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Abstract

We study analytically the dynamics of two-dimensional rectangular lattices
with periodic boundary conditions. We consider anisotropic initial data sup-
ported on one low-frequency Fourier mode. We show that, in the continuous
approximation, the resonant normal form of the system is given by integrable
PDEs. We exploit the normal form in order to prove the existence of metastabil-
ity phenomena for the lattices. More precisely, we show that the energy spec-
trum of the normal modes attains a distribution in which the energy is shared
among a packet of low-frequencies modes; such distribution remains unchanged
up to the time-scale of validity of the continuous approximation.

Keywords: continuous approximation, metastability, energy localization
Mathematics Subject Classification numbers: 37K 10, 37K60, 70HOS8, 70K45.

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we present an analytical study of the dynamics of two-dimensional rectangular
lattices with nearest-neighbour interaction and periodic boundary conditions, for initial data
with only one low-frequency Fourier mode initially excited. We give some rigorous results
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concerning the relaxation to a metastable state, in which energy sharing takes place among
low-frequency modes only.

The study of metastability phenomena for lattices started with the numerical result by Fermi,
Pasta and Ulam (FPU) [19951965], who investigated the dynamics of a one-dimensional chain
of particles with nearest neighbour interaction. In the original simulations all the energy was
initially given to a single low-frequency Fourier mode with the aim of measuring the time of
relaxation of the system to the ‘thermal equilibrium’ by looking at the evolution of the Fourier
spectrum. Classical statistical mechanics prescribes that the energy spectrum corresponding to
the thermal equilibrium is a plateau (the so-called theorem of equipartition of energy). Despite
the authors believed that the approach to such an equilibrium would have occurred in a short
time-scale, the outcoming Fourier spectrum was far from being flat and they observed two
features of the dynamics that were in contrast with their expectations: the lack of thermalization
displayed by the energy spectrum and the recurrent behaviour of the dynamics.

Both from a physical and a mathematical point of view, the studies on FPU-like systems
have a long and active history: a concise survey of this vast literature is discussed in the mono-
graph [2007]. For a more recent account on analytic results on the ‘FPU paradox’ we refer to
[2015].

In particular, we mention the papers [BamO8, BP06], in which the authors used the tech-
niques of canonical perturbation theory for PDEs in order to show that the FPU « model
(respectively, 8 model) can be rigorously described by a system of two uncoupled KdV (resp.
mKdV) equations, which are obtained as a resonant normal form of the continuous approxi-
mation of the FPU model; moreover, this result allowed to deduce a rigorous result about the
energy sharing among the Fourier modes, up to the time-scales of validity of the approxima-
tion. If we denote by N the number of degrees of freedom for the lattice and by ;1 ~ % < 1the
wave-number of the initially excited mode, if we assume that the specific energy € ~ p* (resp.
€ ~ p? for the FPU 3 model), then the dynamics of the KdV (resp. mKdV) equations approx-
imates the solutions of the FPU model up to a time of order O(x~3). However, the relation
between the specific energy and the number of degrees of freedom implies that the result does
not hold in the thermodynamic limit regime, namely for large N and for fixed specific energy
€ (such a regime is the one which is relevant for statistical mechanics).

Unlike the extensive research concerning one-dimensional systems, it seems to the authors
that the behaviour of the dynamics of two-dimensional lattices is far less clear; it is expected
that the interplay between the geometry of the lattice and the specific energy regime could lead
to different results.

Benettin and collaborators [Ben05, BG0OS, BVT80] studied numerically a two-dimensional
FPU lattice with triangular cells and different boundary conditions in order to estimate the
equipartition time-scale. They found out that in the thermodynamic limit regime the equipar-
tition is reached faster than in the one-dimensional case. The authors decided not to consider
model with square cells in order to have a spectrum of linear frequencies which is different
with respect to the one of the one-dimensional model; they also added (see [BGOS], section B
(iii)):

There is a good chance, however, that models with square lattice, and perhaps a differ-
ent potential so as to avoid instability, behave differently from models with triangular lattice,
and are instead more similar to one-dimensional models. This would correspond to an even
stronger lack of universality in the two-dimensional FPU problem.

