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METASTABILITY PHENOMENA IN TWO-DIMENSIONAL RECTANGULAR
LATTICES WITH NEAREST-NEIGHBOUR INTERACTION

M. GALLONE(") AND S. PASQUALI™

ABsTrACT. We study analytically the dynamics of two-dimensional rectangular lattices with pe-
riodic boundary conditions. We consider anisotropic initial data supported on one low-frequency
Fourier mode. We show that, in the continuous approximation, the resonant normal form of the
system is given by integrable PDEs. We exploit the normal form in order to prove the existence of
metastability phenomena for the lattices. More precisely, we show that the energy spectrum of the
normal modes attains a distribution in which the energy is shared among a packet of low-frequencies
modes; such distribution remains unchanged up to the time-scale of validity of the continuous ap-
proximation.
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In this paper we present an analytical study of the dynamics of two-dimensional rectangular lattices
with nearest-neighbour interaction and periodic boundary conditions, for initial data with only one low-
frequency Fourier mode initially excited. We give some rigorous results concerning the relaxation to a
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metastable state, in which energy sharing takes place among low-frequency modes only.

The study of %t%ﬁgé%isl%%igglenomena for lattices started with the numerical result by Fermi, Pasta
and Ulam (FPU) |7 , who investigated the dynamics of a one-dimensional chain of particles with nearest

neighbour interaction. In the original simulations all the energy was initially given to a single low-
frequency Fourier mode with the aim of measuring the time of relaxation of the system to the ‘thermal
equilibrium’ by looking at the evolution of the Fourier spectrum. Classical statistical mechanics pre-
scribes that the energy spectrum corresponding to the thermal equilibrium is a plateau (the so-called
theorem of equipartition of energy). Despite the authors believed that the approach to such an equilib-
rium would have occurred in a short time-scale, the outcoming Fourier spectrum was far from being flat
and they observed two features of the dynamics that were in contrast with their expectations: the lack
of thermalization displayed by the energy spectrum and the recurrent behaviour of the dynamics.

Both from a physical and a mathematical point of view, the studies on FPU-like syst ms h ‘%\églzaJ&;}grm
and active history: a concise survey of this vast literature is dlscusse% in licshl%r&%gmograph ?]. For a more

recent account on analytic results on the ‘FPU paradox’ we refer to

. . ambusi2bafibesaf08Biesbpance . .
In particular, we mention the papers [7] and .7i, in which the authors used the techniques of canonical
perturbation theory for PDEs in order to show that the FPU « model (respectively, 5 model) can be

rigorously described by a system of two uncoupled KdV (resp. mKdV) equations, which are obtained as
a resonant normal form of the continuous approximation of the FPU model; moreover, this result allowed
to deduce a rigorous result about the energy sharing among the Fourier modes, up to the time-scales
of validity of the approximation. If we denote by N the number of degrees of freedom for the lattice
and by p ~ % < 1 the wave-number of the initially excited mode, if we assume that the specific energy
e ~ p* (resp. € ~ p? for the FPU B model), then the dynamics of the KdV (resp. mKdV) equations
approximates the solutions of the FPU model up to a time of order O(u~%). However, the relation
between the specific energy and the number of degrees of freedom implies that the result does not hold
in the thermodynamic limit regime, namely for large NV and for fixed specific energy e (such a regime is
the one which is relevant for statistical mechanics).

Unlike the extensive research concerning one-dimensional systems, it seems to the authors that the
behaviour of the dynamics of two-dimensional lattices is far less clear; it is expected that the interplay
between the geometry of the lattice and ifiq energy regime could lead to different results.

Benettin and collaborators [7] 17 numerically a two-dimensional FPU lattice with trian-
gular cells and different boundary condltlons in order to estimate the equipartition time-scale. They
found out that in the thermodynamic limit regime the equipartition is reached faster than in the one-
dimensional case. The authors decided not to consider model with square cells in order to have a

spectrum of linear fr: %}llencwﬁ%o cdh is different with respect to the one of the one-dimensional model;
they also added (see [7], section B (i) )

There is a good chance, however, that models with square lattice, and perhaps a different potential
s0 as to avoid instability, behave differently from models with triangular lattice, and are instead more
similar to one-dimensional models. This would correspond to an even stronger lack of universality in the
two-dimensional FPU problem.

Up to the authors’ knowledge, the only analytical res ) tcél}inr&ensional lattices
in this framework concern the existence of breathers

In this paper we study two-dimensional rectangular lattlces W1th (2N1 +1) x (2N2 + 1) sites, square
cell, nearest-neighbour interactipn Al dzogéagé%)a(i;c%blﬁ)undary conditions, and we show the existence of
metastability phenomena as in %ﬂn More precisely, if we denote by 4 < 1 the wave-number of the
Fourier mode initially excited and by o the ratio between the sides of the lattice, we obtain for a 2D
Electrical Transmission lattice (ETL) either a system of two uncoupled KP-II equations for p < 1
and o = 2, or a system of two uncoupled KdV equations for y < 1 and 2 < o < 5 as a resonant

normal form for the continuous approximation of the lattice, while for the 2D Klein-Gordon lattice with




quartic defocusing nonlinearity we obtain a one-dimensional cubic defocusing NLS equation for p < 1
and 1 < ¢ < 7. Since all the above PDEs are integrable, we can exploit integrability to deduce a
mathematically rigorous result on the formation of the metastable packet.

We would like to emphasize that, depending on the geometry of the lattice which is encoded in
the parameter o, the dynamics is almost 1-dimensional for highly anisotropic lattices and genuinely
2-dimensional for low values of o. In this picture, the edge case 0 = 2 has a genuinely 2-dimensional
normal form equation (as it happens for o < 2) which is integrable (as for o > 2).

Up to the authors’ knowledge, this is the first analytical result about metastable phenomena in
two-dimensional Hamiltonian lattices with periodic boundary conditions; in particular, this is the first
rigorous result for two-dimensional lattices in which the dynamics of the lattice in a genuinely two-
dimensional regime is described by a system of two-dimensional integrable PDEs.

Some comments are in order:

i. we have that the time-scale of validity of our result is of order O(p~2) for the 2D ETL lattice,
and of order O(p~?) for the 2D Klein-Gordon lattice;
ii. the ansatz about the small amplitude solutions gives a relation between the specific energy of

the system e and the wave-number p ~ NL of the Fourier mode initially excited. More precisely,
. 4 R busi2006metagtability X .
we obtain € ~ u” for the 2D ETL lattice as in [?], and € ~ = for the 2D Klein-Gordon lattice.

This implies that the result does not hold in the thermodynamic limit regime;

iii. our result can be easily generalized to higher-dimensional lattices (see Remark 2.12 and Remark
2.13), such as the physical case of three-dimensional rectangular lattices with cubic cells;

iv. the upper bounds for ¢ in the KdV regime and in the NLS regime come from a technical
assumption in the approximation results (see Proposition 6.5, Proposition 6.2 and Proposition
6.9). The approximation of solutions for the lattice with solutions of integrable PDEs in one-
dimensional lattices was obtained through a detailed analysis in order to bound the error, and
this is also the case for two-dimensional lattices, (see Proposition 6.5, Proposition 6.9, Appendix
C and Appendix E), where one has to do very careful estimates in order to bound the different
contributions to the error.

bambusi2006metastability . A .
To prove our results we follow the strategy of h The first step consists in the approximation of

the dynamics of the lattice with the dynamics of a continuous system. As a second step we perform a
normal form canonical transformation and we obtain that the effective dynamics is given by a system of
integrable PDEs (KdV, KP-II, NLS depending on the lattice and the relation between N1 and N2). Next,
we exploit the dynamics of these integrable PDEs in order to construct approximate solutions of the
original discrete lattices, and we estimate the error with repect to a true solution with the corresponding
initial datum. Finally, we use the known results about the dynamics of the above mentioned integrable
PDEs in order to estimate the specific energies for the approximate solutions of the original lattices.

The novelties of this work are: on the one side, a mathematically rigorous proof of the approximation
of the dynamics of the ETL lattice by the dynamics of certain integrable PDEs (among these integrable
PDEs, there is one which is genuinely two-dimensional, the KP-II equation) and of the dynamics of the
two-dimensional KG lattice by the dynamics of the one-dimensional nonlinear Schrédinger equation; on
the other side, there are two technical differences with respe Jvorks, namely the normal
form theorem (which is a variant of the technique used in [? imates for bounding the

error between the approximate so lution a e tru a@gﬂl@ion of the lattice (which need a more careful
study than the ones appearing in [7 7] for %ge one—%lmensmnal case).

The paper is organized as follows: in Section 2 we introduce the mathematical setting of the models
and we state our main results, Theorem 2.1, Theorem 2.4 and Theorem 2.6. In Section 3 we state
an abstract Averaging Theorem, which we prove in Section 3.2. In Section 4 we apply the averaging
Theorem to the two-dimensional lattices, deriving the integrable approximating PDEs in the different
regimes. In Section 5 we review some results about the dynamics of the normal form equation. In Section

6 we use the normal form equations in order to construct approximate solutions (see Proposition 6.5,
Proposition 6.2 and Proposition 6.9), and we estimate the difference with respect to the true solutions
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with corresponding initial data in Proposition 6.6, Proposition 6.3 and Proposition 6.10. In Appendix
A we prove the technical Lemma 3.6; in Appendix B we prove Proposition 6.5; in Appendix C we prove
Proposition 6.6; in Appendix D we prove Proposition 6.9; in Appendix E we prove Proposition 6.10.

2. MAIN RESULTS

We consider a periodic two-dim usci%aé gectangular lattice, called ETL lattice, which in the non-
periodic setting has been studied in ; (see Remark 2.9 for a physical motivation of such a model), and

which can be regarded as a simpler version of a 2D rectangular FPU model. We denote
1) L3, vy = {1, d2) t 1,42 € Z, 1] < Nu, |ja| < Na}s

we also write e; := (1,0), e := (0,1) and Z% := Z%\LN.
The Hamiltonian describing the ETL lattice is given by

results

N
N

wond] (2) HQP)= Y —1P (AP), + (FQ);,
jezi,lyN2
(3) (A1P)j := (Pjye; = 2Pj + Pj—e;) + (Pjte, — 2P + Pj—c,),
Q? Q3 Q4
(4) (F(Q)i = 5 +a5- +87

We refer to (2) as a + 8 model (respectively, 8 model) if a # 0 (respectively o = 0). With the above
Hamiltonian formulation the equations of motion associated to (2) are given by

Qj=—(A1P);

P =—(F'(Q));

2DETLeq| (5) Qi = (ALF'(Q));.
We also introduce the Fourier coefficients of ) via the following standard relation,
1 A G dk2m 2
fourierQ| (6) Qj = Qre CNiFDENFD 5 € Ziny Ny,
T VN +1)(2N: 4+ 1) ke; nee
Ny,Ng

and similarly for P;. We denote by
wi| Bel® + |Quf?
2 )

FregNormMode | (8) w;% := 4sin? (%) + 4 sin? (QJ\IZ%) ,

EnNormMode | (7) Ey =

the energy and the square of the frequency of the mode at site k = (k1,k2) € Z%\h,Nz (see Figure 1).
For states described by real functions, one has E(x, ko) = E(—iy k) and B, ko) = E(ky,—k,) for all
k = (k1,k2), so we will consider only indexes in

Z, Ng ot = {(k1, k) € ZR, v, + 1, k2 > 0},

As is customary in lattices with a large number of degrees of freedom, especially in relation with
statistical mechanics, it is also convenient to introduce the following specific quantities,

k1 ko
k 9 = r(k) = , ,
appa| (9) o= w(k) <N1+% N2+%>
Ey
(N +3) (N2 +3)
where (10) is the specific energy of the normal mode with index .

We want to study the behaviour of small amplitude solutions of (5), with initial data in which only
one low-frequency Fourier mode is excited.

enkappa | (10) Ep =



mu

sigma

KPrThm

KPData

EnModesKP

ActAngKPrem

InDatarem

F1aure 1. The dispersion relation for the ETL lattice (2), namely + wg, k = (k1, k2),
vs the integer coordinates, for N3 = 10 and Nz = 100.

We assume N; < Nz, and we introduce the quantities

2
11 =
(11) b= N T
1
(12) 0:= logy, 41 <N2 + 5) ;

which play the role of parameters in our construction: we will use them in the asymptotic expansion of
the dispersion relation of the continuous approximation of the lattice (see (98)-(100), and (119)-(120))
in order to derive the integrable approximating PDEs in the regimes we are considering.

We study the o + 8 model of (5) in the following regime:

(KP) the weakly transverse regime, where the effective dynamics is a described by a system of two
uncoupled Kadomtsev-Petviashvili (KP) equation. This corresponds to taking 4 < 1 and o = 2.

From now on, we denote by ko := ( ) = (g, #7). Our main result is the following:

1 1
Nit+3’ (Ni+3)°
Theorem 2.1. Consider (5) with o # 0, o = 2.

Fir 1 <~ < g and two positive constants Co and To, then there exist positive constants po, C1 and
Cs (depending only on v, Co and on To) such that the following holds. Consider an initial datum with

(13) Ero (0) = Cop®, &:.(0)=0 Vk = (K1, kK2) # Ko,
and assume that p < po. Then there exists p > 0 such that along the corresponding solution one has
(14) E.(t) < Cy u%—ﬂ\(m/u,w/u”)l +C, ’u4+v7 It| < Zg
s
for all k.

Remark 2.2. Theorem 2.1 is the first rigorous result for two-dimensional lattices in which the dynamics
of the lattice in a genuinely two-dimensional regime is described by a system of two-dimensional integrable
PDEs. Moreover, in Theorem 2.1 we do not mention the existence of a sequence of almost-periodic
functio[gza%glpsgggggm a{‘,sipa%ﬁblﬁwspeciﬁc energies of the modes, and this is a difference with respect to Theorem

5.8 in [7]. This 1s related to the construction of action-angle/Birkhoff coordinates for the KP equation,
which is an open problem in the theory of integrable PDEs.

Remark 2.3. For the sake of simplicity, we have proved Theorem 2.1 for initial data in which only one
low-frequency Fourier mode is excited. One can also prove that a variant of Theorem 2.1 holds also in the
case the higher harmonics of a low-frequency Fourier mode are excited, provided that the energy decreases
exponentially with respect to |(k1/p, k2/p”)|, and also for initial data in which the symmetrical modes
of a given low-frequency Fourier mode are excited. To summarize, we are only able to prove stability of
the solutions we constructed for initial data with vanishing specific energy for a time-scale O (™).

We also point out that there are also other regimes in which the dynamics of a two-dimensional
lattice can be approximated by integrable PDEs. For example, we can consider « + 8 model of (5) in
the following regime:

fig:freq_ETL



KdVrThm

KdVData

EnModesKdV

AlmostPerKdV

ApprEnModesKdV

Scalingrem

Ham2KGs

potKG2
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2DKGseq

EnNormModeKG

FregNormModeKG
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(KdV) the wery weakly transverse regime, where the effective dynamics is described by a system of
two uncoupled Korteweg-de Vries (KdV) equations. This corresponds to taking p < 1 and
2 <o <h.

The corresponding result one can prove in such a regime is the following.
Theorem 2.4. Consider (5) with « #0, 2 < o < 5.

Fir1<~y< 7*7" and two positive constants Co and To, then there exist positive constants po, C1 and
C> (depending only on v, Co and on To) such that the following holds. Consider an initial datum with

(15) Eny(0) = Copt,  &.(0) =0, Vi = (K1, K2) # Ko,

and assume that p < po. Then there ezists p > 0 such that along the corresponding solution one has
_ 4 Tt

(16) E.(t) <Oy H4e pl(k1/p k2 /K] +Cy M4+'y7 It < ;g

for all k. Moreover, for any ne with 0 < ng < Ny there ezists a sequence of almost-periodic functions
(F")":(”l*”2>ez?v1,zv2,+ such that, if we denote

(17) ]:)eo = ,U4Fn7 F. =0 VK#RI{O
then

18 E (t Fo ()] < Cop u*t t<TO
(1) £~ FuI S Cou™ il < L

Remark 2.5. We point out that in the statement of Theorem 2./ the assumption o > 2 comes from an
asymptotic expansion of the dispersion relation of the continuous approzimation of the lattice (see (98)-
(100) ), while the assumption o < 5 comes from a technical assumption under which we can approzimate
the dynamics of the lattice with the dynamics of the system of uncoupled KdV equations (see the statement
of Theorem 6.6).

