp1 (101)

ĥ0(q, p) =

∫
I

−p (∂2
y1p) + q2

2
dy,h0h0 (102)

F̂1(q, p) =

∫
I

−
p ∂4

y1p

24
+ α

q3

3
dy.F1KdVF1KdV (103)

Note that the nonlinearity of degree 4 does not a�ect the Hamiltonian up to order O(µ4).
By exploiting again the non-canonical change of coordinates (q, p) 7→ (ξ, η) introduced in (82)-(83)

and the Poisson tensor (84), and∫ 1

−1

ξ(τ, y1, y2)− η(τ, y1, y2)dy1 = 0 ∀τ ∈ R, |y2| ≤ 1,ZeroAvy1ZeroAvy1 (104)

we obtain

K1(ξ, η) ∼ h0(ξ, η) + µ2F1(ξ, η) + µ4R(ξ, η),asexp1xietaasexp1xieta (105)

h0(ξ, η) =

∫
I

ξ2 + η2

2
dy,h0xietah0xieta (106)

F1(ξ, η) =

∫
I

− [∂y1(ξ − η)]2

48
+ α

(ξ + η)3

3 · 23/2
dy.F1xietaF1xieta (107)

Now we apply the averaging Theorem 3.3 to the Hamiltonian (105), with δ = µ2.
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F1avKdVprop Proposition 4.6. The average of F1 in (105) with respect to the �ow of h0 in (106) is given by

〈F1〉 (ξ, η) = −
∫
I

(∂y1ξ)
2 + (∂y1η)2

48
dy +

α

3 · 23/2
([ξ3] + [η3]),F1avKdVF1avKdV (108)

where we denote by [f j ] the average
∫
I
f j(y) dy

4
.

KdVcor Corollary 4.7. The equations of motion associated to h0(ξ, η) + µ2 〈F1〉 (ξ, η) are given by

KdVsysKdVsys (109)

{
ξτ = −∂y1ξ − µ2

24
∂3
y1ξ −

µ2α

2
√

2
∂y1(ξ2)

ητ = ∂y1η + µ2

24
∂3
y1η + µ2α

2
√

2
∂y1(η2)

.

The latter is a system of two uncoupled KdV equations in translating frames with respect to the
y1-direction, for each �xed value of the coordinate y2.

mKdVrem Remark 4.8. One can also study the β model (namely, (70) with α = 0 and β 6= 0) in the following
regime,

(mKdV) the β model in the very weakly transverse regime,

Q(t, x) = µ q(µt, µx1, µ
σx2),mKdVrmKdVr (110)

where µ� 1, 2 < σ.

Let us introduce again the rescaled variables τ = µt, y1 = µx1, y2 = µσx2, and the domain I as in
(77); plugging (110) into (70), we get

qττ =
∆µ,y1,σ

µ2

(
q + µ2βq3) ,FPUeqmKdVr1FPUeqmKdVr1 (111)

where ∆µ,y1,σ is the operator introduced in (96). Eq. (111) is a Hamiltonian PDE with the following
corresponding Hamiltonian,

K2(q, p) =

∫
I

−p∆µ,y1,σp

2µ2
+
q2

2
+ βµ2 q

4

4
dy,HamFPUcmKdVHamFPUcmKdV (112)

where p is the variable canonically conjugated to q.
Recalling that (86) holds true, we exploit again the non-canonical change of coordinates (82)-(83) and

the Poisson tensor (84), obtaining that

K2(ξ, η) ∼ h0(ξ, η) + µ2F1(ξ, η) + µ4R(ξ, η),asexp2xietaasexp2xieta (113)

where h0 is the same as in (106), while

F1(ξ, η) =

∫
I

− [∂y1(ξ − η)]2

48
+ β

(ξ + η)4

24
dy.F1mxietaF1mxieta (114)

Applying Theorem 3.3 to the Hamiltonian (113) with δ = µ2, we get that the equations of motion
associated to h0(ξ, η) + µ2 〈F1〉 (ξ, η) are given by

mKdVsysmKdVsys (115)

{
ξτ = −

(
1 + 3

4
[η2]
)
∂y1ξ − µ2

24
∂3
y1ξ −

µ2β
4
∂y1(ξ3)

ητ =
(
1 + 3

4
[ξ2]
)
∂y1η + µ2

24
∂3
y1η + µ2β

4
∂y1(η3)

.

which is a system of two uncoupled mKdV equations in translating frames with respect to the y1-direction.
The integrability properties of the mKdV equation and the existence of Birkho� coordinates for this model
have been proved in

kappeler2008mkdv
[?].

1DNLSsubsec

4.3. The one-dimensional NLS regime for the KG Lattice. We want to study small amplitude
solutions of (22) , with initial data in which only one low-frequency Fourier mode is excited.

Analogously to the procedure of the previous sections, the �rst step is to introduce an interpolating
function Q = Q(t, x) such that

(B1) Q(t, j) = Qj(t), for all j ∈ Z2
N1,N2

;
(B2) Q is periodic with period 2N1 + 1 in the x1-variable, and periodic with period 2N2 + 1 in the

x2-variable;
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(B3) Q ful�lls

Q̈ = ∆1Q−Q− βQ2p+1,KGseqcKGseqc (116)

where ∆1 is the operator de�ned in (71) (recall that we also assumed m = 1 in (20)).

It is easy to verify that (116) is Hamiltonian with Hamiltonian function

H(Q,P ) =

∫
[− 1
µ
, 1
µ

]×[− 1
µσ

, 1
µσ

]

P 2

2
+
Q2

2
− Q ∆1Q

2
+ β

Q2p+2

2p+ 2
dx,HamKGscHamKGsc (117)

where P is a periodic function and is canonically conjugated to Q.
Starting from the Hamiltonian (19), where p = 1, we look for small amplitude solutions of the form

Q(t, x) = µ q(µ2t, µx1, µ
σx2) .1DNLSr1DNLSr (118)

where q : R× T2 → R is a periodic function and σ, µ are de�ned respectively in (12)-(11).
We introduce the rescaled variable y1 = µx1 and y2 = µσx2, and we de�ne I as in (77). The

Hamiltonian (19) in the rescaled variable is given by

K4(q, p) =

∫
I

p2

2
+
q2

2
− q ∆µ,y1,σq

2
+ βµ2 q

4

4
dy,Ham2KGc1DNLSHam2KGc1DNLS (119)

with the operator ∆µ,y1,σ as in (96), and p is the variable canonically conjugated to q. The corresponding
equation of motion is given by

qtt = −q + ∆µ,y1,σq − βµ
2q3.1DKGsc21DKGsc2 (120)

Recall that

∆µ,y1,σ

µ2
∼ ∂2

y1 + µ2(σ−1)∂2
y2 +

µ2

12
∂4
y1 +O(µ2(2σ−1)),

hence the Hamiltonian (119) admits the following asymptotic expansion

K4(q, p) ∼ ĥ0(q, p) + µ2F̂1(q, p) + µ2(2σ−1)R̂(q, p),asexp4asexp4 (121)

ĥ0(q, p) =

∫
I

p2 + q2

2
dy,h01DNLSh01DNLS (122)

F̂1(q, p) =

∫
I

−
q ∂2

y1q

2
+ β

q4

4
dy,F11DNLSF11DNLS (123)

and the equation of motion associated to h0+F1 is given by the following cubic one-dimensional nonlinear
Klein-Gordon (NLKG) equation,

qtt = −(q − µ2∂2
y1q)− µ

2βq3.1DNLKGeq1DNLKGeq (124)

We now exploit the change of coordinates (q, p) 7→ (ψ, ψ̄) given by

ψ =
1√
2

(q − ip),psipsi (125)

therefore the inverse change of coordinates is given by

q =
1√
2

(ψ + ψ̄),qq (126)

p =
1√
2
i(ψ − ψ̄),pp (127)

while the symplectic form is given by −idψ ∧ dψ̄. With this change of variables the Hamiltonian takes
the form

K4(ψ, ψ̄) ∼ h0(ψ, ψ̄) + µ2F1(ψ, ψ̄) + µ2(2σ−1)R(ψ, ψ̄),asexp4psiasexp4psi (128)

h0(ψ, ψ̄) =

∫
I

ψ ψ̄dy,h01DNLSpsih01DNLSpsi (129)

F1(ψ, ψ̄) =

∫
I

−
(ψ + ψ̄) [−∂2

y1(ψ + ψ̄)]

4
+ β

(ψ + ψ̄)4

16
dy.F11DNLSpsiF11DNLSpsi (130)
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Now we apply the averaging Theorem 3.3 to the Hamiltonian (128), with δ = µ2. Observe that h0

generates a periodic �ow,

−i∂tψ = ψ;

ψ(t, y) = eitψ0(y).h0flowNLSh0flowNLS (131)

F1av1DNLSprop Proposition 4.9. The average of F1 in (128) with respect to the �ow of h0 (122) is given by

〈F1〉 (ψ, ψ̄) =

∫
I

ψ̄ (−∂2
y1ψ)

2
dy +

3β

8

∫
I

|ψ|4dy.F1av1DNLSF1av1DNLS (132)

1DNLScor Corollary 4.10. The equations of motion associated to h0(ψ, ψ̄) + µ2 〈F1〉 (ψ, ψ̄) are given by a cubic
one-dimensional nonlinear Schrödinger equation for each �xed value of y2,

−iψt = ψ − µ2 ∂2
y1ψ + µ2 3β

4
|ψ|2ψ.1DimNLSeq1DimNLSeq (133)

2DNLSrem Remark 4.11. Let us consider the Hamiltonian (19) in the following regime,

(2-D NLS) the scalar model (19) with m = 1, p = 1 and

Q(t, x) = µ q(µ2t, µx),NLSrNLSr (134)

where µ� 1 and σ = 1.

If we introduce the rescaled variable y = µx and we de�ne I as in (77), we have that the Hamiltonian
takes the following form (we denote by p the variable canonically conjugated to q)

K5(q, p) =

∫
I

p2

2
+
q2

2
− q ∆µq

2
+ βµ2 q

4

4
dy,Ham2KGcNLSHam2KGcNLS (135)

∆µ := 4 sinh2

(
µ∂y1

2

)
+ 4 sinh2

(
µ
∂y2
2

)
.Delta1MuDelta1Mu (136)

By expanding the operator ∆µ and by exploiting the change of variable (125), we get

K5(ψ, ψ̄) ∼ h0(ψ, ψ̄) + µ2F1(ψ, ψ̄) + µ4R(ψ, ψ̄),asexp5psiasexp5psi (137)

h0(ψ, ψ̄) =

∫
I

ψ ψ̄dy,h0NLSpsih0NLSpsi (138)

F1(ψ, ψ̄) =

∫
I

− (ψ + ψ̄) [−∆(ψ + ψ̄)]

4
+ β

(ψ + ψ̄)4

16
dy.F1NLSpsiF1NLSpsi (139)

By applying Theorem 3.3 to the Hamiltonian (128), with δ = µ2, we obtain that the equation of motion
associated to h0(ψ, ψ̄) + µ2 〈F1〉 (ψ, ψ̄) is given by the cubic nonlinear Schrödinger (NLS) equation

−iψt = ψ − µ2 ∆ψ + µ2 3β

4
|ψ|2ψ.NLSeqNLSeq (140)

The local well-posedness of the NLS equation (140) in the Sobolev space Hs(T2), s > 0, has been
discussed by Bourgain in

bourgain1993fourier
[?]; along with the conversation laws, this implies the global existence in the

defocusing case (β > 0), and the global existence for small solutions in the focusing case (β < 0). The
long time dynamics of the NLS equation has also been studied, in relation with the transfer of energy
among Fourier modes and with the growth of Sobolev norms

colliander2010transfer
[?]

carles2013energy
[?]

hani2014long
[?]

guardia2015growth
[?]

guardia2016growth
[?].

5. Dynamics of the normal form equation
BNFdynKPdynsubsec

5.1. The KP equation. In this section we recall some known facts on the dynamics of the KP equation
on the two-dimensional torus

ξτ = − 1

24
∂3
y1ξ −

1

2
∂−1
y1 ∂

2
y2ξ −

α

2
√

2
∂y1(ξ2), α = ±1, y ∈ T2 := R2/(2πZ)2.KPeqKPeq (141)

The KP equation has been introduced in order to describe weakly-transverse solutions of the water
waves equations; it has been considered as a two-dimensional analogue of the KdV equation, since also
the KP equation admits an in�nite number of constants of motions

lin1982constraints
[?]

chen1983new
[?]

chen1987infinite
[?]. It is customary to refer

to (141) as KP-I equation when α = −1, and as KP-II equation when α = 1.
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The global-well posedness for the KP-II equation on the two-dimensional torus has been discussed by
Bourgain in

bourgain1993cauchy
[?]. The main point of the result by Bourgain consists in extending the local well-posedness

result to a global one, even though the L2-norm is the only constant of motion for the KP-II equation
that allows an a-priori bound for the solution (see Theorem 8.10 and Theorem 8.12 in

bourgain1993cauchy
[?]).

BouThm Theorem 5.1. Consider (141) with α = 1.
Let ρ ≥ 0 and s ≥ 0, and assume that the initial datum ξ(0, ·, ·) = ξ0 ∈ `2ρ,s. Then (141) is globally

well-posed in `2ρ,s. Moreover, the `2-norm of the solution is conserved,

‖ξ(t)‖`2 = ‖ξ0‖`2 ,L2normKPL2normKP (142)

while

‖ξ(t)‖`20,s ≤ e
C|t|‖ξ0‖`20,s ,HsnormKPHsnormKP (143)

where C depends on s.