Up to the authors’ knowledge, the only analytical results on the dynamics of two-
dimensional lattices in this framework concern the existence of breathers [BPP10, BWO06,
BWO07, 2015, 2005].
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In this paper we study two-dimensional rectangular lattices with (2N} + 1) x (2N, + 1)
sites, square cell, nearest-neighbour interaction and periodic boundary conditions, and we show
the existence of metastability phenomena as in [BP06]. More precisely, if we denote by ;1 < 1
the wave-number of the Fourier mode initially excited and by o the ratio between the sides
of the lattice, we obtain for a 2D electrical transmission lattice (ETL) either a system of two
uncoupled KP-II equations for ;4 < 1 and o = 2, or a system of two uncoupled KdV equations
for p < 1 and 2 < o < 7 as aresonant normal form for the continuous approximation of the
lattice, while for the 2D Klein—Gordon lattice with quartic defocusing nonlinearity we obtain
a one-dimensional cubic defocusing NLS equation for ;1 < 1 and 1 < o < 7. Since all the
above PDEs are integrable, we can exploit integrability to deduce a mathematically rigorous
result on the formation of the metastable packet.

Up to the authors’ knowledge, this is the first analytical result about metastable phenomena
in two-dimensional Hamiltonian lattices with periodic boundary conditions; in particular, this
is the first rigorous result for two-dimensional lattices in which the dynamics of the lattice in
a two-dimensional regime is described by a system of two-dimensional integrable PDEs.

Some comments are in order:

(a) The time-scale of validity of our result is of order O(x~?) for the 2D ETL lattice, and of
order O(p~2) for the 2D Klein—-Gordon lattice;

(b) The ansatz about the small amplitude solutions gives a relation between the specific energy
of the system e and the wave-number  ~ Nil of the Fourier mode initially excited. More

precisely, we obtain € ~ p* for the 2D ETL lattice as in [BP06], and € ~ 1 for the 2D
Klein—Gordon lattice. This implies that the result does not hold in the thermodynamic
limit regime;

(c) Our result can be easily generalized to higher-dimensional lattices, such as the physical
case of three-dimensional rectangular lattices with cubic cells;

(d) Depending on the geometry of the lattice which is encoded in the parameter o, the effective
dynamics is described by one-dimensional PDEs for highly anisotropic lattices and by
two-dimensional PDEs for low values of o. The normal form equation of the ETL lattices
is not integrable for 1 < ¢ < 2 and they are integrable if o > 2. The edge case 0 =2
is very sensitive to the potential: if the cubic term of the potential is present, then the
normal form equation it is the integrable two-dimensional KP-II equation, otherwise it is
a non-integrable modification of the mKdV equation. On the other hand, the normal form
equation for KG lattices is integrable for o > 1, thus also for less anisotropic lattices;

(e) The upper bounds for ¢ in the KdV regime and in the NLS regime come from a technical
assumption in the approximation results (see propositions 6.5, 6.2 and 6.9). The approx-
imation of solutions for the lattice with solutions of integrable PDEs in one-dimensional
lattices was obtained through a detailed analysis in order to bound the error, and this is
also the case for two-dimensional lattices, (see propositions 6.5, 6.9, appendices C and E),
where one has to do very careful estimates in order to bound the different contributions to
the error.

To prove our results we follow the strategy of [BP06]. The first step consists in the approxi-
mation of the dynamics of the lattice with the dynamics of a continuous system. This step gives
also a natural perturbative order and, since ¢ > 1, the leading term is given by a PDE in only
one space variable. The effect of the second dimension is of order 17, and thus it appears at
the second perturbative order for low values of o and at higher perturbative orders for higher
values. In this sense one expects that for higher values of o the normal form equations are
one-dimensional, but it is not trivial that the effect of the second dimension do not destroy
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integrability. For this reason, as a second step we perform a normal form canonical transfor-
mation and we obtain that the effective dynamics is given by a system of integrable PDEs (KdV,
KP-II, NLS depending on the lattice and the relation between N and N;). Next, we exploit the
dynamics of these integrable PDESs in order to construct approximate solutions of the original
discrete lattices and we estimate the error with respect to a true solution with the corresponding
initial datum. Finally, we use the known results about the dynamics of the above mentioned
integrable PDEs in order to estimate the specific energies for the approximate solutions of the
original lattices.