We can also consider two-dimensional KG lattices, which combine the nearest-neighbour potential
with an on-site one: the scalar model

3 Pyl S (Q; — Qn)* >

1 H P) = 7 Z Ax%J =R .
( 9) (Q? ) . £ 2 + 2 - 2 + . e U(Qﬂ)a

]EZNLNz j’kEZNLNz JEZleNQ
li—k|=1
ng 22 +2
2 = — —_— >1
(20) U(z) =m s Py ™>0 B>0p21

can be used to describe rigid rotating molecules in the lattice plane (Q being the angle of rotation), where
each molecule interacts with its r}eighbors and with.theﬁr%eel;li&%%ﬁgn’tl)lsltg%ie aﬂpotential U; alternatively, Q
can represent the transverse motion of a planar lattice [7].

Using the operator A; introduced in (3), the Hamiltonian (19) can be rewritten as

P} 1
(21) HQ.P)= Y S +5 >, QM+ Y U@,
jeZ?\flJ\b jeZ%\flJ\b jEZ?\’LNz
the associated equations of motion are
(22) Qi = (A1Q); —m*Q; — BQFT,  j €Ly,

If we take p = 1, we obtain a generalization of the one-dimensional ¢* model.

Now introduce the Fourier coefficients of @) as in (6), and similarly for P;, and denote by
= 1P+ f1Qu
= 5 ,

. ki .2 kom
24 pi=m’+4sin® [ ——— 4 P e
(24) wg :=m” + 4sin IN, £ 1 + 4sin N, + 1)

(23) Ex



FIGURE 2. The dispersion relation for the KG lattice (21), namely + wy, k = (k1, k2),

vs the integer coordinates, for N; = 10 and N2 = 100.

the energy and the square of the frequency of the mode at site k = (k1, k2) € Z?\H,Nz (see Figure 2).
In the rest of the paper we will assume that m = 1.

We consider the two-dimensional KG lattice (19) in the following regime:

—~~

1D NLS) the very weakly transverse regime, where the effective dynamics is described by a cubic one-
dimensional nonlinear Schrédinger (NLS) equation. This corresponds to taking p < 1 and
1<o<T.

1DNLSrThm | Theorem 2.6. Consider (19) with > 0,1 <0 < 7.
Fiz 0 <y < 777" and two positive constants Co and Ty, then there exist positive constants po, C1 and

C> (depending only on v, Co and on To) such that the following holds. Consider an initial datum with

1DNLSData| (25) Eno(0) = Cop®,  Ex(0) =0, V& = (K1, K2) # Ko,
and assume that p < po. Then there exists p > 0 such that along the corresponding solution one has
—pl(k1 ) orn ) T
EnModes1DNLS |  (26) Ex(t) < Oy plePltmlmm2/uDly oy )27 It < =5
I3

for all k. Moreover, for any na with 0 < no < Na there exists a sequence of almost-periodic functions
(Fn)":("l’"”ezﬁvl‘NQ& such that, if we denote

lmostPeriDNLS | (27) Frg = W2 Fn, Fo=0  Ve#nko
then
rEaNodesiDNLS| (28) Ealt) — Fult)] < Cop®™, 1] < 22,

InDatakKGrem | Remark 2.7. In Theorem 2.6 we are able to prove stability of the solutions we constructed for initial
data with vanishing specific energy for a time-scale O(u™?).

ScalingkGrem| Remark 2.8. As for Theorem 2.4, in the statement of Theorem 2.6 the assumption o > 1 comes
from an asymptotic expansion of the dispersion relation of the continuous approzimation of the lattice
(see (119)-(120)), while the assumption o < 5 comes from a technical assumption under which we can
approzimate the dynamics of the lattice with the dynamics of the system of uncoupled NLS equations (see
the statement of Theorem 6.10).

HERIE

2.1. Further remarks.

ETLrem | Remark 2.9. The ETL lattice (2) describes a lossless periodic two-dimensional electrical transmission
lattice (ETL), given by a rectangular configuration of repeating units, each made up of two linear inductors
and a nonlinear capacitor, and lattice nodes de I(I)tttez%%%ils%cr%geons of capacitors. The Hamiltonian (2)
comes from the following computations (see also F’.’]?mat Vi(t), j € ZX, .n,, denotes the voltage
across the j-th capacitor, Q;(t) denotes the charge stored on the j-th capacitor and I;(t) denotes the
current through the j-th inductor along direction e1. To derive the equations for the voltage V; and the
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charge Q; in the lattice one can proceed as follows. Considering a section of the lattice and applying
Faraday’s law and Lenz’s law, the difference in shunt voltage at site j and site j + e1 is given by
dil;
Vel (29) Vitey, = Vi =— TZ?
where L 1s the inductance, which we assume to be constant. Assuming the capacitance C to be an analytic
function of the voltage V' we can expand it in Taylor series, obtaining for small voltages

expC| (30) Ci(V) ~ Co(1 + 2aV; + 3bV}),
where Co := C;(0), a and b are real constants determined by the physical realisation of the network.
Using standard relations between electrical quantities we finally obtain a closed equation for the charge
a’Q, 1 2 3
2 1 I — _— (A ,
qu (3 ) dt2 LCQ( 1(Q + OéQ + /BQ ))Ja

where A1 is the operator defined in (3), and «, 8 are real parameters related to a and b. Up to a rescaling
of time, we can set LCy = 1 without loss of generality; one can check that the Hamiltonian associated to
(31) is precisely (2).

Anisorem| Remark 2.10. The specific choice of the direction of longitudinal propagation in the regimes that we
have considered is not relevant.

FPUNLKGrem | Remark 2.11. We point out that the time of validity of Theorem 2.6 for the KG lattice is of order
O(u™?), which is different from the time of validity of Theorem 2.4 and Theorem 2.1 for the FPU
lattice. In the one-dimensional case it has been observed that, for a fized value of specific energy € and
for long-w%fcég%%fér@%(ig?j&sv initially excited, the ¢* model reached equipartition faster than the FPU B

namics
model (see 7], sec. 2.1.8).

HigherDimRem | Remark 2.12. Theorem 2.1 and Theorem 2.4 can be generalized to higher dimensional lattices. Indeed,
let d < 4, define

(32) L%y ,ong = A0 da) 1y da € 2,1 < Nuyo lal < Nab,
and consider the d-dimensional ETL
1
dDHan|  (33) H@P)= > 5P (AiP); +(FQ);
jezﬁi\rl,A.A,Nd
Q3 Q3 Q; )
o] (34) (FQ)y =T +aZ+65,  jel, n,
We assume N1 < Na, ..., Nqg, and we introduce the quantities
2
(35) B= N, + 1
1
dsigma (36) g = IOgNl-&-% <N¢+1+§) s i=1,...,d—1.

Then we can describe the following regimes:

KdV-d) the a+ B model, in the very weakly transverse regime with p < 1 and 2 < 01,...,04-1 < 5;
Y Y g H
(KP-d) the o + B model, in the weakly transverse regime with p < 1 and 01 =2, 2 < 02,...,04-1 < 5.
Moreover, in order to obtain Theorem 2.4 and Theorem 2.1 we will have to assume that
d—1

TechAssump | (37) 2y + Z o; < 7.

i=1

which, together with the fact that o; > 2 for alli=1,...,d—1, is consistent with the assumption d < 4.



stherDimRemNLKG

)

(IDNLS-d) the model (38) with m =

'echAssumpNLKG

I: BEiabsec

et

ormaigi

mplecticForms

Remark 2.13. Theorem 2.6 can be generalized to higher dimensional lattices. Indeed, let d < 6, define

VA N, as in (32) and consider the d-dimensional NLKG lattice
Pyl Qi — Qr)’
(35) HeP= Y T4l oy @@, s oy,
JELE N, J kE\‘ZL}V}h’”i’Nd JELE, N,
J—k|=
e 220 +2

_ . an? > 1

(39) U(x)=m 2+'32p—|—2’ m > 0, >0, p>1,

We assume N1 < Na,.
(36).
Then we can describe the following regime:

.., Na_1, and we introduce the quantities u and o; (1 <i<d—1) as in (35) and

1 and p = 1 in the very weakly transverse regime, with p < 1,

1<o1,...,00-1 <7T;
Moreover, in order to obtain Theorem 2.6 we will have to assume that

d—1
2y + Zai <T.

i=1

(40)

which, together with the fact that o; > 1 for alli=1,...,d—1, is consistent with the assumption d < 6.

Remark 2.14. There are other interesting regimes for (5) and (22) especially for their relation with the
modified KdV equation and two-dimensional Non-Linear Schrédinger equation respectively. These will
be discussed in Remark 4.8 and Remark 4.11 respectively.

3. GALERKIN AVERAGING

i . asquali2018d i 2 49095phierkin .
3.1. An Averaging Theorem. Following [7] (see also [7] and [7]) we use a Galerkin averaging method

in order to approximate the solutions of the continuous approximation of the lattice with the solutions
of the system in normal form.

To this end we first have to introduce a topology in the phase space. This is conveniently done in
terms of Fourier coefficients.

Definition 3.1. Fiz two constants p > 0 and s > 0. We will denote by E?,’s the Hilbert space of complex
sequences v = (Un)nez2\ {0} With obvious vector space structure and with scalar product

Z mwn€2p|n\ln‘25 )

n€ez2\{0}

(41) (v, w)p,s ==

and such that
(42)

VI3, = (v,0).s = [on |*€*!™ n|**

>

n€z2\{0}
is finite. We will denote by ¢* the space Eg,o.

We will identify a 2-periodic function v with the sequence of its Fourier coefficients {0, }»,

1 A AT T
U(y) = 5 Z Une€ y7
nezZ?

2

and, with a small abuse of notation, we will say that v € £ ;

belong to 6,2)’3.
Now fix p > 0 and s > 1, and consider the scale of Hilbert spaces H"® := Eﬁys X wa 3¢ =(&n),
endowed with one of the following symplectic forms:

0 i -0 0
) o= (00, e (B0

if the sequence of its Fourier coefficients
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Observe that Q. : H”* — HP*T7! (4 = 1,2) is a well-defined operator. Moreover, Q2 is well-defined on
the space of functions with zero-average with respect to the xi-variable, i.e. on those functions ((x1,x2)
such that for every z2 we have fil ¢(x1,22)dx1 = 0.

If we fix v € {1,2}, s and Us C 8,2,,8 open, we define the gradient of K € C*°(Us,R) with respect to
¢ e 6,2),5 as the unique function s.t.

(VeK,h) =deKh,  Vhel ..
Similarly, for an open set Us C H”° the Hamiltonian vector field of the Hamiltonian function H €
C* (U, R) is given by
X (¢) =05 VeH(Q).
The open ball of radius R and center 0 in ¢3, will be denoted by B, .(R); we write B, (R) :=
B,.s(R) x By s(R) C H"®.

Now, we introduce the Fourier projection operators 7; : 6,2,78 — 6;2,,5

(44) 75 ((Ondneza (o) = {g" T T P
the operators m; : H”® — HP®
) o) =S S 2
and the operators Iy : H”® — H®
(46) Mar(Ga) ez o) 1= {g iomsAM L ws

Lemma 3.2. The projection operators defined in (45) and (46) satisfy the following properties for any
C c HPvS:
i. for any j >0
(=> mG
Jj=0
ii. for any j >0
(IMarCllaees < [[Cllaeoss

1ii. the following equality holds

1/2
(47) Claees = ||| D 3% |ml
jEN
PO
where |C|, for { € H”® is the element |¢| € H”® whose n-th element is
ICln == (I€nl; )

and (C*)n = (&, 0n)-
Now we consider a Hamiltonian system of the form

) =t o

where we assume that
(PER) ho generates a linear periodic flow ®7  with period T,
ot =@, v,

which is analytic as a map from H”® into itself for any s > 1. Furthermore, the flow is an
isometry for any s > 1.
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(INV) for any s > 1, @7, leaves invariant the space IL;H”* for any j > 0. Furthermore, for any j > 0
mwj o ®p, = Pp, omj.

Next, we assume that the vector field of F' admits an asymptotic expansion in 0 of the form

(49) F~ > 870F,
j>1

(50) XF~ Z5j71XFj»
j>1

and that the following property is satisfied
(HVF) There exists R* > 0 such that for any j7 > 1
- XF; is analytic from By st2;4+~(R") to H”*.
Moreover, for any » > 1 we have that
. XF—Z§:1 si—1p; is analytic from B, sio(r41)4+(R") to H”®.
The main result of this section is the following theorem.

Theorem 3.3. Fiz R > 0, s1 > 1. Consider (48), and assume (PER), (INV) and (HVF). Then 3
so > 0 with the following properties: for any s > si there ezists s < 1 such that for any § < s there
exists Ts : By, s(R/2) — B, s(R) analytic canonical transformation such that

(51) Hi:=HoTs=ho+6Z +6 RY,

where Z1 s in normal form, namely

(52) {Z1,ho} =0,

and there exists a positive constant C, such that

sup [ Xz, [lnes < O,

By, s+sq (R/2)

(53) sup [ X llres < C5,
Bp,s+sD(R/2)

(54) sup || 75 — id||3r.s < CL6.
By, s(R/2)

In particular,

(55) Z1(¢) = (F1) (6),
where (F1) (¢) := [ F1o®} (¢)4r.

3.2. Proof of tl.1e ésvgarﬂ 1 oggarsr%.ab'll“llilg proof of Theorem 3.3 is actually an application of the
techniques used in [7] and 7]).

First notice that by assumption (INV) the Hamiltonian vector field of ho generates a continuous flow
®7 which leaves II,;H”'® invariant.

Now we set H = Hi,am + Ri,m + R1, where

(56) Hia:= ho + 6 Fi,u,
(57) iy o= Fiolln,

and

(58) Rim :=ho+06F1 — Hium,
(59) Ri:=6(F—F).

The system described by the Hamiltonian (56) is the one that we will put in normal form.
In the following we will use the notation a < b to mean: there exists a positive constant K independent
of M and R (but eventually on s), such that a < Kb. We exploit the following intermediate results:
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Lemma 3.4. For any s > si1 there exists R > 0 such thatV o >0, M >0

(60) swp Xy Ol S gy

By styto+2(R

expremest (61) 5 sup - 1 X=y (Ollwes S 5.
pis+y+4

Proof. We recall that R1,ps = ho +60F; — Hi -
We first notice that ||id — Ias||yp.s+0 aps = (M 4+ 1)77: indeed, using (47) we obtain

1/2 1/2
> mf

> sl <M+ D0 T
j>M+1 j=>M+1 Jj>M+1
HP,0 HP0

HPS

IN

(M + 1) fllpep 54

whereas the inequality |[id — IIas||3p.s40 200 < (M 4 1) is obtained with a function which has non
zero components only for |j| =M + 1, i.e. f=7mm+1f.
Inequality (60) follows from

sup X% a0 ()] 0005
(O)EBp st~ +2+0(R)

S ldXsr ||LW(BP,S+2+W(R>5HP’S) llid — HZ\/IHLOO<B;J,5+2+'\/+0'(R)va,S+2+'y(R))
SOM+1)77,

while estimate (61) is an immediate consequence of (HVF). O

Lemma 3.5. For any s > s1

F
sup HXFLM(C)HH”'S < Ki,s)M2+'y7

Bp,s(R*)
where
K(F) - X
1s = sup [ Xr (Q)llppis-—2-+ < +oo.
Bp,s(R*)
Proof. Using (47) we have
1/2
(62) sup > Xe 4 (©) = sup D IR XE L, (O
()€Bp,s(R) || p<ns (O)EBp,s(R) h<M
< Hpws < 2020
1/2
(63) <MY sup Dt 7 S (e
(C)EBp,s(R) h<M
< oo
(64) <MY sup | Xpy o (Qllpeear = Kp) M
(€)EBp,s(R)
where the last quantity is finite for R < R* by property (HVF). a

. . . . busil999nekhoroshev
To normalize (56) we need a slight reformulation of Theorem 4.4 in [7[. Here we report a statement

of the result adapted to our context which is proved in Appendix A.
Lemma 3.6. Let s > s1 +2+, R >0, and consider the system (56). Assume that § < ==, and that

30’
(65) 127K M6 <R

where

F
K5 = sup [|XE (Qllggee2n-
(€©)eBy,s(R)
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Then there ezists an analytic canonical transformation 7:5(38[ : B, s(R/2) — By,s(R) such that

(66) sup

F
550 T Q) = Cllaees < 2T KD M6,
Pys 2

and that puts (56) in normal form up to a small remainder,

(67) Hiar o TS = ho + 8257 + 6°R{),
with ZJ(VI[) in normal form, namely {ho,n, ZJ(VI[)} =0, and
(68) sup [ X, (Q)llwee < KT M
By, s(R/2) M ’
(69) sup ([ X ) (Q)llpere < 1K) M
By,s(R/2) M '

Now we conclude with the proof of the Theorem 3.3.