Remark 5.2. As pointed out by Bourgain in Sec. 10.2 of
bourgain1993cauchy
[?], a global well-posedness result for su�ciently

smooth solution of the KP-I equation (namely, (141) with α = −1) on the two-dimensional torus can be
obtained by generalizing the argument in

schwarz1987periodic
[?] for small data and by using the a-priori bounds given by the

constants of motion for the KP-I equation.

For the KP equation the construction of action-angle/Birkho� coordinates is still an open problem.
KdVdynsubsec

5.2. The KdV equation. In this section we recall some known facts on the dynamics of the KdV
equation with periodic boundary conditions. The interested reader can �nd more detailed explanations
and proofs in

kappeler2003kdv
[?].

Consider the KdV equation

ξτ = − 1

24
∂3
y1ξ −

α

2
√

2
∂y1(ξ2), y1 ∈ [0, 2].KdVeqKdVeq (144)

Through the Lax pair formulation of the evolution problem (144) one get that the periodic eigenvalues
(λn)n∈N of the Sturm-Liouville operator

Lξ := −∂2
y1 + 6

√
2ξ(τ, y1)(145)

are conserved quantities under the evolution of the KdV equation (144). Moreover, if we de�ne the gaps
of the spectrum γm := λ2m − λ2m−1 (m ≥ 1), it is well known that the squared spectral gaps (γ2

m)m≥1

form a complete set of constants of motion for (144).
The following relation between the sequence of the spectral gaps and the regularity of the correspond-

ing solution to the KdV equation holds (see Theorem 9, Theorem 10 and Theorem 11 in
kappeler2008well
[?]; see also

poschel2011hill
[?])

KapPosThm1 Theorem 5.3. Assume that ξ ∈ L2, then ξ ∈ `20,s if and only if its spectral gaps satisfy∑
m≥1

m2s|γm|2 < +∞.

Moreover if ξ ∈ `2ρ,s, then ∑
m≥1

m2se2ρm|γm|2 < +∞;SpecGapEstSpecGapEst (146)

conversely, if (146) holds, then ξ ∈ `2ρ′,0 for some ρ′ > 0.

Kappeler and Pöschel constructed the following global Birkho� coordinates (see Theorem 1.1 in
kappeler2003kdv
[?])

KapPosThm2 Theorem 5.4. There exists a di�eomorphism Ω : L2 → `20,1/2 × `20,1/2 such that:

• Ω is bijective, bianalytic and canonical;
• for each s ≥ 0, the restriction of Ω to `20,s, namely the map

Ω : `20,s → `20,s+1/2 × `20,s+1/2

is bijective, bianalytic and canonical;
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• the coordinates (x, y) ∈ `20,3/2×`20,3/2 are Birkho� coordinates for the KdV equation, namely they
form a set of canonically conjugated coordinates in which the Hamiltonian of the KdV equation

(144) depends only on the action Im :=
x2m+y2m

2
(m ≥ 1).

The dynamics of the KdV equation (144) in terms of the variables (x, y) is trivial: it can be immedi-
ately seen that any solution is periodic, quasiperiodic or almost periodic, depending on the number of
spectral gaps (equivalently, depending on the number of actions) initially di�erent from zero.

1DNLSdynsubsec

5.3. The one-dimensional cubic NLS equation. In this section we recall some known facts on the
dynamics of the one-dimensional cubic defocusing NLS equation with periodic boundary conditions. The
interested reader can �nd more detailed explanations and proofs in

grebert2014defocusing
[?]

molnar2014new
[?].

Consider the cubic defocusing NLS equation

iψτ = −∂2
y1ψ + 2|ψ|2ψ, y1 ∈ T := R/(2πZ).1DNLSeq1DNLSeq (147)

Eq. (147) is a PDE admitting a Hamiltonian structure: indeed, we can set Hρ,s = `2ρ,s × `2ρ,s as
the phase space with elements denoted by φ = (φ1, φ2), while the associated Poisson bracket and the
Hamiltonian are given by

{F,G} := −i
∫
T

(∂φ1F ∂φ2G− ∂φ1G∂φ2F ) dy1,1DNLSPoisson1DNLSPoisson (148)

HNLS(φ1, φ2) :=

∫
T
∂y1φ1 ∂y1φ2 + φ2

1φ
2
2 dy1.1DNLSHam1DNLSHam (149)

The defocusing NLS equation (147) is obtained by restricting (149) to the invariant subspace of states
of real type,

Hρ,sr := {φ ∈ Hρ,s : φ2 = φ̄1}.RealStatesRealStates (150)

The above Hamiltonian (149) is well-de�ned on Hρ,s with s ≥ 1 and ρ ≥ 0, while the initial value
problem for the NLS equation (147) is well-posed on H0,0 = `2 × `2.

It is well known from the work by Zakharov and Shabat that the NLS equation (147) has a Lax pair,
and that it admits in�nitely many constants of motion in involution. More precisely, for any φ ∈ H0,0

consider the Zakharov-Shabat operator

L(φ) =

(
i 0
0 −i

)
∂y1 +

(
0 φ1

φ2 0

)
,ZSOpZSOp (151)

where we call φ the potential of the operator L(φ). The spectrum of L(φ) on the interval [0, 2] with peri-
odic boundary conditions is pure point, and it consists of the following sequence of periodic eigenvalues

· · · < λ−−1 ≤ λ
+
−1 < λ−0 ≤ λ

+
0 < λ−1 ≤ λ

+
1 < · · · ,perNLSspecperNLSspec (152)

where the quantities γm := λ+
m−λ−m (m ∈ Z) are called gap lengths. It has been proved that the squared

spectral lengths (γ2
m)m∈Z form a complete set of analytic constants of motion for (147).

Grébert, Kappeler and Mityagin proved the following relation between the sequence of the squared
spectral gaps and the regularity of the corresponding potential (see Theorem in

grebert1998gap
[?]).

GrebKapThm1 Theorem 5.5. Let ρ ≥ 0 and s > 0, then for any bounded subset B ⊂ `2ρ,s× `2ρ,s there exists n0 ≥ 1 and
M ≥ 1 such that for any |k| ≥ n0 and any (φ1, φ2) ∈ B, the following estimate holds∑

|k|≥n0

(1 + |k|)2se2ρ|k||γm|2 ≤M.SpecGapEstNLSSpecGapEstNLS (153)

Moreover, Grébert and Kappeler constructed the following global Birkho� coordinates (see Theorem
20.1 - Theorem 20.3 in

grebert2014defocusing
[?])

GrebKapThm2 Theorem 5.6. There exists a di�eomorphism Ω : L2
r → H0,0

r such that:

• Ω is bianalytic and canonical;
• for each s ≥ 0, the restriction of Ω to H0,s

r , namely the map

Ω : H0,s
r → H0,s

r

is again bianalytic and canonical;
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• the coordinates (x, y) ∈ H0,1
r are Birkho� coordinates for the NLS equation, namely they form

a set of canonically conjugated coordinates in which the Hamiltonian of the NLS equation (147)

depends only on the action Im :=
x2m+y2m

2
(m ∈ Z).

The dynamics of the NLS equation (147) in terms of the variables (x, y) is trivial: it can be immediately
seen that any solution is periodic, quasiperiodic or almost periodic, depending on the number of spectral
gaps (equivalently, depending on the number of actions) initially di�erent from zero.

6. Approximation results
ApprSec

In this section we show how to use the normal form equations in order to construct approximate solu-
tions of (5) and (22), and we estimate the di�erence with respect to the true solutions with corresponding
initial data.

The approach is the same for all the regimes (73), (94) and (118). First, we have to point out a
relation between the energy of normal mode Ek (de�ned in (7) for (5), and in (7) for (22)) , k ∈ Z2

2N+1,
and the Fourier coe�cients of the solutions of the normal form equations. Then we have to prove that
the approximate solutions approximate the energy of the true normal mode Ek up to the time-scale in
which the continuous approximation is valid, and �nally we can deduce the result about the dynamics
of the lattice.

apprKPsubsec

6.1. The KP regime. Let I = [−1, 1]2 be as in (77), we de�ne the Fourier coe�cients of the function
q : I → R by

q̂(j) :=
1

2

∫
I

q(y1, y2)e−iπ(j1y1+j2y2)dy1 dy2,FourierqcontFourierqcont (154)

and similarly for the Fourier coe�cients of the function p.

EnSpecKPLemma Lemma 6.1. Consider the lattice (2) in the regime (KP) and with interpolanting function (73). Then
for a state corresponding to (q, p) one has

Eκ =
µ4

2

∑
L=(L1,L2)∈Z2:µL1,µ2L2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣ p̂K+L

µ

∣∣∣∣2 , ∀k : κ(k) = (µK1, µ
2K2)SpecEnNormModeKPSpecEnNormModeKP (155)

(where the ωk are de�ned as in (8)), and Eκ = 0 otherwise.

Proof. First we introduce a (2N1 + 1)(2N2 + 1)-periodic interpolating function for Qj , namely a smooth
function Q : (t, x) 7→ Q(t, x) such that

Qj(t) = Q(t, j), ∀t, j,
Q(t, x1, x2 + 2N2 + 1) = Q(t, x), ∀t, x,
Q(t, x1 + 2N1 + 1, x2) = Q(t, x), ∀t, x,

and similarly for Pj . We denote by

Q̂(j) :=
1

(2N1 + 1)1/2(2N2 + 1)1/2

∫
[−(N1+ 1

2 ),(N1+ 1
2 )]×[−(N2+ 1

2 ),(N2+ 1
2 )]

Q(x)e
−i j·x 2π

(2N1+1)(2N2+1) dx,

FourierQcontFourierQcont (156)

so that by the interpolation property we obtain

Qj(t) = Q(t, j) =
1

(2N1 + 1)1/2(2N2 + 1)1/2

∑
k∈Z2

Q̂(j)e
i j·k 2π
(2N1+1)(2N2+1)

=
1

(2N1 + 1)1/2(2N2 + 1)1/2

×
∑

k=(k1,k2)∈Z2
2N+1

 ∑
h=(h1,h2)∈Z2

Q̂(k1 + (2N1 + 1)h1, k2 + (2N2 + 1)h2)

 ei j·k 2π
(2N1+1)(2N2+1) ,
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hence

Q̂k =
∑
h∈Z2

Q̂(k1 + (2N1 + 1)h1, k2 + (2N2 + 1)h2).FourierRelFourierRel (157)

The relation between Q̂(k) and q̂k can be deduced from (94),

Q(j) = µ2q(µj1, µ
2j2);

Q̂k =
1

2
µ3/2

∫
[
− 1
µ
, 1
µ

]
×
[
− 1
µ2
, 1
µ2

]Q(x1, x2)e−iπ(k1x1µ+k2x2µ
2)dx1 dx2

=
1

2
µ3/2

∫
[
− 1
µ
, 1
µ

]
×
[
− 1
µ2
, 1
µ2

] µ2 q
(
µx1, µ

2x2

)
e−iπ(k1x1µ+k2x2µ

2)dx1 dx2

(94)
=

1

2
µ1/2

∫
I

q(y)e−iπ(k1y1+k2y2)dy

= µ1/2q̂k,FourierRelQqFourierRelQq (158)

and similarly

P̂k = µ−1/2p̂k.FourierRelPpFourierRelPp (159)

By using (7), (10) and (157)-(159) we have

Eκ
(10)
= µ3 1

2

∑
L=(L1,L2)∈Z2:µL1,µ2L2∈2Z

|Q̂K+L|2 + ω2
k|P̂K+L|2

(158)
= µ3 µ

1

2

∑
L=(L1,L2)∈Z2:µL1,µ2L2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣ p̂K+L

µ

∣∣∣∣2
for all k such that κ(k) = (µK1, µ

2K2), and this leads to (155). �

KPxietaProp Proposition 6.2. Fix ρ > 0 and 0 < δ � 1. Consider the normal form system (93), and de�ne the
Fourier coe�cients of (ξ, η) through the following formula

ξ(y) =
1

2

∑
h∈Z2

ξ̂he
ih·yπ,FourierXiKPFourierXiKP (160)

η(y) =
1

2

∑
h∈Z2

η̂he
ih·yπ, .FourierEtaKPFourierEtaKP (161)

Consider (ξ, η) ∈ Hρ,0, and denote by Eκ the speci�c energy of the normal mode with index κ as de�ned
in (9)-(10). Then for any positive µ su�ciently small∣∣∣∣∣Eκ − µ4 |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣ ≤ Cµ4+ 6
5 ‖(ξ, η)‖2Hρ,0KPcoeffxietaKPcoeffxieta (162)

for all k such that κ(k) = (µK1, µ
2K2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ C µ8‖(ξ, η)‖2Hρ,0KPSpecEnEstKPSpecEnEst (163)

for all k such that κ(k) = (µK1, µ
2K2) and |K2

1 +K2
2 |1/2 > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

The proof of the above Proposition is deferred to Appendix B.

Now, consider the following systems of uncoupled KP equations

ξτ = − 1

24
∂3
y1ξ −

1

2
∂−1
y1 ∂

2
y2ξ −

α

2
√

2
∂y1(ξ2),KPsys1KPsys1 (164)

ητ =
1

2
∂−1
y1 ∂

2
y2η +

1

24
∂3
y1η +

α

2
√

2
∂y1(η2).KPsys2KPsys2 (165)

and consider a solution (τ, y) 7→ (ξ̃a(τ, y), η̃a(τ, y)) such that it belongs to Hρ,n, for some n ≥ 1.
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We consider the approximate solutions (Qa, Pa) of the FPU model (70)

Qa(τ, y) :=
µ2

√
2

[
ξ̃a(µ2τ, y1 − τ, y2) + η̃a(µ2τ, y1 + τ, y2)

]
Qappr2Qappr2 (166)

∂y1Pa(τ, y) :=
µ√
2

[
ξ̃a(µ2τ, y1 − τ, y2)− η̃a(µ2τ, y1 + τ, y2)

]
,Pappr2Pappr2 (167)

We need to compare the di�erence between the approximate solution (166)-(167) and the true solution

of (5). Let consider an initial datum (Q0, P0) with corresponding Fourier coe�cients (Q̂0,k, P̂0,k) given
by (6), where

Q0,k 6= 0 only if κ(k) = (µK1, µ
2K2).InDatumHyp21InDatumHyp21 (168)

We also assume that there exist C, ρ > 0 such that

|Q̂0,k|2 + ω2
k|P̂0,k|2

N
≤ Ce−2ρ|(κ1(k)/µ,κ2(k)/µ2)|.InDatumHyp22InDatumHyp22 (169)

Moreover, we de�ne an interpolating function for the initial datum (Q0, P0) by

Q0(y) =
1

(2N1 + 1)(2N2 + 1)

∑
K:(µ2|K1|2+µ4|K2|2)1/2=|κ(k)|≤1

Q̂0,ke
iπ(µK1y1+µ2K2y2),

and similarly for y 7→ P0(y).

