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Abstract
We study analytically the dynamics of two-dimensional rectangular lattices
with periodic boundary conditions. We consider anisotropic initial data sup-
ported on one low-frequency Fourier mode. We show that, in the continuous
approximation, the resonant normal form of the system is given by integrable
PDEs. We exploit the normal form in order to prove the existence of metastabil-
ity phenomena for the lattices. More precisely, we show that the energy spec-
trum of the normal modes attains a distribution in which the energy is shared
among a packet of low-frequenciesmodes; such distribution remains unchanged
up to the time-scale of validity of the continuous approximation.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we present an analytical study of the dynamics of two-dimensional rectangular
lattices with nearest-neighbour interaction and periodic boundary conditions, for initial data
with only one low-frequency Fourier mode initially excited. We give some rigorous results

∗Author to whom any correspondence should be addressed.
Recommended by Dr C Eugene Wayne.

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1361-6544/21/074983+62$33.00 © 2021 IOP Publishing Ltd & London Mathematical Society Printed in the UK 4983

https://doi.org/10.1088/1361-6544/ac0483
https://orcid.org/0000-0003-3999-8982
https://orcid.org/0000-0003-2712-2000
mailto:matteo.gallone@unimi.it
mailto:stefano.pasquali@math.lu.se
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/ac0483&domain=pdf&date_stamp=2021-6-28
https://creativecommons.org/licenses/by/3.0/


Nonlinearity 34 (2021) 4983 M Gallone and S Pasquali

concerning the relaxation to a metastable state, in which energy sharing takes place among
low-frequency modes only.

The study of metastability phenomena for lattices started with the numerical result by Fermi,
Pasta and Ulam (FPU) [19951965], who investigated the dynamics of a one-dimensional chain
of particles with nearest neighbour interaction. In the original simulations all the energy was
initially given to a single low-frequency Fourier mode with the aim of measuring the time of
relaxation of the system to the ‘thermal equilibrium’ by looking at the evolution of the Fourier
spectrum. Classical statistical mechanics prescribes that the energy spectrum corresponding to
the thermal equilibrium is a plateau (the so-called theorem of equipartition of energy). Despite
the authors believed that the approach to such an equilibrium would have occurred in a short
time-scale, the outcoming Fourier spectrum was far from being flat and they observed two
features of the dynamics that were in contrast with their expectations: the lack of thermalization
displayed by the energy spectrum and the recurrent behaviour of the dynamics.

Both from a physical and a mathematical point of view, the studies on FPU-like systems
have a long and active history: a concise survey of this vast literature is discussed in the mono-
graph [2007]. For a more recent account on analytic results on the ‘FPU paradox’ we refer to
[2015].

In particular, we mention the papers [Bam08, BP06], in which the authors used the tech-
niques of canonical perturbation theory for PDEs in order to show that the FPU α model
(respectively, β model) can be rigorously described by a system of two uncoupled KdV (resp.
mKdV) equations, which are obtained as a resonant normal form of the continuous approxi-
mation of the FPU model; moreover, this result allowed to deduce a rigorous result about the
energy sharing among the Fourier modes, up to the time-scales of validity of the approxima-
tion. If we denote by N the number of degrees of freedom for the lattice and by μ ∼ 1

N � 1 the
wave-number of the initially excited mode, if we assume that the specific energy ε∼ μ4 (resp.
ε ∼ μ2 for the FPU β model), then the dynamics of the KdV (resp. mKdV) equations approx-
imates the solutions of the FPU model up to a time of order O(μ−3). However, the relation
between the specific energy and the number of degrees of freedom implies that the result does
not hold in the thermodynamic limit regime, namely for large N and for fixed specific energy
ε (such a regime is the one which is relevant for statistical mechanics).

Unlike the extensive research concerning one-dimensional systems, it seems to the authors
that the behaviour of the dynamics of two-dimensional lattices is far less clear; it is expected
that the interplay between the geometry of the lattice and the specific energy regime could lead
to different results.