Proof. If we define &, := min{j, m} and we choose
1,s
So=0+2+41,
o> 2,

then the transformation 75 := 7:;(7?\2[ defined by Lemma 3.6 satisfies (51) because of (67).
Next, Eq. (52) follows from Lemma 3.6, Eq. (53) follows from (68) and (69), while (54) is precisely
(66). Finally, (55) can be deduced by applying Lemma A.6 to G = Fi. d

4. APPLICATIONS TO TWO-DIMENSIONAL LATTICES

4.1. The KP regime for the ETL lattice. We want to study the behaviour of small amplitude so-
lutions of (5), with initial data in which only one low-frequency Fourier mode is excited.

As a first step, we introduce an interpolating function @ = Q(¢, z) such that

(A1) Q(t,5) = Q;(t), for all j € ZX, n,;

(A2) Q is periodic with period 2N; + 1 in the xi-variable, and periodic with period 2N2 + 1 in the
xro-variable;

(A3) @ has zero average, f[,(

(A4) Q fulfills

Nu+g) Mg [ ()] QAT =0V

(70) Q= A1(Q +aQ” +5Q"),
(71) A, := 4sinh® (82&) + 4 sinh? (%) )
It is easy to verify that (70) is Hamiltonian with Hamiltonian function
—PA P 2 3 4
(72) HQ.P) = [ AP & 5Py,
{,L,L}X[,%,%] 2 3 4
e el

where P is a periodic function which has zero average and is canonically conjugated to Q.
We consider (70), with « # 0, and we look for small amplitude solutions of the form

(73) Q(t,z) = pPq(ut, py, p*x2),

with g as in (11). We introduce the rescaled variables T = ut, y1 = px1, y2 = pzo.
Plugging (73) into (70), leads to

A
(74) Grr = Z’le (q+ 1aq’),

(75) Ay, = 4sinh® (%) + 4sinh? <u2%> 7
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which is a Hamiltonian PDE corresponding to the Hamiltonian functional,

—pAuwp | ¢ 2q° aq"
(76) 3(¢;p) /1 e + 5 a5+ Bt dy,
where
(77) Ii=[-1,1%,

and p is the variable canonically conjugated to gq.
Now, observe that the the operator A, ,, admits the following asymptotic expansion up to terms of
order O(u*),

A 2
(78) I~ Oy, + 0, + 500+ O,
Therefore the Hamiltonian (76) admits the following asymptotic expansion
(79) Ks(q,p) ~ ho(a,p) + 1" F1(¢,p) + 1" R(q, ),
; —p(95,p) +4°
I
: pdyp pIp ¢
1 F = [ == dy.
(81) 1(q,p) /1 24 5~ tagdy

) pambusi2006metastability . . .
Following the approach of [7], we can infroduce the following non-canonical change of coordinates

(82) &= —(q+0yp),

(83) n:= —=(q — Oy p)-

S-Sl

which transforms the Poisson tensor into

(34) 1=, (3 0).

and Hamilton equations associated to a Hamiltonian K; are

0K
87'5 = _ayl Tgl
0K
67—7] = ayl Tnl

Remark 4.1. By the ezplicit expression of the Poisson tensor (84) we can compute straightforwardly
Casimir invariants associated to J, which are

(85) C(En) = Alya) + Blun) / €+ C(we) / (70, y2)dun,

-1

where A, B and C' are arbitrary functions of y2.
Since Casimir invariants are constants of motion, we can restrict our analysis on the subspace defined
by
1

(86) (T y1,y2) — (T, y1,y2)dyn =0 VT ER, Jyof < 1.

—1

Howewver, by recalling (82)-(83) one sees that (86) implies

1
(87) / Byp(ry,y)dyn =0 V7 e R, ya] < 1,
—1

which is true due to periodic boundary conditions.
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In the new coordinates the Hamiltonian takes the form

(88) Ks(&,m) ~ ho(&,m) + p*Fi(&,n) + p'R(E,m),
(59) mo(en) = [ S5,
(90) n (5’ 77) — /] _ [am (548_ 77)} + [8?428'!;1 ff - 77)] +a (;';;7/)2 dy,

where (90) is well defined because of (104).
Now we apply the averaging Theorem 3.3 to the Hamiltonian (88), with § = u?: observe that the
equations of motion of ho have the following simple form:

& = —0y& &ry) =6y —7,92)
N =0un n(ry) =mno(yr +7,y2)

(91)

Proposition 4.2. The average of F1 in (88) with respect to the flow of ho in (88) is given by

(92) (Fy) (¢,n) = z_(aylg) Z:—8(8%"7) + (9y20y; §) 1—(6_1128;1 n) dy + - .(;3/2 ([53] + [,’73])

where we denote by [f’] the average I; fj(y)%y.
The proof of this proposition is a straightforward application of the following two lemmas.

Lemma 4.3. Given two functions u,v € L*([-1,1])

/jl dy /jl dsu(y + s)v(y Fs) = /711 u(y)dy /jl v(y) dy.

Proof. Denoting with {ix}r and {0}, the Fourier series of u and v respectively and using Plancherel
theorem one obtains

1 1 1 1
/ dy/ dsu(y £ s)v(y Fs) = %/ dy/ ds Z gy ™R WES) TR (WFS) _ 40
—1 —1 —1 -1

k,k'€Z

and thus Lemma is proved. O

Lemma 4.4. Given a function u € L*([—1,1]) then

%/ﬁllds/jldyu(y:lzs):/jlu(m)dx

Proof. The thesis follows by a simple change of coordinates = := y + s. d

Proof of Proposition 4.2. For the computation of (F1)(&,n) one can exchange the order of the integrations
and apply Lemma 4.3 and 4.4. d

Corollary 4.5. The equations of motion associated to ho(€,m) + u? (F1) (€,1) are given by

2 2 an?
(93) {sf = —0y,¢& 725—46215 - %8338525 — 29, (£%)
Nr = y177+ %8171185277"_ ;7531W+ %ayl (772)

More explicitly, we observe that (93) is a system of two uncoupled KP equations on a two-dimensional
torus in translating frames.
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4.2. The KdV regime for the ETL lattice. For this regime we consider (70), with a # 0, and we
look for small amplitude solutions of the form

(94) Q(t,x) = pPq(ut, pr1, n”x2),

where ¢ : R x T? — R is a periodic function and p, o > 2 are defined in (11)-(12). We introduce the
rescaled variables 7 = ut, y1 = pz1, y2 = u’x2, and we denote I is as in (77). Plugging (94) into (70),
we get

Apyr o
(95) Grr = % (q+ p’aq?),
(96) Apyr o = 4sinh? (%) + 4sinh? <u"%> 7
which is a Hamiltonian PDE corresponding to the Hamiltonian functional
P Db | ¢ 2q’
97 K = | —Z—+ = —d
(97) 1(q,p) /1 202 + 9 + ap 3 v,

and p is the variable canonically conjugated to q.
Now, observe that the the operator A, y, - admits the following asymptotic expansion,

A [eg o— m m m o — m
@) B g g S e (i ),
m>1
where
2
(99) Cm 1= @)
and considering that o > 2, we have
A - 2
(100) *;7?; ~ 02 + %8;‘1 T O>Y.
Therefore the Hamiltonian (97) admits the following asymptotic expansion
g asy
(101) Ki(g,p) ~ ho(g,p) + 1* Fi(g,p) + 11" R(q, p),
R _ 82 2
(102) ho(q,p) = / %dy,
I
- poyp ¢
103 F = [ ——— —dy.
(103) 1(¢,p) /1 9, Tagdy

Note that the nonlinearity of degree 4 does not affect the Hamiltonian up to order O(u?).
By exploiting again the non-canonical change of coordinates (q,p) — (§,n) introduced in (82)-(83)
and the Poisson tensor (84), and

(104) /_15(7, y1,92) — (T, y1,y2)dyr =0 Vr €R, |y2| <1,
we obtain
(105) K1(&,m) ~ ho(&,n) + 1’ F1(&,m) + p'R(E,n),
(106) mo(en) = [ Sy,
Dy, (€ —0)]? +1n)3
(107) Fi(&m) :/1_[ (ig ) +a(§2;7/)2 dy.

Now we apply the averaging Theorem 3.3 to the Hamiltonian (105), with § = u2.
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FlavkdVprop | Proposition 4.6. The average of Fy in (105) with respect to the flow of ho in (106) is given by

Flavkar] (108) (R (6 = - [ ot OIgy 4 0o (e + 1),

3.29/2

where we denote by [f7] the average I; fj(y)%y.

KdVcor | Corollary 4.7. The equations of motion associated to ho(€,m) + u? (F1) (€,1) are given by
2 2(1
{sf = =0n& = 5105,6 — 550, (€)
N = 0y + 5705, + 575 0y, (0°)

The latter is a system of two uncoupled KdV equations in translating frames with respect to the
yi1-direction, for each fixed value of the coordinate y-.

Remark 4.8. One can also study the 8 model (namely, (70) with « = 0 and 8 # 0) in the following
regime,

KdVsys | (109)

(mKdV) the B model in the very weakly transverse regime,

mKdVr (110) Q(t,l’) = Mq(ﬂt:M1’17NU$2)7
where p K 1, 2 < o.

Let us introduce again the rescaled variables 7 = ut, y1 = px1, y2 = p’x2, and the domain I as in
(77); plugging (110) into (70), we get

A o
FPUeqmKdVr1 | (111) Grr = % (¢+ 1’Bd°),

where A, 4, o is the operator introduced in (96). Egq. (111) is a Hamiltonian PDE with the following
corresponding Hamiltonian,

2 4
—PBuyioP | 4 29
HamFPUcmKdV 112 K = —_— + = —d
amFPUcm (112) 2(q,p) /1 2 T3 + A dy,
where p is the variable canonically conjugated to q.

Recalling that (86) holds true, we exploit again the non-canonical change of coordinates (82)-(83) and
the Poisson tensor (84), obtaining that

asexp2xieta| (113) Ka(&,m) ~ ho(§,m) + N2F1 &mn + N4R(§: ),

where ho is the same as in (106), while

[0y, (€ = )]

E+n)!
48 d

24

Fimxieta | (114) Fi(&n) = /1_ + 8 Y.

Applying Theorem 3.8 to the Hamiltonian (113) with 6 = u®, we get that the equations of motion
associated to ho(&,n) + p? (F1) (&,m) are given by

2 2

& = (1+ 40 06— 5105E — 2 0, ()
ne = (1+ 3[€%]) Oun + 4705 n+ 152 0, (")

which is a system of two uncoupled mKdV equations in translating frames with respect to the y1-direction.

The integrability PTO%Q”@&L%&@MQK‘ZV equation and the ezistence of Birkhoff coordinates for this model

have been proved in [7].

mKdVsys | (115)

1DNLSsubsec
4.3. The one-dimensional NLS regime for the KG Lattice. We want to study small amplitude

solutions of (22) , with initial data in which only one low-frequency Fourier mode is excited.
Analogously to the procedure of the previous sections, the first step is to introduce an interpolating
function @ = Q(t, z) such that
(B1) Q(t,) = Q;(t), for all j € Z, ;3
(B2) @ is periodic with period 2N; + 1 in the zi-variable, and periodic with period 2Nz + 1 in the
xro-variable;
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(B3) Q fulfills
KGseqc | (116) Q=201Q-Q—-BQ*,
where A; is the operator defined in (71) (recall that we also assumed m = 1 in (20)).
It is easy to verify that (116) is Hamiltonian with Hamiltonian function

2 2 2p+2
amKGsc | (117) H(Q,P)Z/ %+%7Q€1Q+B§p+2dx’

- & 5 Ix =5 o]
where P is a periodic function and is canonically conjugated to Q.
Starting from the Hamiltonian (19), where p = 1, we look for small amplitude solutions of the form

iDNLsz] (118) Q(t, ) = pa(u’t, par, p"ws) .

where ¢ : R x T? — R is a periodic function and o, u are defined respectively in (12)-(11).
We introduce the rescaled variable y1 = pz1 and y» = p’x2, and we define I as in (77). The
Hamiltonian (19) in the rescaled variable is given by

2 2 A - 4
Ham2KGc1DNLS | (119) Kai(q,p) = / % + % - W + ﬁquzd%
1

with the operator A, 4, - as in (96), and p is the variable canonically conjugated to g. The corresponding
equation of motion is given by

(120) Qi =—q+ Dy 0q — Bu’e’.
Recall that

Apy,o 2 2(oc—1) 92 MZ 4 2(20—1)
12 ~ Oy +p 0y, + ﬁam + O(p )s

hence the Hamiltonian (119) admits the following asymptotic expansion

asexps | (121) Ki(q,p) ~ ho(a,p) + 1* Fi(a,p) + 1**7 "V R(q,p),
2 2
hO1DNLS | (122) ho(q,p) :/p ;q dy,
I
R o2 4
FL1DNLS | (123) Fi(g,p) :/,¥ “%dyv
I

and the equation of motion associated to ho+ F1 is given by the following cubic one-dimensional nonlinear
Klein-Gordon (NLKG) equation,

[ =~}
o
=
(2]
%]
2] [¢]
[=] [e] : N

1DNLKGeq|  (124) g = —(q — p?03,q) — 1*Bq’.
We now exploit the change of coordinates (q,p) — (¢, %) given by
1
125 = —(q —1ip),
psi| (125) (2 ﬁ(q P)
therefore the inverse change of coordinates is given by
1 -
126 = ——(¢p+1),
(126) q ﬂ(w ¥)
1 -
127 = —i(y — ¢),
(127) P=5 (=)
while the symplectic form is given by —idy A dip. With this change of variables the Hamiltonian takes
the form
asexpdpsi| (128) Ka(,9) ~ ho($,9) + " Fa (¢, ) + p**7 IR, D),
hO1DNLSpsi | (129) ho(2,v) = /¢z§dy,
I
~ 7) [— 82 " T4
I
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Now we apply the averaging Theorem 3.3 to the Hamiltonian (128), with § = u?. Observe that ho
generates a periodic flow,

—10u) = 9
(131) Bt y) = " o(y).
Proposition 4.9. The average of F1 in (128) with respect to the flow of ho (122) is given by
- ) (—02 3
(132) Ry ) = [ gy + 2 [ypa,
I I

Corollary 4.10. The equations of motion associated to ho(v, ) + pu® (F1) (¢, %) are given by a cubic
one-dimensional nonlinear Schrédinger equation for each fized value of yo,

(133) —i = — i g+ 2L oy

Remark 4.11. Let us consider the Hamiltonian (19) in the following regime,

2-D NLS) the scalar model (19) with m =1, p=1 and

(134) Q(t,z) = pa(p’t, px),
where K 1 and o0 = 1.

If we introduce the rescaled variable y = px and we define I as in (77), we have that the Hamiltonian
takes the following form (we denote by p the variable canonically conjugated to q)

(135) Ks(q,p) :/I§+ g _ qATuq +,3,u2§dy,

(136) A, = 4sinh’ (‘La%) + 4sinh? (uiﬂ) .

By ezpanding the operator A, and by exploiting the change of variable (125), we get
(137) Ks($,9) ~ ho($,9) + 1’ Fu(¥,4) + p* R4, 9),

(138) ho(w) = [ 0y,

(139) Fy(w, ) = /I _@W+9) [—4A(¢ +9)] | 5 41r6¢)4 dy.