ApprPropKP Proposition 6.3. Consider (5) with σ = 2, and �x 1 ≤ γ ≤ 5
2
. Let us assume that the initial datum

for (5) satisfying (168)-(169), and denote by (Q(t), P (t)) the corresponding solution. Consider the ap-

proximate solution (ξ̃a, η̃a) with the corresponding initial datum. Assume that (ξ̃a, η̃a) ∈ Hρ,n for some
ρ > 0 and for some n ≥ 1 for all times, and �x T0 > 0 and 0 < δ � 1.

Then there exists µ0 = µ0(T0, ‖(ξ̃a(0), η̃a(0))‖Hρ,n) such that, if µ < µ0, we have that there exists
C > 0 such that

sup
j
|Qj(t)−Qa(t, j)|+ |Pj(t)− Pa(t, j)| ≤ Cµγ , |t| ≤ T0

µ3
,KPapprDiscrContKPapprDiscrCont (170)

where (Qa, Pa) are given by (182)-(183). Moreover,∣∣∣∣∣Eκ − µ4 |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣ ≤ Cµ4+γ
LowModesApprKPLowModesApprKP (171)

for all k such that κ(k) = (µK1, µ
2K2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ µ4+γ
HighModesApprKPHighModesApprKP (172)

for all k such that κ(k) = (µK1, µ
2K2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

The proof of the above Proposition is deferred to Appendix C.

Proof of Theorem (2.1). First we prove (14).
We consider an initial datum as in (13); when passing to the continuous approximation (70), this

initial datum corresponds to an initial data (ξ0, η0) ∈ Hρ0,n for some ρ0 > 0 and n ≥ 1. By Theorem 5.1
the corresponding solution (ξ(τ), η(τ)) is analytic in a complex strip of width ρ(t). Taking the minimum
of such quantities one gets the coe�cient ρ appearing in the statement of Theorem (2.1). Applying
Proposition 6.3, we can deduce the corresponding result for the discrete model (5) and the speci�c
quantities (10). �
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apprKdVsubsec

6.2. The KdV regime. Similarly to Lemma 6.1, Proposition 6.2 we can prove the following results

EnSpecKdVLemma Lemma 6.4. Consider the lattice (2) in the regime (KdV) and with interpolanting function (94). Then
for a state corresponding to (q, p) one has

Eκ =
µ4

2

∑
L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣ p̂K+L

µ

∣∣∣∣2 , ∀k : κ(k) = (µK1, µ
σK2)SpecEnNormModeKdVSpecEnNormModeKdV (173)

(where the ωk are de�ned as in (8) and the Eκ in (10)), and Eκ = 0 otherwise.

Proof. As in Lemma 6.4 we introduce a (2N1 + 1, 2N2 + 1)-periodic interpolating function for Qj and

Pj . We denote Q̂(j) and Q̂k as in (156) and (157).

The relation between Q̂(k) and q̂k can be deduced from (94),

Q(j) = µ2q(µj1, µ
σj2);

Q̂k =
1

2
µ(σ+1)/2

∫
[
− 1
µ
, 1
µ

]
×
[
− 1
µσ

, 1
µσ

]Q(x1, x2)e−iπ(k1x1µ+k2x2µ
σ)dx1 dx2

=
1

2
µ(σ+1)/2

∫
[
− 1
µ
, 1
µ

]
×
[
− 1
µσ

, 1
µσ

] µ2 q (µx1, µ
σx2) e−iπ(k1x1µ+k2x2µ

σ)dx1 dx2

(94)
=

1

2
µ(3−σ)/2

∫
I

q(y)e−iπ(k1y1+k2y2)dy

= µ(3−σ)/2q̂k,FourierRelQqKdVFourierRelQqKdV (174)

and similarly

P̂k = µ(1−σ)/2p̂k.FourierRelPpKdVFourierRelPpKdV (175)

By using (7), (10) and (174)-(175) we have

Eκ
(10)
= µσ+1 1

2

∑
L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|Q̂K+L|2 + ω2
k|P̂K+L|2

(174),(174)
= µσ+1 µ3−σ 1

2

∑
L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣ p̂K+L

µ

∣∣∣∣2
for all k such that κ(k) = (µK1, µ

σK2), and this leads to (173). �

KdVxietaProp Proposition 6.5. Fix ρ > 0 and 0 < δ � 1. Consider the normal form system (109), and de�ne the
Fourier coe�cients of (ξ, η) through the following formula

ξ(y) =
1

2

∑
h∈Z2

ξ̂he
ih·yπ,FourierXiKdVFourierXiKdV (176)

η(y) =
1

2

∑
h∈Z2

η̂he
ih·yπ, .FourierEtaKdVFourierEtaKdV (177)

Consider (ξ, η) ∈ Hρ,0, and denote by Eκ the speci�c energy of the normal mode with index κ as de�ned
in (9)-(10). Then for any positive µ su�ciently small∣∣∣∣∣Eκ − µ4 |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣ ≤ Cµ4+ 6
5 ‖(ξ, η)‖2Hρ,0KdVcoeffxietaKdVcoeffxieta (178)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ C µ8‖(ξ, η)‖2Hρ,0KdVSpecEnEstKdVSpecEnEst (179)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.
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We defer the proof of the above Proposition to Appendix B.

Now, consider the following system of uncoupled KdV equations

ξτ = − 1

24
∂3
y1ξ −

α

2
√

2
∂y1(ξ2),KdVsys1KdVsys1 (180)

ητ =
1

24
∂3
y1η +

α

2
√

2
∂y1(η2),KdVsys2KdVsys2 (181)

and consider a solution (τ, y) 7→ (ξ̃a(τ, y), η̃a(τ, y)) such that it belongs to Hρ,n, for some n ≥ 1.
We consider the approximate solutions (Qa, Pa) of the FPU model (70)

Qa(τ, y) :=
µ2

√
2

[
ξ̃a(µ2τ, y1 − τ, y2) + η̃a(µ2τ, y1 + τ, y2)

]
QapprQappr (182)

∂y1Pa(τ, y) :=
µ√
2

[
ξ̃a(µ2τ, y1 − τ, y2)− η̃a(µ2τ, y1 + τ, y2)

]
,PapprPappr (183)

We need to compare the di�erence between the approximate solution (182)-(183) and the true solution

of (5). Let consider an initial datum (Q0, P0) with corresponding Fourier coe�cients (Q̂0,k, P̂0,k) given
by (6), where

Q0,k 6= 0 only if κ(k) = (µK1, µ
σK2).InDatumHyp1InDatumHyp1 (184)

We also assume that there exist C, ρ > 0 such that

|Q̂0,k|2 + ω2
k|P̂0,k|2

(2N1 + 1)(2N2 + 1)
≤ Ce−2ρ|(κ1(k)/µ,κ2(k)/µσ)|.InDatumHyp2InDatumHyp2 (185)

Moreover, we de�ne an interpolating function for the initial datum (Q0, P0) by

Q0(y) =
1

(2N1 + 1)(2N2 + 1)

∑
K:(µ2|K1|2+µ2σ|K2|2)1/2=|κ(k)|≤1

Q̂0,ke
iπ(µK1y1+µσK2y2),

and similarly for y 7→ P0(y).

ApprPropKdV Proposition 6.6. Consider (5) with σ > 2 and γ ≥ 1 such that σ + 2γ < 7. Let us assume that the
initial datum satis�es (184)-(185), and denote by (Q(t), P (t)) the corresponding solution. Consider the

approximate solution (ξ̃a(t, x), η̃a(t, x)) with the corresponding initial datum. Assume that (ξ̃a, η̃a) ∈ Hρ,n
for some ρ > 0 and for some n ≥ 1 for all times, and �x T0 > 0 and 0 < δ � 1.

Then there exists µ0 = µ0(T0, ‖(ξ̃a(0), η̃a(0))‖Hρ,n) such that, if µ < µ0, we have that there exists
C > 0 such that

sup
j
|Qj(t)−Qa(t, j)|+ |Pj(t)− Pa(t, j)| ≤ Cµγ , |t| ≤ T0

µ3
,apprDiscrContapprDiscrCont (186)

where (Qa, Pa) are given by (182)-(183). Moreover,∣∣∣∣∣Eκ − µ4 |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣ ≤ C µ4+γ
LowModesApprLowModesAppr (187)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ µ4+γ
HighModesApprHighModesAppr (188)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

We defer the proof to Appendix C.

assKdVrem Remark 6.7. The conditions σ + 2γ < 7, which, together with γ > 1, implies the upper bound σ < 5
found in the statement of Theorem (2.4), is the consequence of a technical condition which allows to
estimate the error in the proof of Proposition 6.6 (see Claim 2, together with (268)-(269)).
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Proof of Theorem (2.4). First we prove (16).
We consider an initial datum as in (15); when passing to the continuous approximation (70), this

initial datum corresponds to an initial data (ξ0, η0) ∈ Hρ0,n for some ρ0 > 0 and n ≥ 1. By Theorem 5.3
the corresponding sequence of gaps belongs to Hρ0,n, and that the solution (ξ(τ), η(τ)) is analytic in a
complex strip of width ρ(t). Taking the minimum of such quantities one gets the coe�cient ρ appearing
in the statement of Theorem (2.4). Applying Proposition 6.6, we can deduce the corresponding result
for the discrete model (5) and the speci�c quantities (10).

Next, we prove (18). In order to do so, we exploit the Birkho� coordinates (x, y) introduced in
Theorem 5.4; indeed, by rewriting the normal form system (109) in Birkho� coordinates we get that
every solution is almost-periodic in time. Now, let us introduce the quantities

E
(1)
K :=

∣∣∣ξ̂K∣∣∣2 ,
E

(2)
K := |η̂K |2 ,

then τ 7→ E
(1)
K (x(τ), y(τ)) and τ 7→ E

(2)
K (x(τ), y(τ)) are almost-periodic. If we set EK := 1

2

(
E

(1)
K + E

(2)
K

)
,

we can exploit (187) of Proposition 6.6 to translate the results in terms of the speci�c quantities Eκ, and
we get the thesis. �

appr1DNLSsubsec

6.3. The one-dimensional NLS regime. Let β > 0 and let I be as in (77), we de�ne the Fourier
coe�cients of the function q : I → R by

q̂(j) :=
1

2

∫
I

q(y1, y2)e−iπ(j1y1+j2y2)dy1 dy2,FourierqcontKGFourierqcontKG (189)

and similarly for the Fourier coe�cients of the function p.

EnSpec1DNLSLemma Lemma 6.8. Consider the lattice (19) in the regime (1D NLS) and with interpolanting function (118).
Then for a state corresponding to (q, p) one has

Eκ =
µ2

2

∑
L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|p̂K+L|2 + ω2
k|q̂K+L|2, ∀k : κ(k) = (µK1, µ

σK2)SpecEnNormMode1DNLSSpecEnNormMode1DNLS (190)

(where the ωk are de�ned as in (24)), and Eκ = 0 otherwise.

Proof. We introduce a (2N1 +1, 2N2 +1)-periodic interpolating function for Qj and Pj . We denote Q̂(j)

and Q̂k as in (156) and (157). By the interpolation property we obtain

Q̂k =
∑
h∈Z2

Q̂(k1 + (2N1 + 1)h1, k2 + (2N2 + 1)h2).FourierRel2FourierRel2 (191)

The relation between Q̂(k) and q̂k can be deduced from (118),

Q(j) = µq(µj1, µ
σj2);

Q̂k =
1

2
µ(σ+1)/2

∫
[
− 1
µ
, 1
µ

]
×
[
− 1
µσ

, 1
µσ

]Q(x1, x2)e−iπ(k1x1µ+k2x2µ
σ)dx1 dx2

(118)
=

1

2
µ(σ+1)/2

∫
[
− 1
µ
, 1
µ

]
×
[
− 1
µσ

, 1
µσ

] µ q (µx1, µ
σx2) e−iπ(k1x1µ+k2x2µ

σ)dx1 dx2

=
1

2
µ(1−σ)/2

∫
I

q(y)e−iπ(k1y1+k2y2)dy

= µ(1−σ)/2q̂k,FourierRelQq2FourierRelQq2 (192)

and similarly

P̂k = µ(1−σ)/2p̂k.FourierRelPp2FourierRelPp2 (193)
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By using (23), (10) and (191)-(193) we have

Eκ
(10)
= µσ+1 1

2

∑
L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|P̂K+L|2 + ω2
k|Q̂K+L|2

(192)
= µσ+1 µ1−σ 1

2

∑
L=(L1,L2)∈Z2:µL1,µσL2∈2Z

|p̂K+L|2 + ω2
k|q̂K+L|2

for all k such that κ(k) = (µK1, µ
σK2), and this leads to (190). �

1DNLSpsiProp Proposition 6.9. Fix ρ > 0 and 0 < δ � 1. Consider the normal form equation (133), and de�ne the
Fourier coe�cients of (ψ, ψ̄) through the following formula

ψ(y) =
1

2

∑
h∈Z2

ψ̂he
ih·yπ,FourierPsi1DFourierPsi1D (194)

Consider (ψ, ψ̄) ∈ Hρ,0, and denote by Eκ the speci�c energy of the normal mode with index κ as de�ned
in (9)-(10). Then for any positive µ su�ciently small∣∣∣∣∣Eκ − µ2 |ψ̂K |2

2

∣∣∣∣∣ ≤ Cµ2+ 6
5 ‖(ψ, ψ̄)‖2Hρ,01DNLScoeffpsi1DNLScoeffpsi (195)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ C µ8‖(ψ, ψ̄)‖2Hρ,11DNLSSpecEnEst1DNLSSpecEnEst (196)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

We defer the proof of the above Proposition to Appendix D.