The novelties of this work are: on the one side, a mathematically rigorous proof of the
approximation of the dynamics of the 2D ETL lattice by the dynamics of certain integrable
PDEs (among these integrable PDEs, there is one which is genuinely two-dimensional, the KP-
II equation) and of the dynamics of the 2D KG lattice by the dynamics of the one-dimensional
nonlinear Schrédinger (NLS) equation; on the other side, there are two technical differences
with respect to previous works, namely the normal form theorem (which is a variant of the
technique used in [Bam05, 2005, Pas19]) and the estimates for bounding the error between the
approximate solution and the true solution of the lattice (which need a more careful study than
the ones appearing in [BP06, SW0O] for the one-dimensional case).

The paper is organized as follows: in section 2 we introduce the mathematical setting of
the models and we state our main results, theorems 2.1, 2.5 and 2.7. In section 3 we state an
abstract averaging theorem, which we prove in section 3.2. In section 4 we apply the averaging
theorem to the two-dimensional lattices, deriving the integrable approximating PDEs in the
different regimes. In section 5 we review some results about the dynamics of the normal form
equation. In section 6 we use the normal form equations in order to construct approximate
solutions (see propositions 6.5, 6.2 and 6.9), and we estimate the difference with respect to the
true solutions with corresponding initial data in propositions 6.6, 6.3 and 6.10. In appendix
A we prove the technical lemma 3.6; in appendix B we prove propositions 6.2 and 6.5; in
appendix C we prove propositions 6.6 and 6.3; in appendix D we prove proposition 6.9; in
appendix E we prove proposition 6.10.

Relevant notations. For the sake of clarity we provide a short explanation of some of the
symbols we use in the paper. With Zj, v, we denote 5y x 537y = {(ji, o) € Z7: [ji] <
N1, |j2| < Na2}. We will denote by k = (ky, ky) € Z* the index of the wave-vector; we denote
by k = (k1, k2) the specific wave vector defined in (9). In section 6 and in the appendices
we will denote by K = (K, K») the index of the wave-vector with |K;| < Ny and |K»| < No.
With N, (r = 1,2) we denote the half-length of the rectangular lattice and with N := (2N + 1)
(2N, 4 1) we denote the total number of sites.

Space variables are denoted by x, (with r = 1,2) with x, € [—N,, N,] and the rescaled space
variables are denoted by y, with y, € [-1, 1].

The Hilbert space éfm is defined in definition 3.1 and B, ;(R) denotes the open ball of radius
R centred in 0, B,(R) C {3 .. We also use H"* := (> - x (7 and B, (R) =B, (R) X B,s(R) C
HP.

We also denote with |(a, b)| := v/a? + b? the Euclidean norm of the vector (a, b). We denote
with [f]:= fOT f o ®}(y) & the time-average of f with respect to .

In section 4 we introduce interpolating functions and we denote with Q(#, x) the interpolating
function for the lattice variable Q (r) and with P(¢, x) the interpolating function for the lattice
variable P;(t). We use this little abuse of notation because the former is actually an extension
of the latter in the sense that P () = P(t, j) for every ¢ and j.

The component k of the Fourier transform of the continuous approximation at time ¢ will
be denoted by 0(1, k) to distinguish it from the kth component of the Fourier transform of the
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reticular variable Qk(t). Since for the rescaled functions such as g and p this ambiguity do not
hold, we prefer the short notation g,(7) and pi(7) for their Fourier transform.

In section 6 we make use of the following abuse of notation: Q(f) = £(7). This is to avoid
the long-writing Q(r) = £(7(¢)).