By applying Theorem 3.3 to the Hamiltonian (128), with § = p?, we obtain that the equation of motion
associated to ho(1, V) + u* (F1) (¢, ) is given by the cubic nonlinear Schridinger (NLS) equation

) 3
(140) —igpy = — Adﬂr/fjﬁ o [*y.
The local well-posedness of the NLS equation (140) in the Sobolev space H*(T?), s > 0, has been
7], along with th

discussed by Bourgain in [7 e conversation laws, this implies the global eristence in the
defocusing case (8 > 0), and the global existence for small solutions in the focusing case (8 < 0). The
long time dynamics of the NLS equation has also been studje .: on, with the transfer of energy
among Fourier modes and with the growth of Sobolev norms [

5. DYNAMICS OF THE NORMAL FORM EQUATION

5.1. The KP equation. In this section we recall some known facts on the dynamics of the KP equation
on the two-dimensional torus

1 1,._
(141) & = —ﬂa;j’lg - iaylla;g - (€%, a = £1, y € T? := R*/(2nZ)*.

o
2\/§ ayl

The KP equation has been introduced in order to describe weakly-transverse solutions of the water
waves equations; it has been considered as a two-dimensional analogye .Eguation, since also
the KP equation admits an infinite number of constants of motions [7 E §||| i% 1S customary to refer

to (141) as KP-I equation when o = —1, and as KP-II equation when o = 1.
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The glob lamelaligpgsg%gg&%s for the KP-II equation on the two-dimensional torus has been discussed by
Bourgain in [?7]. The main point of the result by Bourgain consists in extending the local well-posedness

result to a global one, even though the L?-norm is the only constant of motion for th g(rljggl%%lcaatgc n
that allows an a-priori bound for the solution (see Theorem 8.10 and Theorem 8.12 in i? ).

Theorem 5.1. Consider (141) with oo = 1.

Let p > 0 and s > 0, and assume that the initial datum £(0,-,-) = & € wa. Then (141) is globally
well-posed in 6,2),5. Moreover, the £2-norm of the solution is conserved,

(142) le@llee = llolle
while
(143) le@leg, < e leollz

where C' depends on s.

. L bourgaini1993cauch
Remark 5.2. As pointed out by Bourgain in Sec. 10.2 of [?], a global well-posedness result for sufficiently
smooth solution of the KP-I equation (n &e&yfzggg ) With o = —1) on the two-dimensional torus can be
obtained by generalizing the argument in [7] for small dala and by using the a-priori bounds given by the
constants of motion for the KP-I equation.
For the KP equation the construction of action-angle/Birkhoff coordinates is still an open problem.

KdVdynsubsec
5.2. The KdV equation. In this section we recall some known facts on the dynamics of the KdV

equation with kr_zlerie%irigos)&g‘gdary conditions. The interested reader can find more detailed explanations

and proofs in h.’ .

Consider the KdV equation
1 .3 «
—52%8 ENG)
Through the Lax pair formulation of the evolution problem (144) one get that the periodic eigenvalues
(An)nen of the Sturm-Liouville operator

(145) Le := =05, + 6V2¢(T,y1)
are conserved quantities under the evolution of the KdV equation (144). Moreover, if we define the gaps
of the spectrum 7y, := Aam — A2m—1 (m > 1), it is well known that the squared spectral gaps (V2,)m>1

form a complete set of constants of motion for (144).
The following relation between the sequence of the spectral gaps and the regularity of the

. , ‘ he corr e D1
i%gcﬁgyr;ﬁfﬁﬁﬁo the KdV equation holds (see Theorem 9, Theorem 10 and Theorem 11 in [7]; see also

KdvVeq| (144) &= 9y, (€%), i €0,2].

KapPosThmt | Theorem 5.3. Assume that £ € L?, then £ € &2)78 if and only if its spectral gaps satisfy

S m¥ gl < oo,

m>1
Moreover if £ € 6,2]75, then
SpecGapEst | (146) Z Tn2562pm|’}/m|2 < +00;
m>1

conversely, if (146) holds, then & € 8?,/,0 for some p’' > 0.

[kappeler2003kdv
Kappeler and Poschel constructed the following global Birkhoff coordinates (see Theorem 1.1 in [7 }

KapPosThm2| Theorem 5.4. There exists a diffeomorphism Q : L* — 8(2)71/2 X 6(2)71/2 such that:

o () is bijective, bianalytic and canonical;
e for each s > 0, the restriction of Q to Eas, namely the map

2 2 2
Q4 — éo,s+1/2 X fo,s+1/2

1s bijective, bianalytic and canonical;
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o the coordinates (z,y) € €3,3/2 X 63’3/2 are Birkhoff coordinates for the KdV equation, namely they
form a set of canonically conjugated coordinates in which the Hamiltonian of the KdV equation

y — x%n-ﬁ—y?n
(144) depends only on the action Iy, := =2z"m (m > 1).

The dynamics of the KdV equation (144) in terms of the variables (z,y) is trivial: it can be immedi-
ately seen that any solution is periodic, quasiperiodic or almost periodic, depending on the number of
spectral gaps (equivalently, depending on the number of actions) initially different from zero.

5.3. The one-dimensional cubic NLS equation. In this section we recall some known facts on the

dynamics of the one-dimensional cubic defocusing NLS equation wit P Ti0d] ndéairry conditions. The
interested reader can find more detailed explanations and proofs in [7] 7]

Consider the cubic defocusing NLS equation
(147) i = =0+ 2107, y1 € T:=R/(2nZ).

Eq. (147) is a PDE admitting a Hamiltonian structure: indeed, we can set H"° = éi,s X Eﬁﬁs as

the phase space with elements denoted by ¢ = (¢1, ¢2), while the associated Poisson bracket and the
Hamiltonian are given by

(148) (F.GY i= =i [ (96 F 93, = 05, G 0y, F) dip,
T

(149) Hyps(dr, ¢2) = / Dyr 61 Oy 2 + $262 dyn.
T

The defocusing NLS equation (147) is obtained by restricting (149) to the invariant subspace of states
of real type,
(150) HE® = {p € H”® : po = b1}

The above Hamiltonian (149) is well-defined on H”® with s > 1 and p > 0, while the initial value
problem for the NLS equation (147) is well-posed on H*? = ¢% x £2.

It is well known from the work by Zakharov and Shabat that the NLS equation (147) has a Lax pair,
and that it admits infinitely many constants of motion in involution. More precisely, for any ¢ € H%°
consider the Zakharov-Shabat operator

(151) L(g) = <é —Oz) On + <¢?z %1> ’

where we call ¢ the potential of the operator L(¢). The spectrum of L(¢) on the interval [0, 2] with peri-
odic boundary conditions is pure point, and it consists of the following sequence of periodic eigenvalues

(152) AT <A <N ST AT <A <

where the quantities v, := A, — ., (m € Z) are called gap lengths. It has been proved that the squared
spectral lengths (72,)mez form a complete set of analytic constants of motion for (147).

Grébert, Kappeler and Mityagin proved the following relation between the s (Ileubeeggfgé); ghe squared
spectral gaps and the regularity of the corresponding potential (see Theorem in [7])-

Theorem 5.5. Let p > 0 and s > 0, then for any bounded subset B C éi,s X fi’s there exists no > 1 and
M > 1 such that for any |k| > no and any (¢1, ¢2) € B, the following estimate holds

(153) >+ kD> < M.

[k|=no

Moreover, Grébert a gegg%gﬂggfggg%ructed the following global Birkhoff coordinates (see Theorem
20.1 - Theorem 20.3 in [7

Theorem 5.6. There ezists a diffeomorphism Q : L? — H2° such that:

e () is bianalytic and canonical;
e for each s > 0, the restriction of Q to HO®, namely the map

Q:HY 5 O

18 again bianalytic and canonical;
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e the coordinates (x,y) € H' are Birkhoff coordinates for the NLS equation, namely they form
a set of canonically conjugated coordinates in which the Hamiltonian of the NLS equation (147)

d ; Y
epends only on the action I, := === (m € Z).

The dynamics of the NLS equation (147) in terms of the variables (z,y) is trivial: it can be immediately
seen that any solution is periodic, quasiperiodic or almost periodic, depending on the number of spectral
gaps (equivalently, depending on the number of actions) initially different from zero.

6. APPROXIMATION RESULTS

In this section we show how to use the normal form equations in order to construct approximate solu-
tions of (5) and (22), and we estimate the difference with respect to the true solutions with corresponding
initial data.

The approach is the same for all the regimes (73), (94) and (118). First, we have to point out a
relation between the energy of normal mode Fj (defined in (7) for (5), and in (7) for (22)) , k € Z3n 41,
and the Fourier coefficients of the solutions of the normal form equations. Then we have to prove that
the approximate solutions approximate the energy of the true normal mode Ej, up to the time-scale in
which the continuous approximation is valid, and finally we can deduce the result about the dynamics
of the lattice.

6.1. The KP regime. Let I = [~1,1]? be as in (77), we define the Fourier coefficients of the function
q: 1 — Rby
vy 1 —in(j j
(154) () = Q/Q(ywz)e A R
I

and similarly for the Fourier coefficients of the function p.

Lemma 6.1. Consider the lattice (2) in the regime (KP) and with interpolanting function (73). Then
for a state corresponding to (q,p) one has

4
(155) & =" > larcsrl? +

L=(L1,L2)€Z2:uL1,n? L2 €22

(where the wi are defined as in (8)), and £, = 0 otherwise.

. 2
PK+L

, Vk:w(k) = (), 1K)

Proof. First we introduce a (2N + 1)(2N3 + 1)-periodic interpolating function for @, namely a smooth
function @ : (¢,2) — Q(t,x) such that

Q(t,$1,$2+2N2+1) :Q(t,l’), Vt,l},
Q(taxl + 2N -‘rlﬂCz) :Q(t,$)7 Vt7x7
and similarly for P;. We denote by

(156)
Q) = 1 21 73 / Q(a)e  CNIDENTD d,
(N1 + DVEEN2 + D2 I (v 4), (v 1)) [-(Va£). (23]

so that by the interpolation property we obtain

1 ) (f)e! TGN
(t) = t.7) = i
Q]( ) Q( 7]) (2N1 + 1)1/2(2N2 4 1)1/2 kEZZ2 Q(j)e 1 2
B 1
T (2N1 + 1)Y/2(2N, + 1)1/2
x> ST Qhi+ 2Ny + Dh ke + (2N2 + Dhg) | ¢ CRFIENFD

k=(k1,k2)€23 5y |h=(h1,h2)€L?
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hence

(157) Qr = Q(ki+ (2N1 + 1)h1, k2 + (2N5 + 1)h2).
hez?

The relation between Q(k) and i can be deduced from (94),
QW) = 1 alujr, 1 j2);
3 1 3/2 —im(kyzy ptkozop?)
= - dz: d
Qr =51 /[_1 l]x{_ ) Q(x1,72)e x1 dws
wn A

—iﬂ(k1x1u+k2xzu2)dx1 das

11
20,2

1 »
(94) —ul/Q/q(y)e Zﬂ(k1y1+k2y2)dy
I

| 1 q (pay, p’a2) e

2
s
and similarly
5
By using (7), (10) and (157)-(159) we have
(10) 1 A A
Ex =1’ 2 > |Qk+1]? + wi| Pt
L=(L1,L2)€Z%:nLq,u2Lo€2Z
" 2
(158) 1 N
= M3M§ Z |qK+L|2+wi w
L=(L1,L3)€Z2:uLy,u?Lo€2Z
for all k such that x(k) = (uK1, > K>2), and this leads to (155). O

KPxietaProp | Proposition 6.2. Fiz p > 0 and 0 < § < 1. Consider the normal form system (93), and define the
Fourier coefficients of (£,m) through the following formula

FourierXiKP (160) €(ZJ) = % Z éheihnyﬂ'7
hez?
1 .
FourierEtakP | (161) n(y) = = Z ArehT
hez2

Consider (£,m) € H"°, and denote by E. the specific energy of the normal mode with index k as defined
in (9)-(10). Then for any positive u sufficiently small

1€ ® + x|
-yt B e

KPcoeffxieta| (162) Ex < Cﬂ4+g (€3 77)“31%0

for all k such that k(k) = (K1, i’ K2) and | K| + |Ka| < w. Moreover,
KPSpecenget| (163) 6l < C (6 D20

or all k such that k(k) = pKl,;ng and Kf + K§ 12 5 M, and £; = 0 otherwise.
P

The proof of the above Proposition is deferred to Appendix B.

Now, consider the following systems of uncoupled KP equations

1 1, e
(164) 6 = 5108 = 500 0t~ 5500 (E9),
1, 1 a
(165) e = 300 0an & g0+ 5 O ().

and consider a solution (7,y) — ({NQ(T, Y),Na(7,y)) such that it belongs to H”", for some n > 1.
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We consider the approximate solutions (Qq, P.) of the FPU model (70)

Qappr2| (166) Qa(r,y) == [&(uzﬁ y1 — 7, y2) + a (T + T yz)]

Pappr2]  (167) Oy Palryy) 1= Lo [ €000 = 7o9) = (T + 710)

S= S5

We need to compare the difference between the approximate solution (166)-(167) and the true solution

of (5). Let consider an initial datum (Qo, Py) with corresponding Fourier coefficients (Qo x, Po.x) given
by (6), where

InDatumHyp21 | (168) Qo,r # 0 only if k(k) = (uK1, i’ K2).

We also assume that there exist C, p > 0 such that

A 2 21 P 2
|Qo.kl” + Wil Porl™ 20l (ma ) /12 (/1621

InDatumHyp22 | (169) N

Moreover, we define an interpolating function for the initial datum (Qo, Po) by

_ 1 A im(pK1y1+u Kaysa)
@)= BN T RN + 1) 2 e |

K:(p2| Ky 2 4pd | Ko |2) =k (k)| <1

and similarly for y — Po(y).

ApprPropkP | Proposition 6.3. Consider (5) with o = 2, and fir 1 < v < g Let us assume that the initial datum

for (5) satisfying (168)-(169), and denote by (Q(t), P(t)) the corresponding solution. Consider the ap-
prozimate solution (£q,Ma) with the corresponding initial datum. Assume that (§a,Ma) € HP™ for some
p >0 and for some n > 1 for all times, and fiz To > 0 and 0 < § < 1.

Then there exists po = po(To, ||(€a(0), 7a(0))||me.n) such that, if p < po, we have that there exists
C > 0 such that

T
KPapprDiscrCont (170) sup |Q; (t) — Qa(t, )| + | P (t) — Pa(t,5)| < Cu”, |t < ’u—g,
J

where (Qa, Pa) are given by (182)-(183). Moreover,

s 2 ~ 2
—u4|£K| JQF|UK| < optt

LowModesApprKP | (171) Ew

or a such that K = (uK1,p"K2) an 1|+ (K| < =—/—~—=H, oreover,
Ik h th k Ky, 12K d | K Kol < (2+5)Fl)logu\ M

HighModesApprKP | (172) |Ex] < [A4+W

or all k such that k(k) = ,uKl,,uQKz and | K| + |K2| > M, and €. = 0 otherwise.
P

The proof of the above Proposition is deferred to Appendix C.

Proof of Theorem (2.1). First we prove (14).

We consider an initial datum as in (13); when passing to the continuous approximation (70), this
initial datum corresponds to an initial data (£, n0) € H”*™ for some pg > 0 and n > 1. By Theorem 5.1
the corresponding solution (£(7),7n(7)) is analytic in a complex strip of width p(t). Taking the minimum
of such quantities one gets the coefficient p appearing in the statement of Theorem (2.1). Applying
Proposition 6.3, we can deduce the corresponding result for the discrete model (5) and the specific
quantities (10). O
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6.2. The KdV regime. Similarly to Lemma 6.1, Proposition 6.2 we can prove the following results

Lemma 6.4. Consider the lattice (2) in the regime (KdV) and with interpolanting function (94). Then
for a state corresponding to (q,p) one has
2

PEALY Yk (k) = (uKy, p° Ko)

4
) &=% > sl + e}
L=(L1,L2)€Z2%:puLy,u° Lo €27

(where the wy, are defined as in (8) and the &, in (10)), and £, = 0 otherwise.