Now, consider the normal form equation, namely the following cubic defocusing one-dimensional NLS

−iψt = − ∂2
y1ψ +

3β

4
|ψ|2ψ.1DimNLSeq11DimNLSeq1 (197)

and consider a solution (ψ̃a,
¯̃
ψa) such that it belongs to Hρ,n, for some n > 0.

We consider the approximate solutions (Qa, Pa) of the KG lattice (19) (in the following τ = µ2t)

Qa(τ, y) :=
µ√
2

[
eiτ ψ̃a(τ, y1, y2) + e−iτ

¯̃
ψa(τ, y1, y2)

]
Qappr3Qappr3 (198)

Pa(τ, y) :=
µ√
2i

[
eiτ ψ̃a(τ, y1, y2) + e−iτ

¯̃
ψa(τ, y1, y2)

]
Pappr3Pappr3 (199)

(200)

We need to compare the di�erence between the approximate solution (182)-(183) and the true solution

of (19). Let consider an initial datum (Q0, P0) with corresponding Fourier coe�cients (Q̂0,k, P̂0,k) given
by (6), where

Q0,k 6= 0 only if κ(k) = (µK1, µ
σK2).InDatumHyp31InDatumHyp31 (201)

We also assume that there exist C, ρ > 0 such that

|P̂0,k|2 + ω2
k|Q̂0,k|2

N
≤ Ce−2ρ|(κ1(k)/µ,κ2(k)/µσ)|.InDatumHyp32InDatumHyp32 (202)

Moreover, we de�ne an interpolating function for the initial datum (Q0, P0) by

Q0(y) =
1

(2N1 + 1)(2N2 + 1)

∑
K:(µ2|K1|2+µ2σ|K2|2)1/2=|κ(k)|≤1

Q̂0,ke
iπ(µK1y1+µσK2y2),

and similarly for y 7→ P0(y).
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ApprProp1DNLS Proposition 6.10. Consider (19) with σ > 1 and γ > 0 such that σ + 2γ < 7. Let us assume that the
initial datum satis�es (201)-(202), and denote by (Q(t), P (t)) the corresponding solution. Consider the

approximate solution (ψ̃a(t, x),
¯̃
ψa(t, x)) with the corresponding initial datum. Assume that (ψ̃a,

¯̃
ψa) ∈

Hρ,n for some ρ > 0 and for some n ≥ 0 for all times, and �x T0 > 0 and 0 < δ � 1.

Then there exists µ0 = µ0(T0, ‖(ψ̃a(0),
¯̃
ψa(0))‖Hρ,n) such that, if µ < µ0, we have that there exists

C > 0 such that

sup
j
|Qj(t)−Qa(t, j)|+ |Pj(t)− Pa(t, j)| ≤ Cµγ , |t| ≤ T0

µ2
,apprDiscrCont3apprDiscrCont3 (203)

where (Qa, Pa) are given by (198)-(199). Moreover,∣∣∣∣∣Eκ − µ2 |ψ̂K |2

2

∣∣∣∣∣ ≤ C µ2+γ
LowModesApprNLSLowModesApprNLS (204)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ
. Moreover,

|Eκ| ≤ µ2+γ
HighModesApprNLSHighModesApprNLS (205)

for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ
, and Eκ = 0 otherwise.

We defer the proof to Appendix E.

assNLSrem Remark 6.11. The conditions σ + 2γ < 7, which, together with γ > 0, implies the upper bound σ < 7
found in the statement of Theorem (2.6), is the consequence of a technical condition which allows to
estimate the error in the proof of Proposition 6.10 (see Claim 2, together with (315)-(317)).

Proof of Theorem (2.6). First we prove (26).
We consider an initial datum as in (25); when passing to the continuous approximation (117), this

initial datum corresponds to an initial data (ξ0, η0) ∈ Hρ0,n. By Theorem 5.5 the corresponding sequence
of gaps belongs to Hρ0,n, and that the solution (ξ(τ), η(τ)) is analytic in a complex strip of width ρ(t).
Taking the minimum of such quantities one gets the coe�cient ρ appearing in the statement of Theorem
(2.6). Applying Proposition 6.10, we can deduce the corresponding result for the discrete model (22)
and the speci�c quantities (10).

Next, we prove (28). In order to do so, we exploit the Birkho� coordinates (x, y) introduced in
Theorem 5.6; indeed, by rewriting the normal form system (133) in Birkho� coordinates we get that
every solution is almost-periodic in time. Now, let us introduce the quantity

EK :=
1

2

∣∣∣ψ̂K∣∣∣2 ,
then τ 7→ EK(x(τ), y(τ)) is almost-periodic. Hence we can exploit (204) of Proposition 6.10 to translate
the results in terms of the speci�c quantities Eκ, and we get the thesis. �

Appendix A. Proof of Lemma 3.6
BNFest

This appendix is devoted to the proof of the Lemma 3.6, which is a key step to normalize the system
(56). Its proof is an adaptation of Theorem 4.4 in

bambusi1999nekhoroshev
[?] and it is based on the method of Lie transform,

brie�y recalled in the following. Throughout this Section, we consider s ≥ s1 and ρ ≥ 0 to be �xed
quantities.

Given an auxiliary function χ analytic on Hρ,s, we consider the auxiliary di�erential equation

ζ̇ = Xχ(ζ)auxDEauxDE (206)

and denote by Φtχ its �ow at time t.

cauchylemma Lemma A.1. Let χ and its vector �eld be analytic in Bρ,s(R). Fix δ < R, and assume that

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ δ.
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Then, if we consider the time-t �ow Φtχ of Xχ we have that for |t| ≤ 1

sup
Bρ,s(R−δ)

‖Φtχ(ζ)− ζ‖Hρ,s ≤ sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s .

De�nition A.2. The map Φχ := Φ1
χ is called the Lie transform generated by χ.

Given G analytic on Hρ,s, let us consider the di�erential equation

ζ̇ = XG(ζ),orDEorDE (207)

where by XG we denote the vector �eld of G. Now de�ne

Φ∗χG(ζ̃) := G ◦ Φχ(ζ̃).

By exploiting the fact that Φχ is a canonical transformation, we have that in the new variable ζ̃ de�ned

by ζ = Φχ(ζ̃) equation (207) is equivalent to

˙̃
ζ = XΦ∗χG(ζ̃).pullbDEpullbDE (208)

Using the relation

d

dt
Φ∗χG = Φ∗χ{χ,G},eq:CompositionRelationeq:CompositionRelation (209)

and the Poisson bracket formalism {G1, G2}(ζ) := dG1(ζ)[XG2(ζ)] we formally get

Φ∗χG =

∞∑
`=0

G`,

G0 := G,

G` :=
1

`
{χ,G`−1}, ` ≥ 1.

lieserieslieseries (210)

In order to estimate the vector �eld of the terms appearing in (210), we exploit the following results

lem:liebrest Lemma A.3. Let R > 0, and assume that χ, G are analytic on Bρ,s(R) as well as their vector �elds.
Then, for any d ∈ (0, R) we have that {χ,G} is analytic on Bρ,s(R− d), and

sup
Bρ,s(R−d)

‖X{χ,G}(ζ)‖Hρ,s ≤
2

d

(
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s
) (

sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s
)
.liebrestliebrest (211)

Proof. Observe that

‖X{χ,G}(ζ)‖Hρ,s = ‖dXχ(ζ) XG(ζ)− dXG(ζ) Xχ(ζ)‖Hρ,s
≤ ‖dXχ(ζ) XG(ζ)‖Hρ,s + ‖dXG(ζ) Xχ(ζ)‖Hρ,s ,

and since for any d ∈ (0, R) Cauchy inequality gives

sup
Bρ,s(R−d)

‖dXχ(ζ)‖Hρ,s→Hρ,s ≤
1

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ,

we �nally get

sup
Bρ,s(R−d)

‖dXχ(ζ) XG(ζ)‖Hρ,s ≤
1

d

(
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s
) (

sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s
)
.

With a similar estimate for the other term we obtain the thesis. �

lem:Liesrest Lemma A.4. Let R > 0, and assume that χ, G are analytic on Bρ,s(R) as well as their vector �elds.
Let ` ≥ 1, and consider G` as de�ned in (210); for any d ∈ (0, R), G` is analytic on Bρ,s(R− d) as well
as it vector �eld, and

sup
Bρ,s(R−d)

‖XG`(ζ)‖Hρ,s ≤

(
2e

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s
)`

sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s .lieserestlieserest (212)
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Proof. Fix `, and denote δ := d/`. We look for a sequence C
(`)
m such that

sup
Bρ,s(R−mδ)

‖XGm(ζ)‖Hρ,s ≤ C(`)
m , ∀m ≤ `.

Lemma A.3 ensures that the following sequence satis�es this property.

C
(`)
0 := sup

Bρ,s(R)

‖XG(ζ)‖Hρ,s ,

C(`)
m =

2

δm
C

(`)
m−1 sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

=
2`

dm
C

(`)
m−1 sup

Bρ,s(R)

‖Xχ(ζ)‖Hρ,s .

One has

C
(`)
` =

1

`!

(
2`

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s
)`

sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s ,

and by using the inequality `` < `!e` one obtains the estimate (212). �

Before stating the next Lemma, we point out that the Poisson tensor Ω−1
2 , obtained by inversion from

the associated symplectic form Ω2 in (43), is not a bounded operator on Hρ,s. We thus have to weaken
the hypothesis of Theorem 4.4 in

bambusi1999nekhoroshev
[?]; indeed, we just assume that

‖Ω−1f‖Hρ,s ≤ ‖f‖Hρ,s+1 .

This property is satis�ed by both Ω−1
1 and Ω−1

2 .

lem:VectorFieldCanonicalTransformation Lemma A.5. Let χ and F be analytic on Bρ,s(R) as well as their vector �elds. Fix d ∈ (0, R), and
assume also that

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ d/3 .

Then for |t| ≤ 1

sup
Bρ,s(R−d)

‖X(Φtχ)∗F−F (ζ)‖Hρ,s≤
9

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s .vfestvfest (213)

Proof. Since the bound on the norm of Xχ implies that Φtχ(ζ) ∈ Bρ,s(R) when ζ ∈ Bρ,s(R− d/3), using
Cauchy inequality and Lemma A.1

sup
Bρ,s(R−d)

‖dΦ−tχ (Φtχ(ζ))− id‖Hρ,s→Hρ,s ≤ sup
Bρ,s(R−2d/3)

‖dΦ−tχ (ζ)− id‖Hρ,s→Hρ,s

≤ 3

d
sup

Bρ,s(R−d/3)

‖Φ−tχ (ζ)− ζ‖Hρ,s

≤ 3

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

Since Φtχ is a canonical transformation, a direct computation shows

Ω−1d(F ◦ Φtχ)(ζ) = (dΦ−tχ (Φtχ(ζ))− id)Ω−1dF (Φtχ) + Ω−1dF (Φtχ(ζ))
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whence

sup
Bρ,s(R−d)

‖X(Φtχ)∗F−F (ζ)‖Hρ,s = sup
Bρ,s(R−d)

‖Ω−1d(F (Φtχ(ζ))− F (ζ))‖Hρ,s

≤ sup
Bρ,s(R−d)

‖(dΦ−tχ (Φtχ(ζ))− id)Ω−1dF (Φtχ) + Ω−1d(F (Φtχ(ζ))− F (ζ))‖Hρ,s

≤ sup
Bρ,s(R−d)

‖dΦ−tχ (Φtχ(ζ))− id‖Hρ,s→Hρ,s sup
Bρ,s(R−d)

‖XF (Φtχ(ζ))‖Hρ,s

+ sup
Bρ,s(R−d)

‖XF (Φtχ(ζ))−XF (ζ)‖Hρ,s

≤ 3

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s

+ sup
Bρ,s(R−d)

‖
∫ t

0

[Xχ, XF ](Φsχ(ζ))ds‖Hρ,s

To estimate the last term we use Cauchy inequality

sup
Bρ,s(R−d)

‖
∫ t

0

[Xχ, XF ](Φsχ(ζ))ds‖Hρ,s ≤ 2 sup
Bρ,s(R−2d/3)

‖[Xχ, XF ](ζ)‖Hρ,s

≤ 6

2d
2 sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s

≤ 6

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s .