2. Main results

We consider a periodic two-dimensional rectangular lattice, called ETL lattice, which in the
non-periodic setting has been studied in [BWO06], and which can be regarded as a simpler
version of a 2D rectangular FPU model. We denote

Zfz\/sz ={( ) j.h€Z, |h|<N, |pl <M} (1)

we also write e¢; :=(1,0), e, :=(0, 1) and we denote by N :=(2N; + 1)(2N;, + 2) the total
number of sites of the lattice.
The Hamiltonian describing the ETL lattice is given by

1
Her(Q,P) = Z — 5P (ArP); + (V(Q));, 2
jez,z\,l ,N2
(Alp)j = (Pj+el — 2Pj + ijel) + (Pj+g2 - 2Pj + Pj7g2), (3)
2 o3 o
= =) =7 =J
(V@)= 5 +a=t+ AL 4

We refer to (2) as o + 3 model (respectively, S model) if a # 0 (respectively a = 0). With the
above Hamiltonian formulation the equations of motion associated to (2) are given by

{Q:—@mn
P = —(V'(Q)),;
0; = (AV/(Q));. (5)
We also introduce the Fourier coefficients of Q via the following standard relation,
1 N Gk
0= D QT e, ©)
kEZF, v,

and similarly for P;. We denote by

w2 | Pil? + | Ok

Ek = )

: kym : kym
¢ = 4sin® 4sin® 8
we = Asin® | S + 4 sin N, 41 ®)

the energy and the square of the frequency of the mode at site k = (ki, k) € ZIZ\,I N, (see
figure 1). For states described by real functions, one has Eq, k) = Ek, ) and Eq, k) =
E, &y for all k = (ki, k2), so we will consider only indexes in

@)

Lyt ={ (k1 k2) € Z3, y, ks ko 2 0}
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Figure 1. The dispersion relation for the ETL lattice (2), namely £wy, k = (k;, k2), Vs
the integer coordinates, for Ny = 10 and N, = 100.

As is customary in lattices with a large number of degrees of freedom, especially in relation
with statistical mechanics, we introduce the specific wave vector k as

k k
k= k(k) = (Nl' 21> : )
1+5 M+3
and the specific energy of the specific normal mode k. = rk(k) as
E
&= . (10)

(N +3) (V2 +3)

We want to study the behaviour of small amplitude solutions of (5), with initial data in which
only one low-frequency Fourier mode is excited.
We assume N; < N,, and we introduce the quantities

2
=, 11
H=oN +1 (n
1
o= 10gN1+% (Nz + 2) , (12)

which play the role of parameters in our construction: we will use them in the asymptotic
expansion of the dispersion relation of the continuous approximation of the lattice (see (88),
(89), (105) and (106)) in order to derive the integrable approximating PDEs in the regimes we
are considering.

We study the o + 5 model of (5) in the following regime:

(KP) The weakly transverse regime, where the effective dynamics is described by a system
of two uncoupled Kadomtsev—Petviashvili (KP) equation. This corresponds to taking
pu<land o = 2.

From now on, we denote by kg := ( = (i, 17). Our main result is the

1 1
following:
Theorem 2.1. Consider (S) with « # 0,0 = 2.
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Fix0< vy < % and two positive constants Cy and Ty, then there exist positive constants [,
Cy and C, (depending only on v, Cy and on Ty) such that the following holds. Consider an
initial datum with

Eq(0) = Cop*,  E,(0)=0 Y k= (r1,K2) # Ko, 13)

and assume that | < . Then there exists p > 0 such that along the corresponding solution
one has

Ty
3

E.() < Cy plte 1/ il Ly 1A e < (14)
o

for all k.

Remark 2.2. Theorem 2.1 is the first rigorous result for two-dimensional lattices in which
the dynamics of the lattice in a genuinely two-dimensional regime is described by a system of
two-dimensional integrable PDEs. Moreover, in theorem 2.1 we do not mention the existence of
a sequence of almost-periodic functions approximating the specific energies of the modes, and
this is a difference with respect to theorem 5.3 in [BP06]. This is related to the construction of
action-angle/Birkhoff coordinates for the KP equation, which is an open problem in the theory
of integrable PDEs.

Remark 2.3. For the sake of simplicity, we have proved theorem 2.1 for initial data in which
only one low-frequency Fourier mode is excited. One can also prove that a variant of theorem
2.1 holds also in the case the higher harmonics of a low-frequency Fourier mode are excited,
provided that the energy decreases exponentially with respect to |(x1/u, k2/p17)|, and also for
initial data in which the symmetrical modes of a given low-frequency Fourier mode are excited.
To summarize, we are only able to prove stability of the solutions we constructed for initial
data with vanishing specific energy for a time-scale O(1~3).