Proof. As in Lemma 6.4 we introduce a (2N1 + 1,2N> + 1)-periodic interpolating function for @Q; and
Pj. We denote Q(j) and @ as in (156) and (157).
The relation between (k) and ¢, can be deduced from (94),

Q>j) = 1 a(pjr, n”j2);
R 1 » -
Qr = QM(UH)/Z/ . L Q(z1, mp)e T Rrmintkam2nT) g0 gy
[*ﬁ*ﬂx[*rﬂvﬁ
1 . -
- 2“(U+1)/2/[ Li]x - ]l‘Qq(uwl,u”wz)e LRzl 4y day
Tww] T uT e

(94) 1 _ i
2 5//«(3 U)/Q/q(y)e i (k1y1+k292)dy
I

(174) = pB= %G,

and similarly

(175) Py = p =25,
By using (7), (10) and (174)-(175) we have

(10) o411 ~ A
En = pt! 5 > Q] + wit| Prcy |

L=(L1,L2)€Z2%:pL1,n° Ly €27

2

A

(174),(174) 541 351
LT >

L=(L1,L3)€Z%:uLq,u° Lo €27

for all k such that x(k) = (uK1, p” K2), and this leads to (173). O

Proposition 6.5. Fiz p > 0 and 0 < 6 < 1. Consider the normal form system (109), and define the
Fourier coefficients of (£,m) through the following formula

1 s ith-ym
(176) ) =5 D e,
hez?
1 ~  thym
(177) ny) =5 > e
hez?

Consider (€,1) € H*°, and denote by E.. the specific energy of the normal mode with index k as defined
in (9)-(10). Then for any positive u sufficiently small

£K2+ Ak |?
_u4| I~ + k|

6
7| SCOHTEE MR

(178) En

or all k such that k(k) = (uK1, u’ K2) and | K| + |K2| < Ctdllog kel - proreover
f pK, p ; )

(179) [Exl < CuPNI(E M 300
for all k such that k(k) = (pK1, p° K2) and |K1| + |K2| > %, and &, = 0 otherwise.
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We defer the proof of the above Proposition to Appendix B.

Now, consider the following system of uncoupled KdV equations

1 «
KdVsys1 (180) &= _ﬂazlé - ﬁayl (52)7
1 3 (¢4 2
2 181 T = 55 - = )
KdVsys (181) n 248y17]+ 2\/58?11 ()

and consider a solution (7,y) — (é;(T, Y),Na(7,y)) such that it belongs to H”", for some n > 1.
We consider the approximate solutions (Qq, P,) of the FPU model (70)

2

Qappr| (182) Qalr,y) = % [é;(/fﬁ Y1 — 7 y2) + (1T + 7, yz)]
Pappr |  (183) O Palr,y) = Lo (G =) — a4 7))

We need to compare the difference between the approximate solution (182)-(183) and the true solution

of (5). Let consider an initial datum (Qo, Po) with corresponding Fourier coefficients (Qo x, Po,x) given
by (6), where

InDatumHypl | (184) Qo.x # 0 only if k(k) = (uK1, p° Ko).
We also assume that there exist C, p > 0 such that

|Qokl* + Wil Pokl* 1y ~20lm1 (k) /o () /)1
2N; + 2Nz +1) =

InDatumHyp2 | (185)

Moreover, we define an interpolating function for the initial datum (Qo, Po) by

1 . ) -
_ E : im(pK1y1+p” Kayz)
= € )
Qo(y) (2N1 ¥ 1)(2N2 ¥ 1) » QO,k
=lr(k)|<1

K:(p2| K1 [24+p29 | K2 |?)

and similarly for y — Py(y).

ApprPropKdV | Proposition 6.6. Consider (5) with o > 2 and v > 1 such that o + 2y < 7. Let us assume that the
initial datum satisfies (184)-(185), and denote by (Q(t), P(t)) the corresponding solution. Consider the
approzimate solution (£4(t, ), Ta(t, z)) with the corresponding initial datum. Assume that (£4,7a) € HP™
for some p > 0 and for some n > 1 for all times, and fit To > 0 and 0 < § K 1.

Then there ezists pio = po(To, || (€a(0),7a(0))||rm) such that, if u < po, we have that there erists
C > 0 such that

To
=

apprDiscrCont |  (186) sup |Q;(t) — Qa(t, J)| +|P;(t) — Pa(t,j)] < Cu”, |t| < p
i

where (Qa, Pa) are given by (182)-(183). Moreover,

<C M4+’Y

Fo2 ~ 2
LowModesAppr (187) £ — N4 M

for all k such that k(k) = (K1, p° K2) and |K1| + |K2| < %. Moreover,
HighModesAppr | (188) || < /L4+W
for all k such that k(k) = (uK1, u” K2) and | K| + |K2| > w, and £, = 0 otherwise.

We defer the proof to Appendix C.

asskdVrem| Remark 6.7. The conditions o + 2y < 7, which, together with v > 1, implies the upper bound o < 5
found in the statement of Theorem (2.4), is the consequence of a technical condition which allows to
estimate the error in the proof of Proposition 6.6 (see Claim 2, together with (268)-(269)).
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Proof of Theorem (2.4). First we prove (16).

We consider an initial datum as in (15); when passing to the continuous approximation (70), this
initial datum corresponds to an initial data (€o,n0) € HP'™ for some po > 0 and n > 1. By Theorem 5.3
the corresponding sequence of gaps belongs to H”*", and that the solution (£(7),n(7)) is analytic in a
complex strip of width p(¢). Taking the minimum of such quantities one gets the coefficient p appearing
in the statement of Theorem (2.4). Applying Proposition 6.6, we can deduce the corresponding result
for the discrete model (5) and the specific quantities (10).

Next, we prove (18). In order to do so, we exploit the Birkhoff coordinates (z,y) introduced in
Theorem 5.4; indeed, by rewriting the normal form system (109) in Birkhoff coordinates we get that
every solution is almost-periodic in time. Now, let us introduce the quantities
2

EQ = &kl ,
E}?) = |ﬁK|27

then 7 — Eg)(x(T), y(7)) and 7 — E;?)(JJ(T), y(7)) are almost-periodic. If we set Ex := 1 (EE) + EE?)),
we can exploit (187) of Proposition 6.6 to translate the results in terms of the specific quantities &, and
we get the thesis. O

6.3. The one-dimensional NLS regime. Let 3 > 0 and let I be as in (77), we define the Fourier
coefficients of the function ¢ : I — R by

o 1 imli )
(189) G(j) = Q/Q(yl,yz)e (G1v1+52v2) 4oy dy,
I

and similarly for the Fourier coefficients of the function p.

Lemma 6.8. Consider the lattice (19) in the regime (1D NLS) and with interpolanting function (118).
Then for a state corresponding to (q,p) one has

2

(190) Ee=t > Pr+rl? +wildol®, Yk (k) = (uKo, p” K2)
L=(L1,Lo)EZ%:uLy,u° Lo €27

(where the wi, are defined as in (24)), and . = 0 otherwise.

Proof. We introduce a (2N; +1,2N> + 1)-periodic interpolating function for Q; and P;. We denote Q(5)
and Qy, as in (156) and (157). By the interpolation property we obtain

(191) Qr = Q(ki+ (2N1 + 1)h1, k2 + (2N5 + 1)h2).
hez?

The relation between Q(k) and i can be deduced from (118),

QW) = nq(ujr, 1’ j2);

. 1 . . —
Qk — 7M(o+1)/2 Q(ml,$2)6 im(k1z1ptkozop >dCL‘1 dIQ
2 [,L L] % [,L N
iy T
1 . o
(gs) 7M(g+1>/2 MQ(WJhMUUCz)e im (k121 ptkozop )dmldxg
2 [~14]x[- & %]
[T no o p%

1 _ )
_ 5u(l 0)/2/(](3/)6 Z7\’(1€1y1-‘r1€2y2)dy
I

(192) = u="2,,
and similarly

(193) Py = p 0 2p,
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By using (23), (10) and (191)-(193) we have

(10) 11 B 2 21 A 2
Ex = p’t S Z |Pr1r|” + wi| Q@K+
L=(L1,Lo)EZ2:uL,u° Lo €27

(192) 541 1-01 . 2 2|~ 2
=Wy > [Pr+r|” + wkldr+Ll
L=(L1,L2)€Z2%:pLy,n Ly €27

for all k such that k(k) = (uK1, n7 K2), and this leads to (190). O

1DNLSpsiProp | Proposition 6.9. Fiz p > 0 and 0 < § < 1. Consider the normal form equation (133), and define the
Fourier coefficients of (1,1)) through the following formula

FourierPsiiD| (194) (y) = % Z et T,
hez?

Consider (1,¢) € H”°, and denote by &, the specific energy of the normal mode with index x as defined
in (9)-(10). Then for any positive u sufficiently small
P
gn 2 |wK|
g

(195) < CpP* 5 (8, 9) |30

for all k such that k(k) = (K1, p° K2) and |K1| + |K2| < %. Moreover,
1DNLSSpecEnEst | (196) [Ex] < C/LSH(lﬂ, ’(Z)Hg_tp,l
for all k such that k(k) = (uK1, u° K2) and | K| + |K2| > w, and &, = 0 otherwise.

We defer the proof of the above Proposition to Appendix D.

Now, consider the normal form equation, namely the following cubic defocusing one-dimensional NLS
1DimNLSeqt| (197) —ithy = — Do Y+ % ]9

and consider a solution (;/;:, 1/;;) such that it belongs to H”™, for some n > 0.
We consider the approximate solutions (Qa, P.) of the KG lattice (19) (in the following 7 = 1*t)

Qappr3]  (198) Qu(ry) = L5 [ a(r ) +¢” a2
Pappr3 (199) Pa(T7 y) = ﬁ [eiT%(Tv Y1, y2) + 6_”@(7: Y1, yQ)]

(200)

We need to compare the difference between the approximate solution (182)-(183) and the true solution

of (19). Let consider an initial datum (Qo, Po) with corresponding Fourier coefficients (Qo,x, Po,x) given
by (6), where

InDatumHyp31 | (201) Qo,x # 0 only if k(k) = (uK1, p” K2).

We also assume that there exist C, p > 0 such that

-
o
=
I
0
(2]
o
®©
H
Hh
g
5]
e

> 2 21 A 2
InDatunfiyp3z|  (202) | Po.x] +]\°f“k\Q0,k| < Com 20101 (B ma (R /)],

Moreover, we define an interpolating function for the initial datum (Qo, Po) by

_ 1 A im(pK1y1+pn° Kay2)
Qo(y) - (2N1 + 1)(2N2 F 1) Z QO,ke )

1/2
K(p2| K1 124029 | K2 |2) Y 2= |r (k)| <1

and similarly for y — Py(y).
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Proposition 6.10. Consider (19) with o > 1 and v > 0 such that o + 2y < 7. Let us assume that the
initial datum satisfies (201)-(202), and denote by (Q(t), P(t)) the corresponding solution. Consider the

approzrimate solution (%(t, w),%(t,x)) with the corresponding initial datum. Assume that ({/JZ,{/JZ) €
HP™ for some p > 0 and for some n > 0 for all times, and fixr To > 0 and 0 < 6 < 1.

Then there ezists o = 110(To, || (0a(0), %a(0))||2em) such that, if u < po, we have that there ezists

C > 0 such that
. . T
(203) sup [Q; (t) — Qa(t, J)| + [Pj(t) — Pa(t, 4)| < Cu”, [t| < M—Q
J

where (Qa, Pa) are given by (198)-(199). Moreover,

(204)

£ 2|Q[)K|2 24y
R = Cp

or all k such that k(k) = (uK1, u° K2) and |K1| + |K2| < @t9)llogul - proreover
f Pk, - )
(205) [Exl < 7
or all k such that k(k) = (uK1, u° K2) and | K| + |K2| > M, and E; = 0 otherwise.
f K1, p ;
We defer the proof to Appendix E.

Remark 6.11. The conditions o + 2v < 7, which, together with v > 0, implies the upper bound o < 7
found in the statement of Theorem (2.6), is the consequence of a technical condition which allows to
estimate the error in the proof of Proposition 6.10 (see Claim 2, together with (315)-(317)).

Proof of Theorem (2.6). First we prove (26).

We consider an initial datum as in (25); when passing to the continuous approximation (117), this
initial datum corresponds to an initial data (€0, 70) € H*°™. By Theorem 5.5 the corresponding sequence
of gaps belongs to %™, and that the solution (£(7),n(7)) is analytic in a complex strip of width p(¢).
Taking the minimum of such quantities one gets the coefficient p appearing in the statement of Theorem
(2.6). Applying Proposition 6.10, we can deduce the corresponding result for the discrete model (22)
and the specific quantities (10).

Next, we prove (28). In order to do so, we exploit the Birkhoff coordinates (z,y) introduced in
Theorem 5.6; indeed, by rewriting the normal form system (133) in Birkhoff coordinates we get that
every solution is almost-periodic in time. Now, let us introduce the quantity

11~ |2
Ex =35 ¢K’ ;

then 7 — Ex(z(7),y(7)) is almost-periodic. Hence we can exploit (204) of Proposition 6.10 to translate

the results in terms of the specific quantities £, and we get the thesis. g

APPENDIX A. PrRoOOF OF LEMMA 3.6

This appendix is devoted to the proof of the Lemma 3.6 %hig is a key step to normalize the system
. . . am 11511,9 ne oroshev .
(56). Its proof is an adaptation of Theorem 4.4 in [7] and it is based on the method of Lie transform,
briefly recalled in the following. Throughout this Section, we consider s > s; and p > 0 to be fixed
quantities.

Given an auxiliary function x analytic on H”®, we consider the auxiliary differential equation
(206) ¢=Xx()
and denote by ®% its flow at time ¢.

Lemma A.l. Let x and its vector field be analytic in B, s(R). Fiz § < R, and assume that
sup [ X (Q)l3es < 0.

pis
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Then, if we consider the time-t flow @; of Xy we have that for |t| <1

sup  [|9%(¢) = Cllnes < sup [ X (Q)lleee-
By, (R—0) sl

Definition A.2. The map @ := CD; s called the Lie transform generated by x.

Given G analytic on H”?, let us consider the differential equation
orDE| (207) ¢=Xe(0),
where by X we denote the vector field of G. Now define

2LG(0) == G o0y (O).

By exploiting the fact that ®, is a canonical transformation, we have that in the new variable C~ defined
by ¢ = ®,({) equation (207) is equivalent to

pullbDE| (208) = Xaza(C)-

Using the relation

d

(209) 7 8G = X6},

and the Poisson bracket formalism {G1, G2}(¢) := dG1(¢)[Xa, ()] we formally get

PG = i G,
£=0

lieseries (210) Go:=G

eq:CompositionRelation

1
G := Z{X,G5_1}, £>1.
In order to estimate the vector field of the terms appearing in (210), we exploit the following results

Lemma A.3. Let R > 0, and assume that x, G are analytic on B, s(R) as well as their vector fields.
Then, for any d € (0, R) we have that {x, G} is analytic on B, s(R —d), and

2
(211) wp Xy Ol <2 [ sup 1XOllwes | [ sup 1X6(Ollwer )
Bp,s(R—d) Bp,s(R) Bp,s(

Proof. Observe that
X tx.ay (Ollrrs = [[dX5(€) Xa(C) — dXa(C) Xx(Q) [l
< [dX5(€) Xa(Qllaes + [|[dX e (C) X (Q)llwes,
and since for any d € (0, R) Cauchy inequality gives

1
sup  |dXx (O)llseswpes < o sup X5 (C)llers,
Bp,s(R—d) Bp.s(R)

we finally get

BP,S(Rfd

1
sup  [|dXx () X (Ollwes < 7 | sup [ X (Q)llers sup || Xa(Q)llres | -
) Bpy,s(R) By, s(R)
With a similar estimate for the other term we obtain the thesis. O

lem:Liesrest | Lemma A.4. Let R > 0, and assume that x, G are analytic on B, s(R) as well as their vector fields.
Let £ > 1, and consider Gy as defined in (210); for any d € (0, R), Gy is analytic on B, (R — d) as well
as it vector field, and

¢
sup [[Xx(Qllzrs | sup [[XG(Q)flsrs.
By, s(R) By,s(R)

pys

2
lieserest | (212) sup || Xa, (Q)||#es < <de

pPs -



‘'ransformation

Proof. Fix ¢, and denote ¢ := d/¢. We look for a sequence C'Y such that

sup || Xan, (O)wes < CY, Ym < e
8)

By s(R—m

Lemma A.3 ensures that the following sequence satisfies this property.

e = sup [|Xc(Q)llwes,

Bp,s(R)
2 (e
C(l)zic() X R
m = 5O jlslp)ll x(Ollwe
20 o)
=——Cp2y sup || Xy (Q)llaess-
dm 0,5 )

One has

1 (2¢

Y4
c¥==[%Z su X .5
/4 VI d Bp,s<pR) H X(C)HH‘) 5

sup )I\XG(C)I\HM,

pys

and by using the inequality £¢ < £le’ one obtains the estimate (212).