Then the thesis follows. �

homeqlemma Lemma A.6. Assume that G is analytic on Bρ,s(R) as well as its vector �eld, and that h0 satis�es
PER. Then there exists χ analytic on Bρ,s(R) and Z analytic on Bρ,s(R) with Z in normal form, namely
{h0, Z} = 0, such that

{χ, h0} + G = Z.homeqhomeq (214)

Such Z and χ are given explicitly by

Z(ζ) =
1

T

∫ T

0

G(Φth0
(ζ)) dt ,eq:ExplicitZeq:ExplicitZ (215)

χ(ζ) =
1

T

∫ T

0

t
[
Z(Φth0

(ζ))−G(Φth0
(ζ))

]
dt .eq:ExplicitChieq:ExplicitChi (216)

Furthermore, we have that the vector �elds of χ and Z are analytic on Bρ,s(R), and satisfy

sup
Bρ,s(R)

‖XZ(ζ)‖Hρ,s ≤ sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s ,

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ 2T sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s .vfhomeqvfhomeq (217)

Proof. We check directly that the solution of (214) is (216). Indeed,

{χ, h0}(ζ) =
d

ds |s=0
χ(Φsh0

(ζ))

=
1

T

∫ T

0

t
d

ds |s=0

[
Z(Φt+sh0

(ζ))−G(Φt+sh0
(ζ))

]
dt

=
1

T

∫ T

0

t
d

dt

[
Z(Φth0

(ζ))−G(Φth0
(ζ))

]
dt

=
1

T

[
tZ(Φth0

(ζ))− tG(Φth0
(ζ))

]T
t=0
− 1

T

∫ T

0

[
Z(Φth0

(ζ))−G(Φth0
(ζ))

]
dt

= Z(ζ)−G(ζ).
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In the last step we used the explicit expression of Z provided in (215). Finally, the �rst estimate in (217)
follows from the explicit expression of Z in (215) while for the second estimate we write explicitly the
vector �eld Xχ:

Xχ(ζ) =
1

T

∫ T

0

tDΦ−th0
(Φth0

(ζ)) ◦XZ−G(Φth0
(ζ)) dt .

Hypothesis (PER) guarantees that Φth0
as well as its derivatives and the inverses are uniformly bounded

as operators from Hρ,s into itself. Moreover, for any t ∈ R, the map ζ 7→ Φth0(ζ) is a di�eomorphism of
Bρ,s(R) into itself. Thus

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ T sup
t∈[0,T ]

sup
ζ∈Hρ,s

(
‖(DΦth0

(ζ))−1‖Hρ,s→Hρ,s
)

sup
Bρ,s

(‖XZ(ζ)‖Hρ,s + ‖XG(ζ)‖Hρ,s)

≤ 2T sup
t∈[0,T ]

sup
ζ∈Hρ,s

(
‖(DΦth0

(ζ))−1‖Hρ,s→Hρ,s
)

sup
Bρ,s
‖XG(ζ)‖Hρ,s

where in the last step we used the �rst inequality in (217). Since by assumption (PER) Φth0
is an

isometry, supt∈[0,T ] supζ∈Hρ,s
(
‖(DΦth0

(ζ))−1‖Hρ,s→Hρ,s
)

= 1 and the thesis follows. �

Lemma A.7. Assume that G and its vector �elds are analytic on Bρ,s(R), and that h0 satis�es PER.
Let χ and its vector �eld be analytic on Bρ,s(R), and assume that χ solves (214). For any ` ≥ 1 denote
by h0,` the functions de�ned recursively as in (210) from h0. Then for any d ∈ (0, R) one has that h0,`

and its vector �eld are analytic on Bρ,s(R− d), and

sup
Bρ,s(R−d)

‖Xh0,`(ζ)‖Hρ,s ≤ 2 sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s
(

9

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s
)`

.lieseriesh0lieseriesh0 (218)

Proof. By using (214) one gets that h0,1 = Z −G is analytic on Bρ,s(R). Then by exploiting (213) one
gets the result. �

Poissonlemma Lemma A.8. Assume that G and its vector �eld are analytic on Bρ,s(R), and that h0 satis�es PER.
Let χ be the solution of (214), denote by Φtχ the �ow of the Hamiltonian vector �eld associated to χ and
by Φχ the corresponding time-one map. Moreover, denote by

F(ζ) := h0(Φχ(ζ))− h0(ζ)− {χ, h0}(ζ).

Let d < R, and assume that

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ≤ d/3 .

Then we have that F and its vector �eld are analytic on Bρ,s(R− d), and

sup
Bρ,s(R−d)

‖XF (ζ)‖Hρ,s ≤
18

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s .vfPoisvfPois (219)

Proof. Since

h0(Φχ(ζ))− h0(ζ) =

∫ 1

0

{χ, h0} ◦ Φtχ(ζ) dt

(214)
=

∫ 1

0

Z(Φtχ(ζ))−G(Φtχ(ζ)) dt,

if we de�ne F (ζ) := Z(ζ)−G(ζ), we get

F(ζ) =

∫ 1

0

F (Φtχ(ζ))− F (ζ)dt.
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Now, we have

sup
Bρ,s(R−d)

‖XF (ζ)‖Hρ,s

= sup
Bρ,s(R−d)

‖Ω−1d

( ∫ 1

0

F (Φtχ(ζ))− F (ζ)dt

)
‖Hρ,s

≤ sup
Bρ,s(R−d)

‖
∫ 1

0

(dΦ−tχ (Φtχ(ζ))− id)Ω−1dF (Φtχ) + Ω−1d(F (Φtχ(ζ))− F (ζ)) dt‖Hρ,s

≤ sup
Bρ,s(R−d)

‖
∫ 1

0

(dΦ−tχ (Φtχ(ζ))− id)Ω−1dF (Φtχ) dt‖Hρ,s

+ sup
Bρ,s(R−d)

‖
∫ 1

0

XF (Φtχ(ζ))−XF (ζ) dt‖Hρ,s

and by dominated convergence we can bound the last quantity by

sup
Bρ,s(R−d)

sup
t∈[0,1]

‖dΦ−tχ (Φtχ(ζ))− id‖Hρ,s→Hρ,s sup
Bρ,s(R−d)

‖XF (Φtχ(ζ))‖Hρ,s

+ sup
Bρ,s(R−d)

sup
t∈[0,1]

‖XF (Φtχ(ζ))−XF (ζ)‖Hρ,s

≤ sup
t∈[0,1]

sup
Bρ,s(R−d)

‖dΦ−tχ (Φtχ(ζ))− id‖Hρ,s→Hρ,s sup
Bρ,s(R−d)

‖XF (Φtχ(ζ))‖Hρ,s

+ sup
t∈[0,1]

sup
Bρ,s(R−d)

‖XF (Φtχ(ζ))−XF (ζ)‖Hρ,s

≤ 3

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s + sup
t∈[0,1]

sup
Bρ,s(R−d)

‖
∫ t

0

[Xχ, XF ](Φsχ(ζ))ds‖Hρ,s ,

where we can estimate the last term by Cauchy inequality

sup
Bρ,s(R−d)

‖
∫ t

0

[Xχ, XF ](Φsχ(ζ))ds‖Hρ,s ≤ 2 sup
Bρ,s(R−2d/3)

‖[Xχ, XF ](ζ)‖Hρ,s

≤ 6

2d
2 sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s

≤ 6

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s .

By the above computations and (217) we obtain

sup
Bρ,s(R−d)

‖XF (ζ)‖Hρ,s ≤
9

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XF (ζ)‖Hρ,s

(217)

≤ 18

d
sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
Bρ,s(R)

‖XG(ζ)‖Hρ,s .

�

itlemma Lemma A.9. Let s ≥ s1 � 1, R > 0, m ≥ 0, and consider the Hamiltonian

H(m)(ζ) = h0(ζ) + δZ(m)(ζ) + δm+1F (m)(ζ).HmHm (220)

Assume that h0 satis�es PER and INV, and that

sup
Bρ,s(R)

‖XF (0)(ζ)‖Hρ,s ≤ F.
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Fix d < R
m+1

, and set Rm := R−md (m ≥ 1).

Assume also that Z(m) is analytic on Bρ,s(Rm), and that

sup
Bρ,s(Rm)

‖XZ(0)(ζ)‖Hρ,s = 0,

sup
Bρ,s(Rm)

‖XZ(m)(ζ)‖Hρ,s ≤ F
m−1∑
i=0

δiKi
0, m ≥ 1,eq:estimateZmeq:estimateZm (221)

sup
Bρ,s(Rm)

‖XF (m)(ζ)‖Hρ,s ≤ F Km
0 , m ≥ 1,stepmstepm (222)

with K0 ≥ 15 and d > 3TδF .

Then, if δK0 < 1/2 there exists a canonical transformation T (m)
δ analytic on Bρ,s(Rm+1) such that

sup
Bρ,s(Rm+1)

‖T (m)
δ (ζ)− ζ‖Hρ,s ≤ 2Tδm+1Km

0 F,CTmCTm (223)

H(m+1) := H(m) ◦ T (m) has the form (220) and satis�es (222) with m replaced by m+ 1.

Proof. The key point of the proof is to look for T (m)
δ as the time-one map of the Hamiltonian vector

�eld of an analytic function δm+1χm. Hence, consider the di�erential equation

ζ̇ = Xδm+1χm(ζ).chimchim (224)

By standard theory we have that, if ‖Xδm+1χm‖Bρ,s(Rm) is small enough (e.g. ‖Xδm+1χm‖Bρ,s(Rm) ≤
md
m+1

) and ζ0 ∈ Bρ,s(Rm+1), then the solution of (224) exists for |t| ≤ 1.

Therefore we can de�ne T tm,δ : Bρ,s(Rm+1)→ Bρ,s(Rm), and in particular the corresponding time-one

map T (m)
δ := T 1

m,δ, which is an analytic canonical transformation, δm+1-close to the identity. We have

(T (m)
δ )∗ (h0 + δZ(m) + δm+1F (m)) = h0 + δZ(m)

+ δm+1
[
{χm, h0}+ F (m)

]
+

+
(
h0 ◦ T (m)

δ − h0 − δm+1{χm, h0}
)

+ δ
(
Z(m) ◦ T (m)

δ − Z(m)
)

nonnorm1nonnorm1 (225)

+ δm+1
(
F (m) ◦ T (m)

δ − F (m)
)
.nonnorm2nonnorm2 (226)

It is easy to see that the �rst two terms are already normalized, that the term in the second line is the
non-normalized part of order m + 1 that can be normalized through the choice of a suitable χm, and
that (225)-(226) contain all the terms of order higher than m+ 1.

In order to normalize the terms in the second line we solve the homological equation

{χm, h0}+ F (m) = Zm+1,

with Zm+1 in normal form. Lemma A.6 ensures the existence of χm and Zm+1 as well as their explicit
expressions:

Zm+1(ζ) =
1

T

∫ T

0

F (m)(Φth0
(ζ)) dt ,

χm(ζ) =
1

T

∫ T

0

t[F (m)(Φth0
(ζ))− Zm+1(Φth0

(ζ))] dt .

The explicit expression of Xχm can be computed following the argument of Lemma A.6. Using this
explicit expression, the analyticity of the �ow Φth0

ensured by (PER) and (217) one has

sup
Bρ,s(Rm)

‖Xχm(ζ)‖Hρ,σ ≤ 2T sup
Bρ,s(Rm)

‖XF (m)‖Hρ,σ ≤ 2TKm
0 F .eq:EstimateVectorFieldeq:EstimateVectorField (*)

Straightforwardly, from the explicit expression of Zm+1(ζ) and (222) one has

sup
Bρ,s(Rm)

‖XZm+1‖Hρ,s ≤ K
m
0 F
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Now de�ne Z(m+1) := Z(m) + δmZm+1 and notice that as a consequence of the latter estimate and (221)
we have

sup
Bρ,s(Rm+1)

‖XZ(m+1)(ζ)‖ ≤ sup
Bρ,s(Rm+1)

‖XZ(m)(ζ)‖Hρ,s + sup
Bρ,s(Rm+1)

‖XδmZm+1(ζ)‖Hρ,s

≤ F

(
m−1∑
j=0

δjKj
0 + δmKm

0

)

De�ning now T (m)
δ (ζ) := Φ1

δm+1χm
(ζ) we can apply Lemma A.1 and (*) to obtain

sup
Bρ,s(Rm+1)

‖T (m)
δ (ζ)− ζ‖Hρ,s = sup

Bρ,s(Rm+1)

‖Φ1
δm+1χm

(ζ)− ζ‖Hρ,s

≤ sup
Bρ,s(Rm)

‖Xδm+1χm‖Hρ,s ≤ 2Tδm+1Km
0 F .

Let us set now δm+2F (m+1) := (225) + (226). Using Lemma A.5 one can estimate separately the
three pieces. We notice that supBρ,s(Rm) ‖Xδm+1χm‖Hρ,s ≤ 2Tδm+1Km

0 F and since δK0 <
1
2
we have

supBρ,s(Rm) ‖Xδm+1χm‖Hρ,s < TδF < d
3
≤ (m+1)d

3
. We can thus apply Lemma A.5 and Lemma A.8 to

get

sup
B(Rm+1)

‖X
Z(m)◦T (m)

δ
−Z(m)(ζ)‖Hρ,s ≤

27 δm+1

(m+ 1)d
sup

Bρ,s(Rm)

‖Xχm(ζ)‖Hρ,s sup
Bρ,s(Rm)

‖XZ(m)‖Hρ,s ,

sup
B(Rm+1)

‖X
F (m)◦T (m)

δ
−F (m)(ζ)‖Hρ,s ≤

27 δm+1

(m+ 1)d
sup

Bρ,s(Rm)

‖Xχm(ζ)‖Hρ,s sup
Bρ,s(Rm)

‖XF (m)‖Hρ,s ,

sup
B(Rm+1)

‖X
h0◦T

(m)
δ
−h0−δm+1{χm,h0}

‖Hρ,s ≤
18 δ2m+2

(m+ 1)d
sup

Bρ,s(Rm)

‖Xχm(ζ)‖Hρ,s sup
Bρ,s(Rm)

‖XF (m)(ζ)‖Hρ,s .