Benettin and collaborators [Ben05, BG08, BVT80] studied numerically a two-dimensional
FPU lattice with triangular cells and different boundary conditions in order to estimate the
equipartition time-scale. They found out that in the thermodynamic limit regime the equipar-
tition is reached faster than in the one-dimensional case. The authors decided not to consider
model with square cells in order to have a spectrum of linear frequencies which is different
with respect to the one of the one-dimensional model; they also added (see [BG08], section B
(iii)):

There is a good chance, however, that models with square lattice, and perhaps a differ-
ent potential so as to avoid instability, behave differently from models with triangular lattice,
and are instead more similar to one-dimensional models. This would correspond to an even
stronger lack of universality in the two-dimensional FPU problem.

Up to the authors’ knowledge, the only analytical results on the dynamics of two-
dimensional lattices in this framework concern the existence of breathers [BPP10, BW06,
BW07, 2015, 2005].
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In this paper we study two-dimensional rectangular lattices with (2N1 + 1) × (2N2 + 1)
sites, square cell, nearest-neighbour interaction and periodic boundary conditions, and we show
the existence of metastability phenomena as in [BP06]. More precisely, if we denote by μ � 1
the wave-number of the Fourier mode initially excited and by σ the ratio between the sides
of the lattice, we obtain for a 2D electrical transmission lattice (ETL) either a system of two
uncoupled KP-II equations for μ � 1 and σ = 2, or a system of two uncoupled KdV equations
for μ � 1 and 2 < σ < 7 as a resonant normal form for the continuous approximation of the
lattice, while for the 2D Klein–Gordon lattice with quartic defocusing nonlinearity we obtain
a one-dimensional cubic defocusing NLS equation for μ � 1 and 1 < σ < 7. Since all the
above PDEs are integrable, we can exploit integrability to deduce a mathematically rigorous
result on the formation of the metastable packet.

Up to the authors’ knowledge, this is the first analytical result about metastable phenomena
in two-dimensional Hamiltonian lattices with periodic boundary conditions; in particular, this
is the first rigorous result for two-dimensional lattices in which the dynamics of the lattice in
a two-dimensional regime is described by a system of two-dimensional integrable PDEs.

Some comments are in order:

(a) The time-scale of validity of our result is of order O(μ−3) for the 2D ETL lattice, and of
order O(μ−2) for the 2D Klein–Gordon lattice;

(b) The ansatz about the small amplitude solutions gives a relation between the specific energy
of the system ε and the wave-number μ ∼ 1

N1
of the Fourier mode initially excited. More

precisely, we obtain ε ∼ μ4 for the 2D ETL lattice as in [BP06], and ε ∼ μ2 for the 2D
Klein–Gordon lattice. This implies that the result does not hold in the thermodynamic
limit regime;

(c) Our result can be easily generalized to higher-dimensional lattices, such as the physical
case of three-dimensional rectangular lattices with cubic cells;

(d) Depending on the geometry of the lattice which is encoded in the parameterσ, the effective
dynamics is described by one-dimensional PDEs for highly anisotropic lattices and by
two-dimensional PDEs for low values of σ. The normal form equation of the ETL lattices
is not integrable for 1 � σ < 2 and they are integrable if σ > 2. The edge case σ = 2
is very sensitive to the potential: if the cubic term of the potential is present, then the
normal form equation it is the integrable two-dimensional KP-II equation, otherwise it is
a non-integrable modification of the mKdV equation. On the other hand, the normal form
equation for KG lattices is integrable for σ > 1, thus also for less anisotropic lattices;

(e) The upper bounds for σ in the KdV regime and in the NLS regime come from a technical
assumption in the approximation results (see propositions 6.5, 6.2 and 6.9). The approx-
imation of solutions for the lattice with solutions of integrable PDEs in one-dimensional
lattices was obtained through a detailed analysis in order to bound the error, and this is
also the case for two-dimensional lattices, (see propositions 6.5, 6.9, appendices C and E),
where one has to do very careful estimates in order to bound the different contributions to
the error.