Before stating the next Lemma, we point out that the Poisson tensor Q;l, obtained by inversion from

the associated symplectic form Q%b%ﬁ‘géf’l)gsﬁ&g bounded operator on H?*. We thus have to weaken

the hypothesis of Theorem 4.4 in [7]; indeed, we just assume that

||Qilf”7'l"*s < ||f||7.¢p,s+1 .

This property is satisfied by both Qfl and Q;l.

Lemma A.5. Let x and F be analytic on B, s(R) as well as their vector fields. Fiz d € (0,R), and

assume also that

sup [[Xx(Qlsrs < df3.

By, s(R)

Then for |t| <1

(213) sup
By, s (R—d)

Proof. Since the bound on the norm of X, implies that ®% (¢) € B,,s(R) when ¢ € B,s(R — d/3), using

Cauchy inequality and Lemma A.1

9
HX(<1>§<)*F—F(C)H’H”’S <

sup ([ (B4 (C) — idl|rursruoe <

By, s(R—d)

sup ([ X (Q)[|3ee-s
Bp,s(R)

sup

sup || Xr ()l
R)

P8

14D (C) — idl|3es 200

By, s(R—2d/3)

3 _
<5 sup |90 Kl
By,s(R—d/3)
3
<5 sup Xy (Qlles
Bp,s(R)

Since <I>§( is a canonical transformation, a direct computation shows

Q7HA(F 0 21)(¢) = (A2 " (2(¢)) — i) dF(®}) + Q' dF (2} (¢))

31

O
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whence
sup (| Xwt)-rop(QOllues = sup [QTH(F(DL(C) = F(Q))ll3e s
Bp,s(R—d) Bp,s(R—d)
< g S [(dD (P (Q)) — id)Q ™ dF (®) + Q7 d(F(®3,(C)) — F(Q)) e
p,s =
< sup  [[dRTH(RN(Q) —id|lwrs e sup ([ Xp(P5(Q)) |l
Bp,s(R—d) p,s (R—d)
+ sup [ Xp(93(€) = Xr(Q)||nrs
By, s(R—d)

3
< 5 sup X (Ol sup [ Xr(C)ll2es

Bp,s(R Bp,s

t
v oswp | / (X, X (@3 (C))ds]|per-e
By s(R—d) Jo

To estimate the last term we use Cauchy inequality

t
sup II/ (X Xp](@3(Q))dsllsre <2 sup  |[Xy, Xr](Q)[lors
By,s(R—d) Jo Bp,s(R—2d/3)

6
< 552 5P [ Xx(Ollses sup : [ XE(O)llaee

ps(R p.s

IN
I

sup X5 (Q)ll3ps sup : [ X# (Ol ees -

p,s(R pys

Then the thesis follows. g

homeqlemma | Lemma A.6. Assume that G is analytic on B, s(R) as well as its vector field, and that ho satisfies
PER. Then there exists x analytic on B, s(R) and Z analytic on B, s(R) with Z in normal form, namely
{ho,Z} =0, such that

homeq | (214) {x,ho} + G = Z.
Such Z and x are given explicitly by

eq:Explicitz| (215) Z(¢) = % /0 G(‘I);LO(C))dt,
— e ¢ ¢
eq:ExplicitChi| (216) x(¢) = T/O t [Z((I’ho (€)) — G(®p, (O)] det.

Furthermore, we have that the vector fields of x and Z are analytic on B, s(R), and satisfy
sup || Xz(C)[laes < sup : [ Xa () llaes

By, s(R Bp,s
vfhomeq | (217) BSHFR) 1 X5 (O |2es < QTBSuFR) | Xa(O)||#ers-
p,S PSS

Proof. We check directly that the solution of (214) is (216). Indeed,

kol O = 5 x(@h,(0)
:% ; t%w:o [Z(®55°(¢)) — G(@45°(¢))] dt
= % /0 t% [Z(@h, (€)= G(Pho (O)] dt

= 7 [12(81,(0) ~16(@h, O] Ly~ 5 | [2(94,(0) - 6@}, (0)] a
= 2(0) - G(0).



Poissonlemma

33

In the last step we used the explicit expression of Z provided in (215). Finally, the first estimate in (217)
follows from the explicit expression of Z in (215) while for the second estimate we write explicitly the
vector field X:

1

X = 4 [ DR, () o Xa-alah, @)t

Hypothesis (PER) guarantees that @flo as well as its derivatives and the inverses are uniformly bounded
as operators from H”® into itself. Moreover, for any ¢ € R, the map ¢ — <I>ZO (¢) is a diffeomorphism of
B, s(R) into itself. Thus

sup [ Xx(Qllswrs ST sup  sup ([[(D®hg (€)™ llmrsmres) sup (| Xz(Olles + [1Xe(Q)llrere)

B,.s(R) te[0,T] CEHPS Bp.s
<2T sup  sup ([(D®h,(C) " lwrsrrs) sup [| Xa(Q)||ares
te[0,T] CEHPS Bp,s

where in the last step we used the first inequality in (217). Since by assumption (PER) @}, is an
isometry, sup, (o ) SUPcesrs ([(DPh,(¢))[l2rs mps) = 1 and the thesis follows. O

Lemma A.7. Assume that G and its vector fields are analytic on B, s(R), and that ho satisfies PER.
Let x and its vector field be analytic on B, s(R), and assume that x solves (214). For any £ > 1 denote
by ho,e the functions defined recursively as in (210) from ho. Then for any d € (0, R) one has that ho .
and its vector field are analytic on B, (R — d), and

4

9

(218) sup (| Xng, o (Qllres <2 sup | Xa(Q)llawrs | 5 sup (X (Qllaers | -
Bp,s(R—d) p.s p.s

Proof. By using (214) one gets that ho,1 = Z — G is analytic on B, s(R). Then by exploiting (213) one
gets the result. O

Lemma A.8. Assume that G and its vector field are analytic on B, s(R), and that ho satisfies PER.
Let x be the solution of (214), denote by <I>§< the flow of the Hamiltonian vector field associated to x and
by ®, the corresponding time-one map. Moreover, denote by

F(€) := ho(®x(C)) = ho(C) — {x, ho }(Q)-
Let d < R, and assume that

sup (| X (Ol[rrs < d/3.
Bp.s(R)

Then we have that F and its vector field are analytic on B, s(R —d), and

18
(219) sup  |XF(Ollses < — sup X (Ol sup ([ Xa(C)llres.
By (R—d) Bp.s(R) Bp.s(R)

Proof. Since
1

ho(®4(0)) — ho(¢) = / {x ho} o B,(C) dt
0

(214)

/0 2(84(C)) — G(3L(0)) dt,

if we define F'(¢) := Z(¢) — G(¢), we get

F(Q) = / F@(C)) — F(C)dt.
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Now, we have

sup )HX]-‘(C)HHP:S

pPS -

= s joa( [ R@UE) - FO ) o

By, s(R—d)

< sup H/ (d5 " (BL(Q)) — id)Q ™ dF (®}) + Q7 d(F(93,(¢)) — F(C)) dt|e.s
Bp,s(R—d) JoO

1
< swp | / (BT (0)) — id) Q2 dF (@) dt]|os
By, s(R—d) 0

1
+ s | / Xp(@(0) — Xr(C) dtflpur
By, s(R—d) 0

and by dominated convergence we can bound the last quantity by
sup  sup [|d® " (L (C)) — id|[sessmes  sup [ Xp(DL(C)[laere
By, s (R—d) t€[0,1] Bp,s(R—d)

+ sup  sup [ Xp(DY(Q)) — Xr(C)|lnes
By,s(R—d) te[0,1]

< sup sup [[d@(DL(Q)) —idllaessmes  sup [ Xp(DL(C))Iaens

t€[0,1] B, 5 (R—d) By, s(R—d)

+ sup sup [ Xp(@4(C) = Xr(Q)llaes
t€[0,1] By s (R—d)

t
< 5 suwp (X (Qllwes sup [ Xp(CQ)llres + sup - sup H/[XX7XF](<I>5<(C))<18HW’S,
Bp,s(R) Bp,s(R) t€[0,1] By, s(R—d) Jo

where we can estimate the last term by Cauchy inequality

sup II/O (X, Xpl(@X()dsllnre <2 sup  |[Xy, Xr](Q)l[er:s

Bp.s(R_d) BP.S(R_2d/3)
6
< 5g2 sup (X (Ollwes sup (1 XF(C)lloer e
Bp,s(R) Bp,s(R)
6
< 5 s [ X (Ol sup ([ Xr(C)llres -
Bp,s(R) By, s(R)

By the above computations and (217) we obtain

9
sup )I\Xf(C)IIHv,SSE sup (| Xo(Ollsrs sup [ Xr(C)]3er s

Bp,s(R—d p.s(R) Bp,s(
(217) 18
< s (1 (Ollwes sup [1XG(C)llwes
Bp,s (R p,s(R)

Lemma A.9. Let s > s1 > 1, R >0, m >0, and consider the Hamiltonian
(220) H™(¢) = ho(¢) + 62 (¢) + 8" F™(0).
Assume that ho satisfies PER and INV, and that

sup || X peo) (Q)l|#es < F.

pys
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Fimd<mi+1, and set Ry, := R—md (m > 1).

Assume also that Z™ is analytic on B, s(Rm), and that
sup | Xz (Q)l[3rs =0,

By, s (Rm)
m—1 ) )
(221) sup (X0 (Qllars < F S 8Ky, m>1,
Bp,s(Rm) i=0
(222) sup || X pim) (Q)l|3rs < F K", m>1,

Bp,s(Rm)
with Ko > 15 and d > 3TOF.
Then, if Ko < 1/2 there ezists a canonical transformation 7:5(7”) analytic on By s(Rm+1) such that

(223) sup [T (C) = Cllaens < 206 KGF,

Bp,s(Rm+1
H™D .= g0 o T has the form (220) and satisfies (222) with m replaced by m + 1.

Proof. The key point of the proof is to look for 7:;(7”) as the time-one map of the Hamiltonian vector
field of an analytic function 6™ 'y,,. Hence, consider the differential equation

(224) { = Xsmr1y,, (Q)-
By standard theory we have that, if || Xsm+1,, (15, .(r,,) is small enough (e.g. || Xsm+1y, |5, . (7m) <

mm—fl) and (o € By s(Rm+1), then the solution of (224) exists for |¢| < 1.

Therefore we can define T,), 5 : By s(Rm+1) = By,s(Rm), and in particular the corresponding time-one
map ’7:;(7") = ’7'7,1175, which is an analytic canonical transformation, 6™ **-close to the identity. We have
(T (ho + 62 4+ 6™ T FO™) = ho + 52
+ 6™ [{xm, ho} + ™| +
(225) + (ho o T = ho = 6™ {xm, ho} ) +6 (20 o T — 20)
(226) + 6"t (PO o T - PO

It is easy to see that the first two terms are already normalized, that the term in the second line is the
non-normalized part of order m + 1 that can be normalized through the choice of a suitable x,, and
that (225)-(226) contain all the terms of order higher than m + 1.
In order to normalize the terms in the second line we solve the homological equation
{Xm7h0} + F(m) = Zm+1,

with Z,,4+1 in normal form. Lemma A.6 ensures the existence of x,,, and Z,,+1 as well as their explicit
expressions:

T
Zun(@) = 7 [ FO@ @),

Q) = = / HF (B4 () = Zms1 (Bl (C))] .

The explicit expression of X,,, can be computed following the argument of Lemma A.6. Using this
explicit expression, the analyticity of the flow @}, ensured by (PER) and (217) one has

* sup (X (Qllsre 2T sup | X lsure < 2TKG'F .

p,s(Rm) Bp,s(an

Straightforwardly, from the explicit expression of Z,,11(¢) and (222) one has

sup ||XZm+1H7'U)*S < Ky'F
Bp,s(Rm)
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Now define Z(™+V .= z(m) 4. 6™ 7 | and notice that as a consequence of the latter estimate and (221)
we have
sup [ Xzomin (O < sup (| Xz (Qllwes +  sup ([ Xsmz,,  (Q)llwnes
Bp,s(Rm+1) Bp,s(Rm+1) Bp,s(Rm+1
m—1
<F (Z F K] +5’”K5“>

3=0

Defining now 7:5(’”)(() = q);m“xm (¢) we can apply Lemma A.1 and (*) to obtain
sup [T (Q) = Cllare = sup [ By, (6) = Sl
Bp,s(Rm+1) Bp,s(RnL+1)
< sup || Xgmary,, lues < 206" HKGF.
Bp,s(R‘m)

Let us set now 6™ F2F(m+Y .— (225) + (226). Using Lemma A.5 one can estimate separately the
three pieces. We notice that supg (g,,) [|[Xsm+1y,, 7o < 276" K§'F and since §Ko < 3 we have

SUPs, | (R | Xsmt1y,, e < TOF < § < (m+1d We can thus apply Lemma A.5 and Lemma A.8 to
get
|| (Ol < 22870 X (O 1X g |
sup X m (m) m ( HPsS S — sup X m C HPS sup X (m) || HPSy
B(Rpyr) 20T -2 (m+1)d s, (R Bpo(Rm)
sup |X Olbere < 277y X @lles sup [ X
m (m) m HPS X m HPsS (m) || HPss,
B(Rp+1) Fim)o g™ —pim) (m + 1)d Bp,s(Rm X Bo,s(Rm e
18 62m+2
X m a< 20 X X o
s(zsa]fﬁl)” 0o T —hg—5m 1 Lo I S Ty 0 [ X ()220 sup X ) (Ol

By means of these inequalities, with the additional information ||Xgm+1, [lmes < W and the

hypotheses (221) and (222), we can estimate

sup || Xgme2 pimn) (Qllwes < 96" sup (| X gom (Qlleess +9 8™ sup [1X pmy (Ol aees

Xm

Bp,s(Rm41) Bp,s(Rm) Bp,s(Rm)
+667* sup || X pim) (Q)llaees
Bp,s(Rm)
m—1 ) ]
<98™PF Y Ko+ 96" PP Kyt +6 67" F Ky
i=0

m—1
S (9F > 6K+ 9" FEG 4+ 66"F K5">

i=0
If m = 0 the first term is not present and then

sup [ X2 o llaere < 82(9F + 6 F),

Bp,s(R1

If m > 1 we exploit the smallness condition § Ky < é to get Z?;_Ol §'K{ < 2 and

F F
sup || Xgms2pomrn |laos < 671 (6F + 95, +6 27) < 156™2F.

Bp,s(Rm+1
O

Proof of Lemma 3.6. The Hamiltonian (56) satisfies the assumptions of Lemma A.9 with m = 0, Fi
in place of F©, F = K{f;) M7, So we apply Lemma A.9 with d = R/4, provided that
R R

o< =
12TF 19 TK{?‘Z)M2+W
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which is true due to (65). Hence there exists an analytic canonical transformation 7:5(3\2[ : Bp,s(3R/4) —
B,..(R) with

sup [ T30 (C) = Cllaes < 2T F6,

By« (3R/4)
such that
(227) Hiaro Ty = ho + 825 + 8RS,
(228) Z0 = (),

2 1 2 1

PR = oFM
(229) = (ho o 7:;’(])\/)[ — ho — (5{)(17 ho}) +6 (ZI(L}) o 5(7(]]8[ — Zé?) + 52 (FL]W o 7;(’(])\)4 — Fl,M) s
(230) sup X0 (Ol < F,

By, s(3R/4) M
(231) sup || X ) (Q)l[ars < 15F.