By means of these inequalities, with the additional information ‖Xδm+1χm‖Hρ,s ≤
(m+1)d

3
and the

hypotheses (221) and (222), we can estimate

sup
Bρ,s(Rm+1)

‖Xδm+2F (m+1)(ζ)‖Hρ,s ≤ 9δm+2 sup
Bρ,s(Rm)

‖XZ(m)(ζ)‖Hρ,s + 9 δ2m+2 sup
Bρ,s(Rm)

‖XF (m)(ζ)‖Hρ,s

+ 6 δ2m+2 sup
Bρ,s(Rm)

‖XF (m)(ζ)‖Hρ,s

≤ 9 δm+2F

m−1∑
i=0

δiKi
0 + 9 δ2m+2F Km

0 + 6 δ2m+2F Km
0

= δm+2

(
9F

m−1∑
i=0

δiKi
0 + 9δmF Km

0 + 6 δmF Km
0

)
If m = 0 the �rst term is not present and then

sup
Bρ,s(R1)

‖Xδ2F (1)‖Hρ,s ≤ δ2(9F + 6F ).

If m ≥ 1 we exploit the smallness condition δK0 <
1
2
to get

∑m−1
i=0 δiKi

0 < 2 and

sup
Bρ,s(Rm+1)

‖Xδm+2F (m+1)‖Hρ,s ≤ δm+2

(
6F + 9

F

2m
+ 6

F

2m

)
≤ 15 δm+2F.

�

Proof of Lemma 3.6. The Hamiltonian (56) satis�es the assumptions of Lemma A.9 with m = 0, F1,M

in place of F (0), F = K
(F )
1,s M

2+γ . So we apply Lemma A.9 with d = R/4, provided that

δ <
R

12T F
=

R

12T K
(F )
1,s M

2+γ
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which is true due to (65). Hence there exists an analytic canonical transformation T (0)
δ,M : Bρ,s(3R/4)→

Bρ,s(R) with

sup
Bρ,s(3R/4)

‖T (0)
δ,M (ζ)− ζ‖Hρ,s ≤ 2T F δ,

such that

H1,M ◦ T (0)
δ,M = h0 + δZ

(1)
M + δ2R(1)

M ,step1step1 (227)

Z
(1)
M := 〈F1,M 〉 ,(228)

δ2R(1)
M := δ2F (1)

=
(
h0 ◦ T (0)

δ,M − h0 − δ{χ1, h0}
)

+ δ
(
Z

(1)
M ◦ T

(0)
δ,M − Z

(1)
M

)
+ δ2

(
F1,M ◦ T (0)

δ,M − F1,M

)
,(229)

sup
Bρ,s(3R/4)

‖X
Z

(1)
M

(ζ)‖Hρ,s ≤ F,(230)

sup
Bρ,s(3R/4)

‖XR(1)
N

(ζ)‖Hρ,s ≤ 15F.(231)

and K0 = 15, whence δ < 1
30
. �

Appendix B. Proof of Propositions 6.5 and 6.2
ApprEstSec11

Proof of Proposition 6.5. In order to prove Proposition 6.5 we �rst discuss the speci�c energies associated
to the high modes, and then the ones associated to the low modes.

First we remark that for all k such that κ(k) = (µK1, µ
σK2) we have

∣∣∣∣ω2
k

µ2

∣∣∣∣ (8)=
4

µ2

[
sin2

(
k1π

2N + 1

)
+ sin2

(
k2π

2N + 1

)]
=

4

µ2

[
sin2

(
µK1π

2

)
+ sin2

(
µσK2π

2

)]
≤ π2(K2

1 + µ2(σ−1)K2
2 );EstFreqKdVrEstFreqKdVr (232)

moreover, for K1 6= 0

|q̂K |2 + π2(K2
1 + µ2(σ−1)K2

2 )|p̂K |2

2
≤ π2 e−2ρ|K| |q̂K |2 + (K2

1 + µ2(σ−1)K2
2 )|p̂K |2

2
e2ρ|K|

≤ π2 e−2ρ|K|
(

1 + µ2(σ−1)K
2
2

K2
1

)
‖(ξ, η)‖2Hρ,0 ,NormModeKdVEst1NormModeKdVEst1 (233)

while for |K2| ≤ |K1|

|q̂K |2 + π2(K2
1 + µ2(σ−1)K2

2 )|p̂K |2

2

|K2|≤|K1|
≤ 2π2 e−2ρ|K| ‖(ξ, η)‖2Hρ,0 .NormModeKdVEst2NormModeKdVEst2 (234)
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Hence, by (173) we obtain that for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ

Eκ
µ4

=
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

|K2+L2|≤|K1+L1|

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

µ

∣∣∣∣2
)

+
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

|K2+L2|>|K1+L1|

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

µ

∣∣∣∣2
)

(232),(234),(86)

≤ π2 ‖(ξ, η)‖2Hρ,0 2
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

|K2+L2|≤|K1+L1|

e−2ρ|K+L|

+ π2 ‖(ξ, η)‖2Hρ,0
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

|K2+L2|>|K1+L1|
K1+L1 6=0

e−2ρ|K+L|
(

1 + µ2(σ−1) (K2 + L2)2

(K1 + L1)2

)

+ π2 ‖(ξ, η)‖2Hρ,0
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

|K2+L2|>|K1+L1|
K1+L1=0

e−2ρ|K2+L2|.

Now,

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

(2+δ)| log µ|
ρ

e−2ρ|K+L|
HighFreqTerm1HighFreqTerm1 (235)

≤ e−2ρ|K| +
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1=0,L2 6=0

e−2ρ|K+L| +
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1 6=0,L2=0

e−2ρ|K+L|

+
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1,L2 6=0

e−2ρ|K+L|.DecompHighFreqTerm1DecompHighFreqTerm1 (236)

We now estimate the last sum in (236); we point out that for L1, L2 6= 0 we have

|L| ≥ 2

µ
+

2

µσ
,

hence

2|K| ≤ |L|.BoundKLBoundKL (237)
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Therefore, for any k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≥ (2+δ)| log µ|

ρ

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

(2+δ)| log µ|
ρ

L1,L2 6=0

e−2ρ|K+L| ≤
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ
L1,L2 6=0

e−2ρ | |K|−|L| |

≤
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1,L2 6=0

e2ρ|K|e−2ρ|L|

≤ e2ρ|K| 2π

∫ +∞

2|K|
Re−2ρRdR

= 2π e2ρ|K|
(
−1

2

)
d

dρ

[∫ +∞

2|K|
e−2ρRdR

]

= −π e2ρ|K| d

dρ

(
e−4ρ|K|

2ρ

)
= −πe2ρ|K|

(
− 1

2ρ2
e−4ρ|K| − 2|K| e−4ρ|K|

)
=

π

2ρ

(
1

ρ
+ 4

)
e−2ρ|K|

Est1HighFreqTerm1Est1HighFreqTerm1 (238)

Next we estimate the second sum in (236); we have

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

2| log µ|
ρ

L1 6=0,L2=0

e−2ρ|K+L| ≤ e−2ρ (|K1|+|K2|)
∑

`∈Z\{0}

e−4ρ|`|/µ,Est2HighFreqTerm1Est2HighFreqTerm1 (239)

which is exponentially small with respect to µ. Similarly,

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L| ≤ e−2ρ (|K1|+|K2|)
∑

`∈Z\{0}

e−4ρ|`|/µσ .Est3HighFreqTerm1Est3HighFreqTerm1 (240)
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Then,

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

(2+δ)| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

≤ e−2ρ|K|
(
K2

K1

)2

+
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1 6=0,L2=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2
+

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

2| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1=0,L2 6=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

+
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1,L2 6=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2
.

DecompHighFreqTerm2DecompHighFreqTerm2 (241)

First we estimate the last term in (241): we have that |L+K| ≥ |K|, hence

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

(2+δ)| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1,L2 6=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

=

∫ +∞

|K|

∫ π/4

0

e−2ρ ξ ξ tan2 φ dφ dξ

=
(

1− π

4

)
e−2ρ|K| 1 + 2ρ|K|

4ρ2

≤
(

1− π

4

)
µ4 e

−2ρ
[
|K|− 2| log µ|

ρ
− 1

2ρ
log(2ρ|K|)

]
δ<1−1/e

≤
(

1− π

4

)
µ4 e

−2ρ
[
δ|K|− 2| log µ|

ρ

]
(242)

=
(

1− π

4

)
µ8e−2ρδ|K|

Est1HighFreqTerm2Est1HighFreqTerm2 (243)

Now we bound the other two nontrivial terms in (241); on the one hand, we notice that

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

2| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1 6=0,L2=0

e−2ρ|K+L|L2
2

DecompHighFreqTerm22DecompHighFreqTerm22 (244)
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vanishes, while on the other hand∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

2| log µ|
ρ

|K2+L2|>|K1+L1|
K1+L1 6=0
L1=0,L2 6=0

e−2ρ|K+L|L2
2 ≤ e−2ρ|K|

∑
`∈Z\{0}

e−4ρ|`|/µσ `2

µ2σ

≤ 2e−2ρ|K|
∫ +∞

1

e−4ρ|`|/µσ `2

µ2σ
d`,DecompHighFreqTerm23DecompHighFreqTerm23 (245)

where the last integral is exponentially small with respect to µ.

On the other hand, for any k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ∣∣∣∣∣Eκµ4
− |ξ̂K |

2 + |η̂K |2

2

∣∣∣∣∣
≤
∣∣∣∣ω2

k − µ2 π2K2
1

2µ2

∣∣∣∣ |p̂K |2 +
1

2

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

|q̂K+L|2 + ω2
k

∣∣∣∣ p̂K+L

µ

∣∣∣∣2 ,
(232)

≤ (µ2π4K4
1 + π2µ2(σ−1)K2

2 )|p̂K |2

+
1

2

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

|q̂K+L|2 + π2[(K1 + L1)2 + µ2(σ−1)(K2 + L2)2]|p̂K+L|2,

≤
(
π4 µ2K4

1 + π2µ2(σ−1) 9| logµ|2

ρ2

)
|p̂K |2

+
1

2

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

|q̂K+L|2 + π2[(K1 + L1)2 + µ2(σ−1)(K2 + L2)2]|p̂K+L|2,

≤
(
π4 µ2 + π2µ2(σ−1)

) 9| logµ|2

ρ2
2‖(ξ, η)‖2Hρ,0EstLowFreqTerm1EstLowFreqTerm1 (246)

+
π2

2

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

e2ρ|K+L| (|ξ̂K+L|2 + |η̂K+L|2)

(
1 + 2µ2(σ−1) K2

2 + L2
2

(K1 + L1)2

)
e−2ρ|K+L|,EstLowFreqTerm2EstLowFreqTerm2 (247)

and we can conclude by estimating (246) by exploiting the fact that | logµ| ≤ µ−2/5, while we can
estimate (247) by

π2

2
‖(ξ, η)‖2Hρ,0

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

(
1 + 2µ2(σ−1) K2

2 + L2
2

(K1 + L1)2

)
e−2ρ|K+L|

≤ π2

2
‖(ξ, η)‖2Hρ,0

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

(
1 + 2µ2(σ−1) K2

2 + 2µ2(σ−1) L2
2

)
e−2ρ|K+L|

≤ π2

2
‖(ξ, η)‖2Hρ,0

[
(1 + 2µ2(σ−1) K2

2 )2π

∫ +∞

2/µ

e−2ρ` `d`+ 4π

∫ +∞

2/µ

e−2ρ` `3d`

]

=
π2

2
‖(ξ, η)‖2Hρ,0×[

2π

(
1 + 2µ2(σ−1) 9| logµ|2

ρ2

)
e−4ρ/µ µ+ 4ρ

4µρ2
+ 4π e−4ρ/µ 3µ3 + 12ρµ2 + 24ρ2µ+ 32ρ3

8µ3ρ4

]
.Est1LowFreqTerm2Est1LowFreqTerm2 (248)

�
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Proof of Proposition 6.2. Proposition 6.2 is obtained as a Corollary of Proposition 6.5 by setting σ =
2. �

Appendix C. Proof of Proposition 6.6 and Proposition 6.3
ApprEstSec12

Proof of Proposition 6.6. The argument follows along the lines of Appendix C in
bambusi2006metastability
[?].

Exploiting the canonical transformation found in Theorem 3.3, we also de�ne

ζa := (ξa, ηa) = Tµ2(ξ̃a, η̃a) = ζ̃a + ψa(ζ̃a),(249)

where ψa(ζ̃a) := (ψξ(ζ̃a), ψη(ζ̃a)); by (54) we have

sup
ζ∈Bρ,n(R)

‖ψa(ζ)‖Hρ,m ≤ C′nµ2 R.estRemThmestRemThm (250)

For convenience we de�ne

qa(τ, y) :=
1√
2

[
ξa(µ2τ, y1 − τ, y2) + ηa(µ2τ, y1 + τ, y2)

]
qapprqappr (251)

∂y1pa(τ, y) :=
1√
2

[
ξa(µ2τ, y1 − τ, y2)− ηa(µ2τ, y1 + τ, y2)

]
,papprpappr (252)

We observe that the pair (qa, pa) satis�es

µ2(qa)t = −∆1 µpa + µ6RqApprEq1ApprEq1 (253)

µ(pa)t = −µ2qa − µ4 απ0q
2
a + µ5Rp,ApprEq2ApprEq2 (254)

where the operator ∆1 acts on the variable x, π0 is the projector on the space of the functions with zero
average, and the remainders are functions of the rescaled variables τ and y which satisfy

sup
Bρ,n(R)

‖Rq‖`2ρ,0 ≤ C,

sup
Bρ,n(R)

‖Rp‖`2ρ,1 ≤ C.