Remark 2.4. Here and in the following theorems we decided to write the bound on the spe-
cific energy with respect to the intensive variables x = (k1, k7). This writing has the advantage
to be consistent with the previous literature (e.g. compare (13) above with (3.8) in [BP06]).
Anyway, let us emphasize that, using the definition of x, (13) can be written equivalently as

T
En(t) < Cypte Pkl 0yt wsﬁ. (15)

This implies that, as the number of sites increase, the Fourier spectrum is exponentially
localized (and remains so, as ;. — 0) around x = 0, apart from an error of order ;7.

We also point out that there are also other regimes in which the dynamics of a two-
dimensional lattice can be approximated by integrable PDEs. For example, we can consider
« + B model of (5) in the following regime:

(KdV) The very weakly transverse regime, where the effective dynamics is described by a system
of two uncoupled Korteweg—de Vries (KdV) equations. This corresponds to taking p < 1
and2 <o < 7.

The corresponding result one can prove in such a regime is the following.

Theorem 2.5. Consider (5) with a #0, 2 < o <7. Define ~y(o) ::% (a — %) for
2 <o <3,and y(0)=%(T—0)for3< o <17
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Fix 0 < v < yy(0) and two positive constants Cy and Ty, then there exist positive constants
1o, C1 and C; (depending only on vy, Co, o and on Ty) such that the following holds. Consider
an initial datum with

Ex(0) = Copt,  E(0) =0, V k= (r1,K2) # Ko, (16)

and assume that | < . Then there exists p > 0 such that along the corresponding solution
one has
i 11 . T
E() < CyptePl/mmliDl 4oy 4 v || < % A7)
7
for all k. Moreover; for any ny with 0 < ny < N, there exists a sequence of almost-periodic
Junctions (F")n:(mm)ez,zvl ot such that, if we define

Fro =W1'Fu  Fo=0 V&#nkg (18)
then one has, for the specific energy distribution &,.(?),
T

Ex0) = FulD] < Co*. Vi < 5 (19)

Remark 2.6. We point out that in the statement of theorem 2.5 the assumption ¢ > 2 comes
from an asymptotic expansion of the dispersion relation of the continuous approximation of
the lattice (see (88) and (89)), while the assumption o < 7 comes from a technical assumption
under which we can approximate the dynamics of the lattice with the dynamics of the system
of uncoupled KdV equations (see the statement of proposition 6.6).

We can also consider two-dimensional KG lattices, which combine the nearest-neighbour
potential with an on-site one: the scalar model is described by

P: 1
Hy(@.P)= Y J+5 D QMO+ D UW©), (20)
jeZ,Z\,I,NZ jeZ,Z\,I,Nz jerVl,Nz
2 K2p 2

U(x):m2%+ﬁ m>0, 8>0, p>1, Q1)

2p+2°
(see [Ros03] for a physical interpretation of the model). The associated equations of motion
are

0j=(0Q),—m*Q;— PO, jETE \,. (22)

If we take p = 1, we obtain a generalization of the one-dimensional ¢* model.
We now introduce the Fourier coefficients of Q as in (6), and similarly for P, and denote by

B+ O
2 9

k7 ko7
2 2 : 2 1 202 2
= + 4 4 — ], 4
UJk m sin ( Nl 1 > + 4 s1in ( N2 1 ) ( )

Ey: (23)

the energy and the square of the frequency of the mode at site k = (ki, k) € ZIZ\,I N, (see
figure 2).

In the rest of the paper we will assume that m = 1.

We consider the two-dimensional KG lattice (20) in the following regime:
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Figure 2. The dispersion relation for the KG lattice (20), namely Fwy, k = (ki k2), vs
the integer coordinates, for Ny = 10 and N, = 100.

(1D NLS) The very weakly transverse regime, where the effective dynamics is described by a
cubic one-dimensional NLS equation. This correspondsto taking i < land 1 < o <
7.

Theorem 2.7. Consider (20) with 5 > 0, 1 < o < 7. Define v,(o) ::% (0’ — %) for 1 <
o <2,and (o) =3(T—0)for2 <o <T.