By« (3R/4) N
and Ko = 15, whence § < 4. O

APPENDIX B. PROOF OF PROPOSITIONS 6.5 AND 6.2

Proof of Proposition 6.5. In order to prove Proposition 6.5 we first discuss the specific energies associated
to the high modes, and then the ones associated to the low modes.
First we remark that for all £ such that x(k) = (uK1, u° K2) we have

®©4 sin’ Fam + sin® Fam
o 2N +1 2N +1

4 K K.
£l (25) o (73]

(232) < (K + p* VK3,

wi
2
I

moreover, for K1 # 0

lgx|* + 7 (KT + p* "V K3) |k |? < 22 g 20K lar|> + (K7 + “2<071)K22)|ﬁK|2e2p\K\
2 - 2

) v K3
(233) < w1 (10 IR (e o,
1

while for |K2| < |K4|

lax|? + 72 (K2 + p2C VK3 |prc|? Il

: 22 251 (¢, 1) .

(234)
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Hence, by (173) we obtain that for all k such that (k) = (uK1, u” K2) and |K1| + | K2| > %

~ 2
- 2 2 |PK+L
= > ldr+L]” +wi |——
L:(LlyL2)€Z2?ML1,}LULQEQZ
2+46)| 1
| Ky | 4| Ko |> 2400 los ul )L 0% ¢
[Ko+Lo|<|Ki+L1]

(232),(234),(86)
<

PE+L

+ > ldro|” + wi

L=(L1,Lo)€Z%:uLy,u° Lo€27
2+46)| log
\K1\+\K2\>( + );‘) og p|

[K2+La|>|K1+L1|

7 1€ m 50 2 Z o~ 2Pl K+L|

L=(L1,Lo)€Z?:pLq,u° Ly €27
(2+9)| log p|
| K|+ K2|> -
|Ka+La|<|K1+L1|

2 2 —2p|K+L]| 2(o-1) (K2 + Ly)*
7 16 m) o > ¢ (e R

L=(L1,L2)€L% puLy,n" Lo €22
2468)]| 1
\K1\+\K2\>( + ),\) og p|
[Ko+Lo|>|K1+L1|
Ki4+L1#£0

2 2 —2p|KatL
+ 7 1€ M) [500.0 > o201 K2+La|
L=(L1,Lo)€Z?:puLy,u° Lo€27
|Ky |+ Ko |> 3t log ]
p

|Ko+Lo|>|K1+L|
Ki1+L1=0

Now,

255 > e

L=(L1,L2)€Z%:pLy,u’ Ly€27
(2+6)| log p|
[ K|+ K2|> -

< e 2Kl S e~ 2PIK+LI 3 20 K+LI

L=(L1,L3)€2%puLy, 1" L3 €22 L=(L1,L2)€2%:uL1,u" Ly€2Z
2|1 2|1
L |y |+ B | > 210 el
L1=0,L3#0 L1#0,Ly=0

DecompHighFreqTerml | (236) + Z o 2PIK+L|

L=(L1,L2)€Z%:pLq,u Lo €2Z
2j1
Ky |+ Ko | > 2080
Lq,L2#0

We now estimate the last sum in (236); we point out that for L1, L2 # 0 we have

)

2 2
IL| > = + =
w

hence

(237) 2|K| <|L|.




HighFreqTerml

’HighFreqTerml

3HighFreqTerml

Therefore, for any k such that r(k) = (uK1, p” K2) and |K:| + [Kp| > 2E0losul

> e 2PIRFLI < 3 o—2e [ IKI=ILI|

L=(L1,L2)€2%pL1pu" L2 €22 L=(L1,L2)€Z% Ly ,u" Lo €2Z
2+6)| log ot 5
|K1\+|K2\>% \K1|HK2|>%
L1,L270 Ly,Lo#0
2p|K| _—2p|L
< E 2P Kl ,—2p|L]

L=(L1,Lo)€Z?:puLy,u® Lo €27
2|1
K1 |+ Ko | > o8l
Lq,L27#0

—+oo
21Kl or Re B4R
2|K|

=27 e2p\K\ <71) i /+°0 e*ZPRdR
2) dp | Jok|

— _qe2rlKl i e 1Kl
dp 2p

= —ge2rlKl (—Le_‘lplm —2|K]| 6_4"|K|>
202

T (1 ~2p|K|
238 = — —+4>e P
(23%) 2p(p

IN

Next we estimate the second sum in (236); we have

—2p|K+L —2p (|K1|+|K —4
(239) E e pIK+L| <e p(IK1|+|K2l) E e p\ll/u7
L=(L1,Ly)€Z? Ly ,u° Lo €27 LeZ\{0}
|K1H|K"">W
L,17#0,L2=0

which is exponentially small with respect to p. Similarly,

(240) Z e 2PIK+L < =20 (IK1|+]K2]) Z o elel/n7
L=(L1,L2)€L%:puLy,u" Lo €2L 2€7\{0}

2|1
R e
L1=0,Lo#0

39
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Then,
2
Z 20l L] (K2 + L)
> (K14 L1)?
L=(L1,L2)€Z*:puL1,p% L2 €2Z
‘K1‘+‘K2‘>%M
|[Ko+Lo|>|K1+Li|
Ki1+L1#0
2
_ K.
< o ¥IK] (?2
1
2 2
n 3 o-2olrrr) Kot La)” Z o2elirrl (B2 + Lo)
5 . (K1 + L1)? 5 . (K14 L1)?
L=(L1,L2)€L":pLy,n% Lo €2L L=(L1,L2)€L":pnL1,n” L2 €2Z
|1 |+ Ko | > 2Hosul |y |+ K| > 2Hos
[K2+La|>|K1+Li| |K2+La|>|K1+L1]
K14+L1#0 K1+4+L1#0
L1#0,L2=0 L1=0,L27#0
DecompHighFreqTerm2| (241)
2
f oy e (Gesl?
(K1 + L1)?

L:(Ll,L2)€Z2:,u,L1,u'7L2€2Z
|Kq \+\K2\>m
P

|[Ko+Lo|>[K1+L1|
Ki+L1#0
Ly,La#0

First we estimate the last term in (241): we have that |L + K| > | K|, hence

) gelicrr (Kot Lo)®

2
B ) . (K1 + L1)
L=(L1,L2)€Z":puL1,n” L2 €2Z

(2+9)| log p]
[ K|+ |K2]> -

|[Ko+Lo|>|Ki+L1|
Ki+L1#0
Ly,L2#0

oo 7/
_ /+ / C e ¢ an? pdgde
x| Jo

T\ _2p\k| 1+ 2p|K]
=(1— 7> P _
( 1) € 4p?

< (1 _ %) u 6—2p[IK\—%g‘”—ﬁlog(2p|K|)]
§<l-1/e T 4 —2p [5|K|,M]
(242) < ( — 7) uwe »
EstlHighFreqTerm2| (243) _ (1 _ Z) M86—2p6|K|

Now we bound the other two nontrivial terms in (241); on the one hand, we notice that

3 sy

L=(L1,Lo)€Z%:uLy,u° Lo€27
\K1\+\K2\>w

[Ko+Lo|>[K1+L1|
Ki1+L;#0
L170,L2=0

DecompHighFreqTerm22 | (244)
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vanishes, while on the other hand

2
S —2p|K+L| 72 _ _—2p|K]| —aplel/p L
e L2 S e & 'u/?
L=(L1,Lo)€Z%:uLy,u’ Ly€2Z LeZ\{0}
2| 1
Ky |+ Ko | > 2Hosul

[Ko+Lo|>[K1+L1|
Ki1+L;#0
L1=0,Ls7#0

—+o0 - 2
lighFreqTerm23 | (245) < 9¢~20IK] / e et/ p ZT de,
1 =7
where the last integral is exponentially small with respect to .

On the other hand, for any k such that «(k) = (uK1, u” K2) and |K1| + |K2| < %

& _ ekl + Ik

ut 2
2 2, 272 ~ 2
wp —p T Ky, 2 1 . 2 2 |PK+L
< ’T x| 35 Z ldx+r|” +wi [——| ,
L=(Ly,Ly)€z?\{0}
wuLy,u% La€2Z
(232)
< (WKL + VKD e
1 R P .
3 X il R+ L) D (K + La) i
L=(L1,L2)€Z?\{0}
pLq,u® Lo€2Z
_1) 9] log pu?
< <w4u2Kf+7r2M2(0 1) M) b |
p
1 . o— .
T3 > MRl L) Y (K o L)l

L=(L1,L3)€Z*\{0}
pLy,p La€2Z

2
stLowFreqTerml (246) < xt /LQ + 7T2/L2(071) ) 9|10p+u| 2[|(¢, 77)”3—[/»0

2 2 2
™ 2| K+L| 118 2, 4 2 20—1) K3+ L3 —2p|K+L|
stLowFreqTerm2 24 — L 1+2 — =
bregterz] (41) 45 T el ) (14200 0 S ,
L=(L1,L3)€Z*\{0}
puLq,p° La€2Z

and we can conclude by estimating (246) by exploiting the fact that |logpu| < p~?/°, while we can
estimate (247) by

5 2 2

x ) 2(0-1) K3 + L3 —2p|K+L|

T 142 T T T N3

GRS (2 G )«
L=(L1,L2)€z*\{0}

puLy,p® La€2Z
2
s o P _
TEBes Y (1422 K 42620V 13) e

L=(L1,Ly)€z*\{0}
pLy,n% Lo€2Z

IN

2

—+oo —+o0
< % &M 50 |(1+2p°C" Y K320 / e 4dl + 4rr / e 2" eﬁw]
2/n 2/p
2
™
= T M B
:1LowFreqTerm2 | (248) 2 {1+ 2#2(071) M e te/m ptidp + 4w et /m B 12pu” + 24p° 1 + 320°
P? dpp? 8uspt '

O



ApprEstSecl2

estRemThm

qappr

pappr

ApprEql

ApprEq2

NormSeq

DiscrEql

DiscrEq2

EqSeql

EqSeq2

42 M. GALLONE(T) AND S. PASQUALI(*®)

Proof of Proposition 6.2. Proposition 6.2 is obtained as a Corollary of Proposition 6.5 by setting o =
2. O

AprrENDIX C. PROOF OF PROPOSITION 6.6 AND PROPOSITION 6.3

L. . . . [pambusi2006metastability
Proof of Proposition 6.6. The argument follows along the lines of Appendix C in [7].

Exploiting the canonical transformation found in Theorem 3.3, we also define

(249) Co = (£ay7a) = Tp2(€arla) = Ca + Ya(Ca),

where 14 (Ca) = (ve(Ca), ¥n(Ca)); by (54) we have

(250) sup  [[¢a(C)llaem < Crp® R
CEBy n(R

For convenience we define

1
(251) qa(Tv y) = ﬁ [5&(#’27—7 Yy — T, yQ) + na(M2T7 Y1+ T, yZ)]
1
(252) Dy pa(T,y) = 7 [Py — 7,y2) — na (WP, + 7,32)]
We observe that the pair (ga,pa) satisfies
(253) 112 (ga)e = — A1 ppa + 1Ry
(254) 1(pa)t = —p’qa — 1" amogs + p Ry,

where the operator A; acts on the variable z, 7 is the projector on the space of the functions with zero
average, and the remainders are functions of the rescaled variables 7 and y which satisfy

sup Ryl < C,
By n(R) o

sup [[Rylli2, < C.

pim

We now restrict the space variables to integer values; keeping in mind that g, and p, are periodic, we
assume that j € Z?V’No'.
For a finite sequence @ = (Qj)jezif o We define the norm

(255) Iz, = > Q"
IE€LY No
Now we consider the discrete model (5): we rewrite in the following form,
(256) Q; = —(A1P);
(257) By =-Q; — amQ]

and we want to show that there exist two sequences E = (Ej)jGZ?V,N" and F = (Fj)jGZ?V,NG such that

Q=g+ u""E, P = pp.+p*F
fulfills (256)-(257), where v > 0 is a parameter we will fix later in the proof. Therefore, we have that
(258) E=—AF— 5 2R,
(259) F=—E—am (1 2q.E + " E?) — PR,

where we impose initial conditions on (E, F') such that (¢, p) has initial conditions corresponding to the
ones of the true initial datum,

12qa (0, g, 17 g2) + ¥ Eo j = Qo g,
1pa(0, pgi, 5 ja) + p* TV Fo = Po ;.
We now define the operator 9;, i = 1,2, by (0;f); := f; — fi—e, for each f € (3 yo.
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e Claim 1: Let 0 > 2 and v > 0, we have
1Bolle, ., <C'u (3-27-0)/2
01 Folles, ., < O p3=2r=)/2
||82F0H5?V,NU < O'p-2rte)/2,

To prove Claim 1 we observe that

_ 2batna—(EatTa) _ vt
B i e M TG
= azzl[fa_na_(ga_ﬁa)] _ . —1- 'y (w —Pn)
oo NoEs ! vz

from which we can deduce

Bl < D B < 0N = o,
IELY No
o1 Folfs < >0 |oiFo P < CANTH (u277)? < Op* 077
1 jeZ?V’NU
”aQFO”g?V No S Z |82F0,j|2 S C4N0+1 (M1+‘777)2 — Cul—27+a
C iR

and this leads to the thesis.

e Claim 2: Fix n > 1, Top > 0 and K. > 0, then for any p < ps and for any o > 2 and v > 1 such
that ¢ + 2y < 7 we have

To
(260) B, o IO F I, |+ 102, |, < Ko <5
To prove the claim, we define
E} + Fj(-ALF);  2p’aqa; E;
auxFuncClaim2 | (261) F(E,F):= Z i J; ik + a ga,J L

. 2
JELY No

and we remark that, using the boundedness of ¢q,;,

1
SFEF) < Bl okl +10Fllz < 4F(B,F).

Now we compute the time derivative of F. Exploiting (258)-(259)

meDerhuxFunci| (262) F= ZE —(ALF); = T (Ry);]

meDerhuxFunc2 | (263) + Z ~AIF); [~ Bj — a(42q0,B; + 1 E) — 177 (Ry);]

meDerhuxfunc3 | (264) Z2u agay By [~(A1F); — 1t (Ry),]

neDerkuxFuncd ] (265) +2 By e

eDerhuxFunc2t |  (266) = Z —E; i (Rg)j + ) (= F); [~ap’E] = 177 (Ry),]
J J

eDerhusFunca2|  (267) = > 27 aqa Bt T (Ry); + ; paE] p ag:j

J
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In order to estimate (266)-(267), we notice that
sup |(A1F);| < 2sup (01 F);| + [(8:F),| < 4V'F,
j J

IRlZ, . < IR < AN sup [Ry(y)” < Cp'77,
' j Y

and that |(9:R,);| < psup, |52 (y)],

10 R |I2, < Cu' .

N,No

Now, the first sum in (266) is estimated by CF'/2,(7=27=9)/2 . the second sum in (266) can be
bounded by

C’(,u2+7]-'3/2 + M(772770)/2]_-1/2)'

Recalling that g, ; is bounded, the first sum in (267) can be bounded by CF/2,(11=27=9)/2 while the
second one is estimated by Cu®F. Hence, as long as F < 2K, we have

)f’ <C ‘]_—1/2/1(772%0)/2 2T ES2 Ty pl/2 y p1/2 (M=2y—0)/2 Sy
(268) SCWTVRED? + i) F + C@uT TR 2 o K2,
(269) Ot R KYAF 03T R K,
and by applying Gronwall’s lemma we get
(270) F(t) < F(0)eC2VER 1t | (02BR 0 o /o j1/2 31 03, (T 21002 \f 12,

from which we can deduce the thesis. O

Proof of Proposition 6.3. Proposition 6.3 can be obtained from Proposition 6.6 by setting o = 2. g