We now restrict the space variables to integer values; keeping in mind that qa and pa are periodic, we
assume that j ∈ Z2

N,Nσ .
For a �nite sequence Q = (Qj)j∈Z2

N,Nσ
we de�ne the norm

‖Q‖2`2
N,Nσ

:=
∑

j∈Z2
N,Nσ

|Qj |2.NormSeqNormSeq (255)

Now we consider the discrete model (5): we rewrite in the following form,

Q̇j = −(∆1P )jDiscrEq1DiscrEq1 (256)

Ṗj = −Qj − απ0Q
2
jDiscrEq2DiscrEq2 (257)

and we want to show that there exist two sequences E = (Ej)j∈Z2
N,Nσ

and F = (Fj)j∈Z2
N,Nσ

such that

Q = µ2 qa + µ2+γE, P = µpa + µ2+γF

ful�lls (256)-(257), where γ > 0 is a parameter we will �x later in the proof. Therefore, we have that

Ė = −∆1 F − µ6−2−γRqEqSeq1EqSeq1 (258)

Ḟ = −E − απ0 (µ2 2qaE + µ2+γE2)− µ5−2−γRp,EqSeq2EqSeq2 (259)

where we impose initial conditions on (E,F ) such that (q̃, p̃) has initial conditions corresponding to the
ones of the true initial datum,

µ2qa(0, µj1, µ
σj2) + µ2+γE0,j = Q0,j ,

µpa(0, µj1, µ
σj2) + µ2+γF0,j = P0,j .

We now de�ne the operator ∂i, i = 1, 2, by (∂if)j := fj − fj−ei for each f ∈ `2N,Nσ .
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• Claim 1: Let σ > 2 and γ > 0, we have

‖E0‖`2
N,Nσ

≤ C′µ(3−2γ−σ)/2,

‖∂1F0‖`2
N,Nσ

≤ C′µ(3−2γ−σ)/2,

‖∂2F0‖`2
N,Nσ

≤ C′µ(1−2γ+σ)/2.

To prove Claim 1 we observe that

E0 = µ2 ξa + ηa − (ξ̃a + η̃a)√
2µ2+γ

= µ−γ
ψξ + ψη√

2
,

F0 = µ
∂−1
y1 [ξa − ηa − (ξ̃a − η̃a)]

√
2µ2+γ

= µ−1−γ ∂
−1
y1 (ψξ − ψη)
√

2
,

from which we can deduce

‖E0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|E0,j |2 ≤ C 4Nσ+1 (µ2−γ)2 = C µ3−2γ−σ,

‖∂1F0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂1F0,j |2 ≤ C 4Nσ+1 (µ2−γ)2 ≤ C µ3−2γ−σ

‖∂2F0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂2F0,j |2 ≤ C 4Nσ+1 (µ1+σ−γ)2 = C µ1−2γ+σ

and this leads to the thesis.

• Claim 2: Fix n ≥ 1, T0 > 0 and K∗ > 0, then for any µ < µs and for any σ > 2 and γ ≥ 1 such
that σ + 2γ < 7 we have

‖E‖2`2
N,Nσ

+ ‖∂1F‖2`2
N,Nσ

+ ‖∂2F‖2`2
N,Nσ

≤ K∗, |t| <
T0

µ3
.(260)

To prove the claim, we de�ne

F(E,F ) :=
∑

j∈Z2
N,Nσ

E2
j + Fj(−∆1F )j

2
+

2µ2αqa,jE
2
j

2
,auxFuncClaim2auxFuncClaim2 (261)

and we remark that, using the boundedness of qa,j ,

1

2
F(E,F ) ≤ ‖E‖2`2

N,Nσ
+ ‖∂1F0‖2`2

N,Nσ
+ ‖∂2F0‖2`2

N,Nσ
≤ 4F(E,F ).

Now we compute the time derivative of F . Exploiting (258)-(259)

Ḟ =
∑
j

Ej
[
−(∆1F )j − µ4−γ(Rq)j

]
TimeDerAuxFunc1TimeDerAuxFunc1 (262)

+
∑
j

(−∆1F )j
[
−Ej − α(µ22qa,jEj + µ2+γE2

j )− µ3−γ(Rp)j
]

TimeDerAuxFunc2TimeDerAuxFunc2 (263)

+
∑
j

2µ2 α qa,jEj
[
−(∆1F )j − µ4−γ(Rq)j

]
TimeDerAuxFunc3TimeDerAuxFunc3 (264)

+
∑
j

µ2αE2
j µ

∂qa,j
∂τ

TimeDerAuxFunc4TimeDerAuxFunc4 (265)

=
∑
j

−Ej µ4−γ(Rq)j +
∑
j

(−∆1F )j
[
−αµ2+γE2

j − µ3−γ(Rp)j
]

TimeDerAuxFunc21TimeDerAuxFunc21 (266)

−
∑
j

2µ2 α qa,jEj µ
4−γ(Rq)j +

∑
j

µ2αE2
j µ

∂qa,j
∂τ

TimeDerAuxFunc22TimeDerAuxFunc22 (267)
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In order to estimate (266)-(267), we notice that

sup
j
|(∆1F )j | ≤ 2 sup

j
|(∂1F )j |+ |(∂2F )j | ≤ 4

√
F ,

‖Rq‖2`2
N,Nσ

≤
∑
j

|(Rq)j |2 ≤ 4Nσ+1 sup
y
|Rq(y)|2 ≤ Cµ−1−σ,

and that |(∂iRp)j | ≤ µ supy

∣∣∣ ∂Rp∂y
(y)
∣∣∣, which implies

‖∂iRp‖2`2
N,Nσ

≤ Cµ1−σ.

Now, the �rst sum in (266) is estimated by CF1/2µ(7−2γ−σ)/2 ; the second sum in (266) can be
bounded by

C(µ2+γF3/2 + µ(7−2γ−σ)/2F1/2).

Recalling that qa,j is bounded, the �rst sum in (267) can be bounded by CF1/2µ(11−2γ−σ)/2, while the
second one is estimated by Cµ3F . Hence, as long as F < 2K∗ we have∣∣∣Ḟ∣∣∣ ≤ C ∣∣∣F1/2µ(7−2γ−σ)/2 + µ2+γF3/2 + µ(7−2γ−σ)/2F1/2 + F1/2µ(11−2γ−σ)/2 + µ3F

∣∣∣
≤ C(µ2+γ

√
2K1/2
∗ + µ3)F + C(2µ(7−2γ−σ)/2 + µ(11−2γ−σ)/2)

√
2K1/2
∗ ,EstTimeDer1EstTimeDer1 (268)

γ≥1

≤ C µ3 2
√

2K1/2
∗ F + C 3µ(7−2γ−σ)/2

√
2K1/2
∗ ,EstTimeDer2EstTimeDer2 (269)

and by applying Gronwall's lemma we get

F(t) ≤ F(0)eC 2
√

2K
1/2
∗ µ3t + eC 2

√
2K

1/2
∗ µ3t C 2

√
2K1/2
∗ µ3t C 3µ(7−2γ−σ)/2

√
2K1/2
∗ ,GronwallGronwall (270)

from which we can deduce the thesis. �

Proof of Proposition 6.3. Proposition 6.3 can be obtained from Proposition 6.6 by setting σ = 2. �

Appendix D. Proof of Proposition 6.9
ApprEstSec21

We argue as in the proof of Proposition (6.5).
First we remark that for all k such that κ(k) = (µK1, µ

σK2) we have

|ω2
k|

(24)
= 1 + 4

[
sin2

(
k1π

2N + 1

)
+ sin2

(
k2π

2N + 1

)]
= 1 + 4

[
sin2

(
µK1π

2

)
+ sin2

(
µσK2π

2

)]
≤ 1 + π2(µ2 K2

1 + µ2σK2
2 ),

≤ π2(1 + µ2 K2
1 + µ2σK2

2 ),EstFreq1DNLSrEstFreq1DNLSr (271)

hence

|p̂K |2 + π2(1 + µ2K2
1 + µ2σK2

2 )|q̂K |2

2
≤ π2 e−2ρ|K| |p̂K |2 + (1 + µ2K2

1 + µ2σK2
2 )|q̂K |2

2
e2ρ|K|

≤ π2 e−2ρ|K| (1 + µ2 K2
1 + µ2σK2

2

)
‖(ψ, ψ̄)‖2Hρ,0 .NormMode1DNLSEstNormMode1DNLSEst (272)
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Hence, by (190) we obtain that for all k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| > (2+δ)| log µ|

ρ

Eκ
µ2

≤
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

(
|p̂K+L|2 + ω2

k |q̂K+L|2
)

(271),(272)

≤ π2 ‖(ψ, ψ̄)‖2Hρ,0 2
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

e−2ρ|K+L| [1 + µ2 (K1 + L1)2 + µ2σ (K2 + L2)2] ,
EstEnSpecHighModes1DNLSEstEnSpecHighModes1DNLS (273)

where the sum in (273) can be rewritten as follows,

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

(2+δ)| log µ|
ρ

e−2ρ|K+L|
EstEnSpecHighModes1EstEnSpecHighModes1 (274)

+ µ2
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

e−2ρ|K+L|(K1 + L1)2
EstEnSpecHighModes2EstEnSpecHighModes2 (275)

+ µ2σ
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ

e−2ρ|K+L|(K2 + L2)2.EstEnSpecHighModes3EstEnSpecHighModes3 (276)

Now,

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

(2+δ)| log µ|
ρ

e−2ρ|K+L|

≤ e−2ρ|K| +
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1=0,L2 6=0

e−2ρ|K+L| +
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1 6=0,L2=0

e−2ρ|K+L|

+
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1,L2 6=0

e−2ρ|K+L|,DecompHighModesTerm1DecompHighModesTerm1 (277)

and we can estimate the above terms as for (236) in Proposition 6.5; indeed, by (238), (239) and (240)
we have that (277) is bounded by

e−2ρ|K| + π

(
1

2ρ2
+ 2|K|

)
e−2ρ|K| + e−2ρ (|K1|+|K2|)

∑
`∈Z\{0}

e−4ρ|`|/µ

+ e−2ρ (|K1|+|K2|)
∑

`∈Z\{0}

e−4ρ|`|/µσ .EstHighModesTerm1EstHighModesTerm1 (278)



46 M. GALLONE(†) AND S. PASQUALI(∗)

Now we estimate (275). We have∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

(2+δ)| log µ|
ρ

e−2ρ|K+L| (K1 + L1)2

≤ e−2ρ|K|K2
1

+
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1 6=0,L2=0

e−2ρ|K+L| (K1 + L1)2 +
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1=0,L2 6=0

e−2ρ|K+L| K2
1

+
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
(2+δ)| log µ|

ρ
L1,L2 6=0

e−2ρ|K+L| (K1 + L1)2.DecompHighModesTerm2DecompHighModesTerm2 (279)

First we estimate the last term in (279): we have that |L+K| ≥ |K|, hence∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

(2+δ)| log µ|
ρ

L1,L2 6=0

e−2ρ|K+L| (K1 + L1)2

=

∫ +∞

|K|

∫ 2π

0

e−2ρ ξ ξ cos2 φ dφ dξ

= π e−2ρ|K| 1 + 2ρ|K|
4ρ2

≤ π µ4 e
−2ρ

[
|K|− 2| log µ|

ρ
− 1

2ρ
log(2ρ|K|)

]
δ<1−1/e

≤ π µ4 e
−2ρ

[
δ|K|− 2| log µ|

ρ

]
Est1HighModesTerm2Est1HighModesTerm2 (280)

Now we bound the other two nontrivial terms in (279); on the one hand, we notice that∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L|(K1 + L1)2

≤ 2
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1=0,L2 6=0

e−2ρ|K+L|K2
1

+ 2
∑

L=(L1,L2)∈Z2:µL1,µ
σL2∈2Z

|K1|+|K2|>
2| log µ|

ρ
L1=0,L2 6=0

e−2ρ|K+L| L2
1,DecompHighModesTerm22DecompHighModesTerm22 (281)

where the �rst sum can be bounded as the second term in (277), while∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L|L2
1 ≤ e−2ρ|K|

∑
`∈Z\{0}

e−4ρ|`|/µ `
2

µ2

≤ 2e−2ρ|K|
∫ +∞

1

e−4ρ|`|/µ `
2

µ2
dl,DecompHighModesTerm23DecompHighModesTerm23 (282)

where the last integral is exponentially small with respect to µ.
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Similarly,

∑
L=(L1,L2)∈Z2:µL1,µ

σL2∈2Z
|K1|+|K2|>

2| log µ|
ρ

L1=0,L2 6=0

e−2ρ|K+L|L2
2 ≤ e−2ρ|K|

∑
`∈Z\{0}

e−4ρ|`|/µσ `2

µ2σ

≤ 2e−2ρ|K|
∫ +∞

1

e−4ρ|`|/µσ `2

µ2σ
d`,DecompHighModesTerm33DecompHighModesTerm33 (283)

where the last integral is exponentially small with respect to µ.