To prove our results we follow the strategy of [BP06]. The first step consists in the approxi-
mation of the dynamics of the lattice with the dynamics of a continuous system. This step gives
also a natural perturbative order and, since σ > 1, the leading term is given by a PDE in only
one space variable. The effect of the second dimension is of order μσ , and thus it appears at
the second perturbative order for low values of σ and at higher perturbative orders for higher
values. In this sense one expects that for higher values of σ the normal form equations are
one-dimensional, but it is not trivial that the effect of the second dimension do not destroy
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integrability. For this reason, as a second step we perform a normal form canonical transfor-
mation and we obtain that the effective dynamics is given by a system of integrable PDEs (KdV,
KP-II, NLS depending on the lattice and the relation between N1 and N2). Next, we exploit the
dynamics of these integrable PDEs in order to construct approximate solutions of the original
discrete lattices and we estimate the error with respect to a true solution with the corresponding
initial datum. Finally, we use the known results about the dynamics of the above mentioned
integrable PDEs in order to estimate the specific energies for the approximate solutions of the
original lattices.

The novelties of this work are: on the one side, a mathematically rigorous proof of the
approximation of the dynamics of the 2D ETL lattice by the dynamics of certain integrable
PDEs (among these integrable PDEs, there is one which is genuinely two-dimensional, the KP-
II equation) and of the dynamics of the 2D KG lattice by the dynamics of the one-dimensional
nonlinear Schrödinger (NLS) equation; on the other side, there are two technical differences
with respect to previous works, namely the normal form theorem (which is a variant of the
technique used in [Bam05, 2005, Pas19]) and the estimates for bounding the error between the
approximate solution and the true solution of the lattice (which need a more careful study than
the ones appearing in [BP06, SW00] for the one-dimensional case).

The paper is organized as follows: in section 2 we introduce the mathematical setting of
the models and we state our main results, theorems 2.1, 2.5 and 2.7. In section 3 we state an
abstract averaging theorem, which we prove in section 3.2. In section 4 we apply the averaging
theorem to the two-dimensional lattices, deriving the integrable approximating PDEs in the
different regimes. In section 5 we review some results about the dynamics of the normal form
equation. In section 6 we use the normal form equations in order to construct approximate
solutions (see propositions 6.5, 6.2 and 6.9), and we estimate the difference with respect to the
true solutions with corresponding initial data in propositions 6.6, 6.3 and 6.10. In appendix
A we prove the technical lemma 3.6; in appendix B we prove propositions 6.2 and 6.5; in
appendix C we prove propositions 6.6 and 6.3; in appendix D we prove proposition 6.9; in
appendix E we prove proposition 6.10.

Relevant notations. For the sake of clarity we provide a short explanation of some of the
symbols we use in the paper. With Z

2
N1,N2

we denote Z

2N1+1 × Z

2N2+1 = {( j1, j2) ∈ Z
2 : | j1| �

N1, | j2| � N2}. We will denote by k = (k1, k2) ∈ Z
2 the index of the wave-vector; we denote

by κ = (κ1,κ2) the specific wave vector defined in (9). In section 6 and in the appendices
we will denote by K = (K1, K2) the index of the wave-vector with |K1| � N1 and |K2| � N2.
With Nr (r = 1, 2) we denote the half-length of the rectangular lattice and with N := (2N1 + 1)
(2N2 + 1) we denote the total number of sites.

Space variables are denoted by xr (with r = 1, 2) with xr ∈ [−Nr, Nr] and the rescaled space
variables are denoted by yr with yr ∈ [−1, 1].

The Hilbert space �2
ρ,s is defined in definition 3.1 and Bρ,s(R) denotes the open ball of radius

R centred in 0, Bρ,s(R) ⊂ �2
ρ,s. We also use Hρ,s := �2

ρ,s × �2
ρ,s and Bρ,s(R) :=Bρ,s(R) × Bρ,s(R) ⊂

Hρ,s.
We also denote with |(a, b)| :=

√
a2 + b2 the Euclidean norm of the vector (a, b). We denote

with [ f ] :=
∫ T

0 f ◦ Φt
h(y) dt

T the time-average of f with respect to Φt
h.

In section 4 we introduce interpolating functions and we denote with Q(t, x) the interpolating
function for the lattice variable Q j(t) and with P(t, x) the interpolating function for the lattice
variable P j(t). We use this little abuse of notation because the former is actually an extension
of the latter in the sense that P j(t) = P(t, j) for every t and j.

The component k of the Fourier transform of the continuous approximation at time t will
be denoted by Q̂(t, k) to distinguish it from the kth component of the Fourier transform of the
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reticular variable Q̂k(t). Since for the rescaled functions such as q and p this ambiguity do not
hold, we prefer the short notation q̂k(τ ) and p̂k(τ ) for their Fourier transform.