APPENDIX D. PROOF OF PROPOSITION 6.9
ApprEstSec21

We argue as in the proof of Proposition (6.5).
First we remark that for all k£ such that x(k) = (uK1, u” K2) we have

12 1 o 5 +> ()
— e (MY e (17K

<1472 (WP K2 + i K2

) <1 K 4 K

hence

Ipx|” + 7 (14 p? K7 + p*  K3)| g |? < 2 o 20IK] px|® + (L4 p? K7 + p*  K3)|gx |? 201K
2 - 2

NormMode1DNLSEst | (272) <7?e P (14 1 KT+ 127 K3) ||, 9) 300




lighModes1DNLS

specHighModes1
>pecHighModes2
specHighModes3

lighModesTerml

lighModesTerml
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Hence, by (190) we obtain that for all k such that x(k) = (uK1, p” K2) and |K1| + |Ka| > W

™

IN Rolf

> (IPr+rl® + v lar+z )

L=(L1,Lo)€Z?: Ly ,u° Ly €27

Ky |+ K | > 20 los 1l
(273)

(271),(272) _ B .
< w0, )00 2 > e 2PN 4 p? (K 4 La)? + 127 (K2 + L2)?],

L=(L1,L2)€Z?:puLy,u° Lo€27
Ky |+ Ko | > o) los 1l

where the sum in (273) can be rewritten as follows,

(274) Z 6*2P|K+L‘

L=(L1,Lo)€Z%:uLy,u° Lo €27
(2+6)|log p]
| K1 |+ g | > 2t mos ke
2 —2p|K+L 2
(275) + > e 2L (K, 4+ L)
L=(L1,Lo)€Z?:puLy,u® Lo €27
(2+98)| log p|
[ K1+ [ g > =t st
2 —2p|K+L 2
(276) + u* > e PITLI R, + L)

L=(L1,Lo)€Z?:puLy,u° Lo €27
(2+6)[log p]
[ K]+ K2|> -

Now,
—2p|K+L
E: e pIK+L|
L=(L1,L2)€2%:uLq,n Lo €22
245)| 1
|K1|+|K2l>w
—2p|K —2p|K+L —2p|K+L
Sepl\+ E: epl-&-l_|_ E: e 2°PIE+L|
L=(L1,Ly)€Z?:pnLy,u° Lo €27 L=(L1,Ly)€Z?:uLy,u° Lo €27
2| 1 2|1
[Kq [+ Ko |> 2Hom 1l |1 |+ Ko | > 2Hos el
L1=0,Ly7#0 L1#0,Ly=0
—2p|K+L
(277) + > e 2PIRFLL

L=(L1,Lo)€Z?:uLy,u° Lo€27
2| log
| Ky |+ Ky | > 2Hos el
Ly,L2#0

and we can estimate the above terms as for (236) in Proposition 6.5; indeed, by (238), (239) and (240)
we have that (277) is bounded by

6—2p\K|+W(L+2‘K|> eI | R URLHIRSD G skl
2p?
LezZ\{0}

(278) o2 (FlFIKzD N7 o= apltl/u”,
2e7\ {0}
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Now we estimate (275). We have
> e Ly

L=(L1,Lo)€Z?:puLq,u° Lo €27
(2+6) | log p]
[ K]+ K2|> -

—2p|K 2
Se Pl |K1

—2p|K+L 2 —2p|K+L| 7-2
+ E e p| K+ l(K1+L1) + E e p| K+ |](1
L=(L1,L2)€2%:uL1,pn Lo €22 L=(L1,L2)€Z%:uL1,pn" Ly €27
|K1|+|K2l>w \K1H‘\K2\>w
L1#0,L2=0 L1=0,L2#0
DecompHighModesTerm2| (279) + E e 2PIKHLI (K1 + L1)2.

L=(L1,Lo)€Z%:uLy,u° Ly€2Z
| Ky |+ K2 |> (2+38)| log |
P
Lq,La#0

First we estimate the last term in (279): we have that |L + K| > | K|, hence

S e g Ly

L=(L1,Ly)€Z?:uLy,u° Lo€27
K || Ko | > Gl lon ]
»
Ly,L2#0

_ /:o /0% 208 ¢ cos? pdpde

— re20lK] 1+ 2p|K]|
4p?

2|logp| _ 1
<7t o2 (1K 1= 2R - o los(20 K1)
6<1—1/e _ _ 2[log |
EstlHighModesTerm2| (280) < 7Tu46 2p [SIK\ - }

Now we bound the other two nontrivial terms in (279); on the one hand, we notice that

S e Ly

L=(L1,Lo)€Z?:puLy,u° Lo €27
2] 1
|K1 |+\K2\>%
L1=0,Ly7#0

<2 ) e 2L g2

L=(L1,L2)€Z?:pnLy,u° Lo€2Z
2| 1
[Kq [+ Ko |> 2o el
L1=0,L2#0

DecompHighModesTerm22 | (281) +2 Z e~ 2pIKFLI L3,

L=(L1,Lo)€Z?:puLy,u® Lo €27
2|1
S R
L1=0,L3#0

where the first sum can be bounded as the second term in (277), while

2

> HIKFLIL2 < o=20IKI 5 =doltl/i %

L=(L1,Lo)€Z?:puLy,u® Lo €27 LeZ\{0}
K[+ Ko | > 2Hos el
L1=0,Lo#0

“+oo 62

DecompHighModesTerm23| (282) < 9 20IK] / e eltl/p E dl,
1

where the last integral is exponentially small with respect to p.



Similarly,

2
—2p|K+L| 72 —2p|K —aplel/ue L
E: e P\+\L2§6 pIK| E:e"“/” e
L=(L1,Lo)€Z?:puLy,u® Lo €27 L€Z\{0}
2| log
S O R
L1=0,Ly#0

“+o0 - 62
.ghModesTerm33 | (283) < 2¢ I / e ol ﬁ de,
1

where the last integral is exponentially small with respect to .

On the other hand, for any k such that x(k) = (uK1, u” K2) and | K|+ |K2| < %

&e |l
w2 2

R 1 N R
< Jwi — 1] g |* + 5 > Prc+rl® +wi lgresL]?,
L=(L1,L3)€Z*\{0}
puLy,p Lo€2Z

(271)
S ,LL271'2K12 + W2H20K22)|ﬁK|2

—

+ > prerr|” + ldrcerl” + %[0 (K1 + L1)* + 07 (Ka + L2)*)lgr+2 |,

L=(L1,L3)€Z*\{0}
puLy,u% Lo€2Z

S (71'2 ‘LL2K12 + 7[_2”20 K22) |IA7K|2
+[1(, B) 3000 > e P 4 w2 )? (K + Ln)? + 72 p® (Ko + o))

L=(Ly,L3)€z*\{0}
pL1,pu% Lo€2Z

_ 1 2 _
LowModesTerml | (284) <n? /L2 (1 + uQ(g 2 ) 9|0pi2/1| (%, w)”?HP,O
:LowModesTerm2 (285) + H(iﬂ,@)Hip,o Z e 2PIK+L]

L=(L1,Ly)€z?\{0}
puLy,p% La€27Z

:LowModesTerm3 | (286) + 7212 (1, )| 3g0.0 Z e 2PIKHLI (K1 + Ly)?

L=(L1,Ly)€Z?\{0}
puLy,p” La€2Z

LowModesTerm4 | (287) + 7212 (0, ) 13000 Z et (Ks + L»)?

L=(L1,L3)€Z*\{0}
pnLy,p Lo€2Z

N —
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ApprEstSec22

estRemThm3

qappr3
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ApprEqg31

ApprEq32
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and we can conclude by estimating (284) by exploiting the fact that |logu| < p~2/°, while we can
bound (285)-(286) by

2

™ - _

S B0 D0 LK L) e
L=(L1,Lp)€z?\{0}
pLy,p% La€2Z

2

s - —

7H(w,¢)l\3{p,o > (1+24% K7 +24° L7) e 2/1FH

L=(L1,Ly)€z?\{0}
puLy,p% La€2Z

(1+24° K7)2n /
2/p

2

S (] [

“+ oo + oo

e 2P 0dl + A p? /

2/p

e 2t £3d4

2
= 5 1@ D)0

2 3 2 2 3
(288) or (1422 Olog "\ —ap/u 1+ 4p +do o0/ 3u” +12pp” +24p7p + 32p 7
p? dpp? 8upt

and we can estimate (287) by
2
T - o .
o5 @ D)0 > (K2 + Lo)* e 1M

L=(L1,L3)€Z*\{0}
puLy,u% Lo€2Z

2
™ - o— _
5 @0 o0 7 S (2K3 +2Lf) e R

L=(Ly,L3)€Z?\{0}
pnLy,u% La€2Z

2

_ +o00 to0
< % ||(1/J7w)||§-¢p,0 /L2(071) {2}(12 2r / e 2Pt 0l + An / o 20t €3d£]
2

/ne 2/pne

2
™ T2 2(0—
=5 (18, 9)[[3400 1° 7 x

(289) oo 21108 H —appue 17 HAp L ape BT 4 120077 + 24p° % + 320°
p2 4;“/”/)2 8M3°P4 :

AprPENDIX E. PROOF OF PROPOSITION 6.10
F]mbusiQOOGmetastability

The argument follows along the lines of Appendix C in
Exploiting the canonical transformation found in Theorem 3.3, we also define

(290) Go = (WarBa) = Tp2 (as Ba) = Ca + ba(Ca),
where ¢a(Ca) := (¢¢(Ca), ¢n(Ca)); by (54) we have
(291) sup  ||¢a(C)||prm < Crpi’® R.
¢EBp,n(R)
For convenience we define
(292) (7)== s [T 2) + €T 0e)|
(293) pa(Ta y) = ﬁ [6”%(7: Y1, y2) - eiiT;Z;;(Ta Y1, yQ)] 5

We observe that the pair (g, p.) satisfies

(294) 11(qa)t = ppa + 1’ Ry
(295) (1(pa)t = —piqa + pA1qa — 1 Bmogy + Ry,
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where the operator A; acts on the variable x, 7 is the projector on the space of the functions with zero
average, and the remainders are functions of the rescaled variables 7 and y which satisfy

sup Hunéip <,

Bp,n(R

sup Ryl , < C.

pim

We now restrict the space variables to integer values; keeping in mind that g, and p, are periodic, we
assume that j € Z?\,’Na.
For a finite sequence @ = (Qj)j62?V o We define the norm

(296) Rz, ., = > Q™

N,N° 5
JELY No

Now we consider the discrete model (5): we rewrite in the following form,
(297) Q; =P
(298) Pj=—Q; + (81Q); = BmoQ]

and we want to show that there exist two sequences F = (Ej)jeszwa and F' = (Fj)jez?ww such that

Q=pnga+p " E, P =pp.+pF
fulfills (297)-(298), where v > 0 is a parameter we will fix later in the proof. Therefore, we have that
(299) E=F -, 'R,
(300) F=—-E+AME—Bro@u’ T T GE 43 T TIT g B2 4 (P TTITER) — S TITR,,

where we impose initial conditions on (E, F') such that (¢, p) has initial conditions corresponding to the
ones of the true initial datum,

140 (0, 1, n7j2) + 1 Eo; = Qo
11pa (0, v, p° ja) + ' T Fo 5 = Po ;.
We now define the operator 9;, i = 1,2, by (0;f); := f; — fj_e, for each f € £% yo.
J J J i B
e Claim 1: Let 0 > 1 and v > 0, we have

||E0He§v . < C/'u(:‘sfzwfa)/z7
I (3—2y—0)/2
1ol ., < C'r ,
r (b—2v—0)/2
101E0]l¢z, ., = C'p ;
1 (3=2v+0)/2
182Eoll ez, , < C'p :
01 Follpz < C'u®=27772,

N,N°®

3—2v+0)/2
||82FOHZ?V,NG < C"u( y+o)/ .
To prove Claim 1 we observe that

Eo :MQ/)a ""lﬁa - (%era) _ Mf'y 45& +¢77

V2ult V2

_ "pa_dja_(ﬂ;a_{/ja)] _ 7w¢§_¢7i
FO—,U \/ii/.tl+7 =p \/EZ s
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from which we can deduce

||Eo||§§V No < Z |EO,J-|2 < C4N°H! (M2—7)2 _ Cu3—27—07

S o
||F0||?§v o = ST JRl? < CANTHL (2T)? = ot

T By

01 Eolliz < > |0iEoy|* < CANTT (W*777) < €7,
S e

l02Eoll7e < > 102Bosl” < CANTT (T = Ot
C e

lorFollla < D |ouFogl? < CANTT (TR < Ot
' €3 o

2 2 o1 240—7)\2 39940

||82F0|\5§V,N0 < Z |02 Fy ;> < C4ANT (i N2 = Bt
s T

and this leads to the thesis.

e Claim 2: Fixn >0, Tp > 0 and K, > 0, then for any u < ps and for any ¢ > 1 and vy > 0 such
that o + 2y < 7 we have

Tt
2 2 2 2 0
(301) VIS, o+ IF U, ., + I00EDl, |, + 0Bl |, < Keo 1t <3

To prove the claim, we define

F? + B2 + E;(—A\E); 3u2Bq2E? 4+ 3u*" Bq. E3
(302) F(E,F) = Z i T E +Ei(—A )J+ B Bea by + 3" Bqa Ej

2 2 ’

J€L No
and we remark that
1 2 2 2
SF(BF) < Bl + okl |+ okl < 2F(5,F).

Now we compute the time derivative of F. Exploiting (258)-(259)

|TimeDerAuxFunc31 | (303) F= Z F; |—E; + (A1E); — Bmo (3;1,2 qiEJ- +3u°t anJ2 + ,LLQ+2'YE?) - /1/4_’)/(7?/1))]']
|TimeDerAuxFunc32| (304) + Z E; — (AL1E);) [Fj — ,LL4_A/('Rq)j]

J
[ TimeDerAuxFunc33 | (305) + Z 3u’ BLE; [Fj — H4_’Y(Rq)]':| + 3/125Equa u%q:

- 9 2+ E2 F 4—~ 3 24733 0qa
|T1meDerAuxFunc34| (306) + Z —u T BE; [ j— U (Rq)j] + oM BE; p or
| TimeDerAuxFunc41 | (307) = Z F; ,37T0 pt an? + /A2+2WE?) — (Rp)j]
|TimeDerAuxFunc42 | (308) + ZEj —/,L - 'Rq)j] — (ALE); [—/.L4_7('Rq)j]
| TimeDerAuxFunc43 | (309) + Z 3u° B qiEj I:—/,L4_’Y(Rq)jj| + 3,LL2ﬂEJ2qa ,u%

- 9 24 2 4—~ 3 24~ 3 aqﬂ
|T1meDerAuxFunc44 | (310) + Z SH BE; [Fj — W (Rq)j] + SH BE; 1 o

J

In order to estimate (307)-(310), we notice that



51

sup [(A1E);| < 2sup (D1 E);| + [(0:E);| < 4V'F,
J J
IRl 0 < SOIR I < AN sup [Ro()* < O,
, _ o
J

[Rplls2 < Cu™'77,

N,N©o
and that [(0;Rq);| < psup, %(y)‘, which implies

2 1-0o
10 Rallez, \, < Cr 7

Now, we can estimate (307) by

seDerhuxFuncdt | (311) C (M2+v]_—3/2 I e u—(1+o)/2]_—1/2) .

Then, (308) can be bounded by
eDerAuxFuncd2 | (312) c </L4—“/—(1+fr)/2 FU2 4 Aot/ ]_-1/2) :

next, we can estimate (309) by
eDerhuxFuncds | (313) C (uoIEF L),

while (310) can be bounded by
shorturncit] (1) 0 (42 P g 0y 0 5

Hence, as long as F < 2K, we have

(315) ‘J—"‘ <C [u“” KM% 4 (2P R, 4 4 2P K2 g S0/ 2 Ki/Q] Fa
(316) s [Hzx—w pm ()2 A= (40)/2 i (1=0)/2 +M6—w—<1+a>/2] K12
(317) T 0 (14 K F g ot K

and by applying Gronwall’s lemma we get

(318)  F(f) < F(0)eC ORIt o (COrriPit oy 4 g1/2) 24 0 (T-20=0)/2 /2

from which we can deduce the thesis.
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