Fix 0 < v < v,(0) and two positive constants Cy and Ty, then there exist positive constants
Lo, C1 and C, (depending only on v, Cy, o and on Ty) such that the following holds. Consider
an initial datum with

&y (0) = Copt?, E:0)=0, V k= (kK1,K)# Ko, (25)
and assume that | < 1. Then there exists p > 0 such that along the corresponding solution

one has

Ty
12

E.() < C Mze—ﬂ\(fﬁl/lhh’/z//l”)\ + C2M2+’)” M < (26)

for all k. Moreover; for any ny with 0 < ny < N, there exists a sequence of almost-periodic

Junctions (F")”:("IJQ)EZ]ZV - such that, if we denote

Frng = 11°Fy, F.=0 Yk #nko 27)

then we have for the specific energy distribution

Ty
72-

|Ex(t) = Fu(n)] < Cup?*7, 1] < B (28)

Remark 2.8. 1In theorem 2.7 we are able to prove stability of the solutions we constructed
for initial data with vanishing specific energy for a time-scale O(y2).

Remark 2.9. As for theorem 2.5, in the statement of theorem 2.7 the assumption o > 1
comes from an asymptotic expansion of the dispersion relation of the continuous approxima-
tion of the lattice (see (105) and (106)), while the assumption o < 7 comes from a technical
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assumption under which we can approximate the dynamics of the lattice with the dynamics of
the system of uncoupled NLS equations (see the statement of theorem 6.10).

2.1. Further remarks

Remark 2.10. The specific choice of the direction of longitudinal propagation in the regimes
that we have considered is not relevant.

Remark 2.11. We point out that the time of validity of theorem 2.7 for the KG lattice is
of order O(p~2), which is different from the time of validity of theorems 2.5 and 2.1 for the
FPU lattice. In the one-dimensional case it has been observed that, for a fixed value of specific
energy e and for long-wavelength modes initially excited, the ¢* model reached equipartition
faster than the FPU 8 model (see [2007], section 2.1.8).

Remark 2.12. Theorems 2.1, 2.5 and 2.7 can be generalized to higher dimensional lattices.
Indeed, let d > 2, define

Z]l/\lll Ny, =0 Jd) s Ja € Zy|jil < Nu, - Ljal < Nats (29)

and consider the d-dimensional ETL

1
HY©.P= > (‘EPJ (AP); + (V(Q)),) :

jeZ%l Ny
o 9 .0
V) =S +aZt+ 87 JELy (30)

and the d-dimensional nonlinear Klein—Gordon (NLKG) lattice

P Q) — Qi)
) _ it J k .
Hb(0,P) = | ; ) E; 5 + | dE U@y,
JELY, . Ny JRELY, N, JELY, . Ny
lj—kl=1
2 4
X X
Ux)=—+p—, B>0. 31
2 4
We assume N| < Na,...,Ny, and we introduce the quantities
= 2 =1 N, ! =1 d—1 32
,LL_ZNI—'—I’ g = OgNl+% i+1+§ 5 t1=1,...,d— 1. ( )

Then we can describe the following regimes:

(KdV-d) The model (30) for d < 4, in the very weakly transverse regime with ;1 < 1 and
2< 0,091 < T,

(KP-d) The model (30) for d < 4, in the weakly transverse regime with 4 < 1 and o) = 2,
2< 00,001 <T;

(1IDNLS-d) The model (31) for d < 6, in the very weakly transverse regime, with p < 1,
1<oy,...,00.1<17.

Remark 2.13. There are other interesting regimes for (5) and (22) especially for their rela-
tion with the modified KdV equation and two-dimensional NLS equation respectively. These
will be discussed in remarks 4.6 and 4.9 respectively.
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3. Galerkin averaging

In the next section we will show that for large N the dynamics of both ETL and KG lattices can
be approximated by an infinite dimensional Hamiltonian, which can be written as the sum of an
integrable part and a non-integrable perturbation. For this kind of systems it is often possible
to analyze the dynamics taking into account only the leading terms of the integrable part and
the ‘average effect’ of the perturbation, which describe the relevant qualitative behaviour of
the system for a sufficiently long time-scale.

In this section we prove an abstract averaging theorem whose assumptions are satisfied by
the systems we have introduced in section 2. This is the crucial technical result that allows to
rigorously approximate the infinite dimensional Hamiltonian system with the leading terms of
the integrable part and the average of the perturbation, up to the time-scales we are interested
in. Since the average has to be computed along the solutions of the unperturbed system (see
(47) below), the vector field of the averaged perturbation commutes with the vector field of the
unperturbed system, thus resulting in a system in normal form.