On the other hand, for any k such that κ(k) = (µK1, µ
σK2) and |K1|+ |K2| ≤ (2+δ)| log µ|

ρ

∣∣∣∣∣Eκµ2
− |ψ̂K |

2

2

∣∣∣∣∣
≤
∣∣ω2
k − 1

∣∣ |q̂K |2 +
1

2

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

|p̂K+L|2 + ω2
k |q̂K+L|2 ,

(271)

≤ (µ2π2K2
1 + π2µ2σK2

2 )|p̂K |2

+
1

2

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

|p̂K+L|2 + |q̂K+L|2 + π2[µ2(K1 + L1)2 + µ2σ(K2 + L2)2]|q̂K+L|2,

≤
(
π2 µ2K2

1 + π2µ2σK2
2

)
|p̂K |2

+ ‖(ψ, ψ̄)‖2Hρ,0
∑

L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

e−2ρ|K+L|[1 + π2µ2(K1 + L1)2 + π2µ2σ(K2 + L2)2]

≤ π2 µ2
(

1 + µ2(σ−1)
) 9| logµ|2

ρ2
‖(ψ, ψ̄)‖2Hρ,0EstLowModesTerm1EstLowModesTerm1 (284)

+ ‖(ψ, ψ̄)‖2Hρ,0
∑

L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

e−2ρ|K+L|
EstLowModesTerm2EstLowModesTerm2 (285)

+ π2µ2‖(ψ, ψ̄)‖2Hρ,0
∑

L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

e−2ρ|K+L|(K1 + L1)2
EstLowModesTerm3EstLowModesTerm3 (286)

+ π2µ2σ‖(ψ, ψ̄)‖2Hρ,0
∑

L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

e−2ρ|K+L|(K2 + L2)2
EstLowModesTerm4EstLowModesTerm4 (287)
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and we can conclude by estimating (284) by exploiting the fact that | logµ| ≤ µ−2/5, while we can
bound (285)-(286) by

π2

2
‖(ψ, ψ̄)‖2Hρ,0

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

[1 + µ2(K1 + L1)2] e−2ρ|K+L|

π2

2
‖(ψ, ψ̄)‖2Hρ,0

∑
L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

(1 + 2µ2 K2
1 + 2µ2 L2

1) e−2ρ|K+L|

≤ π2

2
‖(ψ, ψ̄)‖2Hρ,0

[
(1 + 2µ2 K2

1 ) 2π

∫ +∞

2/µ

e−2ρ` `d`+ 4π µ2

∫ +∞

2/µ

e−2ρ` `3d`

]

=
π2

2
‖(ψ, ψ̄)‖2Hρ,0 ×[

2π

(
1 + 2µ2 9| logµ|2

ρ2

)
e−4ρ/µ µ+ 4ρ

4µρ2
+ 4π µ2e−4ρ/µ 3µ3 + 12ρµ2 + 24ρ2µ+ 32ρ3

8µ3ρ4

]
,Est1LowModesTerm3Est1LowModesTerm3 (288)

and we can estimate (287) by

π2

2
‖(ψ, ψ̄)‖2Hρ,0 µ

2(σ−1)
∑

L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

(K2 + L2)2 e−2ρ|K+L|

π2

2
‖(ψ, ψ̄)‖2Hρ,0 µ

2(σ−1)
∑

L=(L1,L2)∈Z2\{0}
µL1,µ

σL2∈2Z

(2K2
2 + 2L2

2) e−2ρ|K+L|

≤ π2

2
‖(ψ, ψ̄)‖2Hρ,0 µ

2(σ−1)

[
2K2

1 2π

∫ +∞

2/µσ
e−2ρ` `d`+ 4π

∫ +∞

2/µσ
e−2ρ` `3d`

]

=
π2

2
‖(ψ, ψ̄)‖2Hρ,0 µ

2(σ−1)×[
2π 2

9| logµ|2

ρ2
e−4ρ/µσ µ

σ + 4ρ

4µσρ2
+ 4π e−4ρ/µσ 3µ3σ + 12ρµ2σ + 24ρ2µσ + 32ρ3

8µ3σρ4

]
.Est1LowModesTerm4Est1LowModesTerm4 (289)

Appendix E. Proof of Proposition 6.10
ApprEstSec22

The argument follows along the lines of Appendix C in
bambusi2006metastability
[?].

Exploiting the canonical transformation found in Theorem 3.3, we also de�ne

ζa := (ψa, ψ̄a) = Tµ2(ψ̃a,
¯̃
ψa) = ζ̃a + φa(ζ̃a),(290)

where φa(ζ̃a) := (φξ(ζ̃a), φη(ζ̃a)); by (54) we have

sup
ζ∈Bρ,n(R)

‖φa(ζ)‖Hρ,n ≤ C′nµ2 R.estRemThm3estRemThm3 (291)

For convenience we de�ne

qa(τ, y) :=
1√
2

[
eiτ ψ̃a(τ, y1, y2) + e−iτ

¯̃
ψa(τ, y1, y2)

]
qappr3qappr3 (292)

pa(τ, y) :=
1√
2i

[
eiτ ψ̃a(τ, y1, y2)− e−iτ ¯̃

ψa(τ, y1, y2)
]
,pappr3pappr3 (293)

We observe that the pair (qa, pa) satis�es

µ(qa)t = µpa + µ5RqApprEq31ApprEq31 (294)

µ(pa)t = −µqa + µ∆1qa − µ3 β π0q
3
a + µ5Rp,ApprEq32ApprEq32 (295)
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where the operator ∆1 acts on the variable x, π0 is the projector on the space of the functions with zero
average, and the remainders are functions of the rescaled variables τ and y which satisfy

sup
Bρ,n(R)

‖Rq‖`2ρ,0 ≤ C,

sup
Bρ,n(R)

‖Rp‖`2ρ,1 ≤ C.

We now restrict the space variables to integer values; keeping in mind that qa and pa are periodic, we
assume that j ∈ Z2

N,Nσ .
For a �nite sequence Q = (Qj)j∈Z2

N,Nσ
we de�ne the norm

‖Q‖2`2
N,Nσ

:=
∑

j∈Z2
N,Nσ

|Qj |2.NormSeq3NormSeq3 (296)

Now we consider the discrete model (5): we rewrite in the following form,

Q̇j = PjDiscrEq31DiscrEq31 (297)

Ṗj = −Qj + (∆1Q)j − β π0Q
3
jDiscrEq32DiscrEq32 (298)

and we want to show that there exist two sequences E = (Ej)j∈Z2
N,Nσ

and F = (Fj)j∈Z2
N,Nσ

such that

Q = µ qa + µ1+γE, P = µpa + µ1+γF

ful�lls (297)-(298), where γ > 0 is a parameter we will �x later in the proof. Therefore, we have that

Ė = F − µ5−1−γRqEqSeq31EqSeq31 (299)

Ḟ = −E + ∆1E − βπ0 (3µ3+γ−1−γ q2
aE + 3µ1+2+2γ−1−γ qaE

2 + µ3+3γ−1−γE3)− µ5−1−γRp,EqSeq32EqSeq32 (300)

where we impose initial conditions on (E,F ) such that (q̃, p̃) has initial conditions corresponding to the
ones of the true initial datum,

µqa(0, µj1, µ
σj2) + µ1+γE0,j = Q0,j ,

µpa(0, µj1, µ
σj2) + µ1+γF0,j = P0,j .

We now de�ne the operator ∂i, i = 1, 2, by (∂if)j := fj − fj−ei for each f ∈ `2N,Nσ .
• Claim 1: Let σ > 1 and γ > 0, we have

‖E0‖`2
N,Nσ

≤ C′µ(3−2γ−σ)/2,

‖F0‖`2
N,Nσ

≤ C′µ(3−2γ−σ)/2,

‖∂1E0‖`2
N,Nσ

≤ C′µ(5−2γ−σ)/2,

‖∂2E0‖`2
N,Nσ

≤ C′µ(3−2γ+σ)/2,

‖∂1F0‖`2
N,Nσ

≤ C′µ(5−2γ−σ)/2,

‖∂2F0‖`2
N,Nσ

≤ C′µ(3−2γ+σ)/2.

To prove Claim 1 we observe that

E0 = µ
ψa + ψ̄a − (ψ̃a +

¯̃
ψa)√

2µ1+γ
= µ−γ

φξ + φη√
2

,

F0 = µ
ψa − ψ̄a − (ψ̃a − ¯̃

ψa)]√
2i µ1+γ

= µ−γ
φξ − φη√

2i
,
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from which we can deduce

‖E0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|E0,j |2 ≤ C 4Nσ+1 (µ2−γ)2 = C µ3−2γ−σ,

‖F0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|F0,j |2 ≤ C 4Nσ+1 (µ2−γ)2 = C µ3−2γ−σ,

‖∂1E0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂1E0,j |2 ≤ C 4Nσ+1 (µ2+1−γ)2 ≤ C µ5−2γ−σ,

‖∂2E0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂2E0,j |2 ≤ C 4Nσ+1 (µ2+σ−γ)2 = C µ3−2γ+σ,

‖∂1F0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂1F0,j |2 ≤ C 4Nσ+1 (µ2+1−γ)2 ≤ C µ5−2γ−σ,

‖∂2F0‖2`2
N,Nσ

≤
∑

j∈Z2
N,Nσ

|∂2F0,j |2 ≤ C 4Nσ+1 (µ2+σ−γ)2 = C µ3−2γ+σ,

and this leads to the thesis.

• Claim 2: Fix n ≥ 0, T0 > 0 and K∗ > 0, then for any µ < µs and for any σ > 1 and γ > 0 such
that σ + 2γ < 7 we have

‖E‖2`2
N,Nσ

+ ‖F‖2`2
N,Nσ

+ ‖∂1E0‖2`2
N,Nσ

+ ‖∂2E0‖2`2
N,Nσ

≤ K∗, |t| <
T0

µ2
.(301)

To prove the claim, we de�ne

F(E,F ) :=
∑

j∈Z2
N,Nσ

F 2
j + E2

j + Ej(−∆1E)j

2
+

3µ2βq2
aE

2
j + 3µ2+γβqaE

3
j

2
,auxFuncClaim32auxFuncClaim32 (302)

and we remark that

1

2
F(E,F ) ≤ ‖E‖2`2

N,Nσ
+ ‖∂1F0‖2`2

N,Nσ
+ ‖∂2F0‖2`2

N,Nσ
≤ 2F(E,F ).

Now we compute the time derivative of F . Exploiting (258)-(259)

Ḟ =
∑
j

Fj
[
−Ej + (∆1E)j − βπ0 (3µ2 q2

aEj + 3µ2+γ qaE
2
j + µ2+2γE3

j )− µ4−γ(Rp)j
]

TimeDerAuxFunc31TimeDerAuxFunc31 (303)

+
∑
j

(Ej − (∆1E)j)
[
Fj − µ4−γ(Rq)j

]
TimeDerAuxFunc32TimeDerAuxFunc32 (304)

+
∑
j

3µ2 β q2
aEj

[
Fj − µ4−γ(Rq)j

]
+ 3µ2βE2

j qa µ
∂qa
∂τ

TimeDerAuxFunc33TimeDerAuxFunc33 (305)

+
∑
j

9

2
µ2+γβE2

j

[
Fj − µ4−γ(Rq)j

]
+

3

2
µ2+γβE3

j µ
∂qa
∂τ

TimeDerAuxFunc34TimeDerAuxFunc34 (306)

=
∑
j

Fj
[
−βπ0 (3µ2+γ qaE

2
j + µ2+2γE3

j )− µ4−γ(Rp)j
]

TimeDerAuxFunc41TimeDerAuxFunc41 (307)

+
∑
j

Ej
[
−µ4−γ(Rq)j

]
− (∆1E)j

[
−µ4−γ(Rq)j

]
TimeDerAuxFunc42TimeDerAuxFunc42 (308)

+
∑
j

3µ2 β q2
aEj

[
−µ4−γ(Rq)j

]
+ 3µ2βE2

j qa µ
∂qa
∂τ

TimeDerAuxFunc43TimeDerAuxFunc43 (309)

+
∑
j

9

2
µ2+γβE2

j

[
Fj − µ4−γ(Rq)j

]
+

3

2
µ2+γβE3

j µ
∂qa
∂τ

TimeDerAuxFunc44TimeDerAuxFunc44 (310)

In order to estimate (307)-(310), we notice that
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sup
j
|(∆1E)j | ≤ 2 sup

j
|(∂1E)j |+ |(∂2E)j | ≤ 4

√
F ,

‖Rq‖2`2
N,Nσ

≤
∑
j

|(Rq)j |2 ≤ 4Nσ+1 sup
y
|Rq(y)|2 ≤ Cµ−1−σ,

‖Rp‖2`2
N,Nσ

≤ Cµ−1−σ,

and that |(∂iRq)j | ≤ µ supy

∣∣∣ ∂Rq∂y
(y)
∣∣∣, which implies

‖∂iRq‖2`2
N,Nσ

≤ Cµ1−σ.

Now, we can estimate (307) by

EstTimeDerAuxFunc41EstTimeDerAuxFunc41 (311) C
(
µ2+γF3/2 + µ2+2γ F2 + µ4−γ µ−(1+σ)/2F1/2

)
.

Then, (308) can be bounded by

EstTimeDerAuxFunc42EstTimeDerAuxFunc42 (312) C
(
µ4−γ−(1+σ)/2 F1/2 + µ4−γ+(1−σ)/2 F1/2

)
;

next, we can estimate (309) by

EstTimeDerAuxFunc43EstTimeDerAuxFunc43 (313) C
(
µ6−γ−(1+σ)/2F1/2 + µ3F

)
,

while (310) can be bounded by

EstTimeDerAuxFunc44EstTimeDerAuxFunc44 (314) C
(
µ2+γF3/2 + µ6−(1+σ)/2F + µ2+γF3/2

)
.

Hence, as long as F < 2K∗ we have∣∣∣Ḟ∣∣∣ ≤ C [µ2+γ K1/2
∗ + µ2+2γ K∗ + µ3 + µ2+γ K1/2

∗ + µ6−(1+σ)/2 + µ2+γ K1/2
∗

]
FEstTimeDer31EstTimeDer31 (315)

+ C
[
µ4−γ µ−(1+σ)/2 + µ4−γ−(1+σ)/2 + µ4−γ+(1−σ)/2 + µ6−γ−(1+σ)/2

]
K1/2
∗EstTimeDer32EstTimeDer32 (316)

σ+2γ<7

≤ C µ2 (1 +K1/2
∗ )F + C µ(7−2γ−σ)/2 K1/2

∗EstTimeDer33EstTimeDer33 (317)

and by applying Gronwall's lemma we get

F(t) ≤ F(0)eC (1+K
1/2
∗ )µ2t + eC (1+K

1/2
∗ )µ2t C (1 +K1/2

∗ )µ2t C µ(7−2γ−σ)/2 K1/2
∗ ,Gronwall3Gronwall3 (318)

from which we can deduce the thesis.
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