The idea of its proof (following [BamO05, BP06, Pas19]) is to make a Galerkin cutoff, namely
to approximate the original infinite dimensional system by a finite dimensional one, to put in
normal form the cutoffed system, and then to choose the dimension of the cutoffed system
in such a way that the error due to the Galerkin cutoff and the error due to the truncation
in the normalization procedure are of the same order of magnitude. The system one gets is
composed by a part which is in normal form, and by a remainder which is a smaller singular
perturbation.

If we neglect the remainder, we obtain a system whose solutions are approximate solutions
of the original system. In section 6 we will show how to control the error with respect to a true
solution of the original system.

This section is divided in two parts. In the first part we introduce the analytic setting we are
working with. This includes the definition functional setting of the problem and the average
theorem 3.3. In the second part we give a concise proof of the average theorem, deferring the
proof of the technical lemma 3.6 to appendix A.

3.1 An averaging theorem

To define the function spaces we are working with, we introduce a topology in the phase space.
This is conveniently done in terms of Fourier coefficients.

Definition 3.1. Fix two constants p > 0 and s > 0. We will denote by é?w the Hilbert space
of complex sequences v = (Un),ez2\ 0} With obvious vector space structure and with scalar
product

(v, W),y = Z Tyw, 2 |n|?. (33)
nezZ?\{0}
and such that
[Wll7 = (W v)ps = D foal* e nf> (34)
nezZ2\ {0}

is finite. We will denote by ¢* the space £3 .
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_ We will identify a two-periodic function f with the sequence of its Fourier coefficients
(f ez {0}

1 T aimney
O Eane :

ncz?

and, with a small abuse of notation, we will say that f & E%J if the sequence of its Fourier
coefficients belong to /7 ..

Now fix p > 0 and s > 1, and consider the scale of Hilbert spaces H"* := Eis X Eis 3(=
(&, m), endowed with one of the following symplectic forms:

0 i -o,' 0
Q= (_i 6) 92:( o a—‘>' (35)

Y1
Observe that Qp : H/* — HPSH=1 (T = 1,2) is a well-defined operator. Moreover, (2, is well-
defined on the space of functions with zero-average with respect to the y,-variable, i.e. on those
functions ((y;, y,) such that for every y, we have f_ll C(y1,y2)dy; = 0.
If we fix I' € {1,2}, s and U, C E%J open, we define the gradient of K € C*(Uj, R) with
respect to & € £5  as the unique function s.1.

2
(VK h) = deK(h), YV he .

Similarly, for an open set U; C H”* the Hamiltonian vector field of the Hamiltonian function
H e C*U,, R) is given by

Xu(Q) = Q' VH©).

The open ball of radius R and center O in E%J will be denoted by B, (R); we write
Bp,s(R) = Bp,s(R) X B/),S(R) C HP.
Now, we introduce the Fourier projection operators 7 : Efm — Efm
Up if j—1<|n<j
@@%mw:{ , iz (36)
0 otherwise

the operators 7; : H* — H*

G it j-1<n <
T((Cdnez2\ [0)) = ) , J=z1 (37)
0 otherwise
and the operators 11y, : H”* — H*
G if |n|<M
W ((Cdpez\ (o)) = o > (38)
0 otherwise

Last, we define the operator 7; := id — m; that will be used in Appendix C and Appendix E.

Lemma 3.2. The projection operators defined in (37) and (38) satisfy the following
properties for any ( € H:
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(a) Forany j > 0

C:ZWJ'C;

JjZ0
(b) Forany j >0

MLy Cllaees < NI Hagess

(¢) The following equality holds
1/2
¢ lmes = || | D Imicl (39)
jeN
HPO

where ||, for ¢ € HP is the element |C| € HP* whose nth element is
¢l = (&l D)
and (C*)n == (&, m;)-

Now we consider a Hamiltonian system of the form
H = hy + JF, (40)

where we assume that

(PER) hy generates a linear periodic flow @, with period 7,
@;:T =®op VT,

which is 