In section 6 we make use of the following abuse of notation: Q(t) = ξ(τ ). This is to avoid
the long-writing Q(t) = ξ(τ (t)).

2. Main results

We consider a periodic two-dimensional rectangular lattice, called ETL lattice, which in the
non-periodic setting has been studied in [BW06], and which can be regarded as a simpler
version of a 2D rectangular FPU model. We denote

Z
2
N1,N2

:= {( j1, j2) : j1, j2 ∈ Z, | j1| � N1, | j2| � N2}; (1)

we also write e1 := (1, 0), e2 := (0, 1) and we denote by N := (2N1 + 1)(2N2 + 2) the total
number of sites of the lattice.

The Hamiltonian describing the ETL lattice is given by

HETL(Q, P) =
∑

j∈Z2
N1,N2

− 1
2

P j (Δ1P) j + (V(Q)) j, (2)

(Δ1P) j := (P j+e1 − 2P j + P j−e1 ) + (P j+e2 − 2P j + P j−e2 ), (3)

(V(Q)) j =
Q2

j

2
+ α

Q3
j

3
+ β

Q4
j

4
. (4)

We refer to (2) as α+ β model (respectively, β model) if α 	= 0 (respectivelyα = 0). With the
above Hamiltonian formulation the equations of motion associated to (2) are given by{

Q̇ j = −(Δ1P) j

Ṗj = −(V ′(Q)) j

;

Q̈ j = (Δ1V ′(Q)) j. (5)

We also introduce the Fourier coefficients of Q via the following standard relation,

Q j(t) :=
1√
N

∑
k∈Z2

N1,N2

Q̂k(t) e2πi j·k
N j ∈ Z

2
N1,N2

, (6)

and similarly for P j. We denote by

Ek :=
ω2

k |P̂k|2 + |Q̂k|2
2

, (7)

ω2
k := 4 sin2

(
k1 π

2N1 + 1

)
+ 4 sin2

(
k2 π

2N2 + 1

)
, (8)

the energy and the square of the frequency of the mode at site k = (k1, k2) ∈ Z
2
N1,N2

(see
figure 1). For states described by real functions, one has E(k1,k2) = E(−k1,k2) and E(k1,k2) =
E(k1,−k2) for all k = (k1, k2), so we will consider only indexes in

Z
2
N1,N2,+ := {(k1, k2) ∈ Z

2
N1,N2

: k1, k2 � 0}.
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Figure 1. The dispersion relation for the ETL lattice (2), namely ±ωk, k = (k1, k2), vs
the integer coordinates, for N1 = 10 and N2 = 100.

As is customary in lattices with a large number of degrees of freedom, especially in relation
with statistical mechanics, we introduce the specific wave vector κ as

κ :=κ(k) =

(
k1

N1 +
1
2

,
k2

N2 +
1
2

)
, (9)

and the specific energy of the specific normal mode κ = κ(k) as

Eκ :=
Ek(

N1 +
1
2

) (
N2 +

1
2

) . (10)

We want to study the behaviour of small amplitude solutions of (5), with initial data in which
only one low-frequency Fourier mode is excited.

We assume N1 � N2, and we introduce the quantities

μ :=
2

2N1 + 1
, (11)

σ := logN1+
1
2

(
N2 +

1
2

)
, (12)

which play the role of parameters in our construction: we will use them in the asymptotic
expansion of the dispersion relation of the continuous approximation of the lattice (see (88),
(89), (105) and (106)) in order to derive the integrable approximating PDEs in the regimes we
are considering.

We study the α+ β model of (5) in the following regime:

(KP) The weakly transverse regime, where the effective dynamics is described by a system
of two uncoupled Kadomtsev–Petviashvili (KP) equation. This corresponds to taking
μ � 1 and σ = 2.

From now on, we denote by κ0 :=
(

1
N1+

1
2

, 1
(N1+

1
2 )σ

)
= (μ,μσ). Our main result is the

following:

Theorem 2.1. Consider (5) with α 	= 0, σ = 2.
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Fix 0 < γ < 1
2 and two positive constants C0 and T0, then there exist positive constants μ0,

C1 and C2 (depending only on γ, C0 and on T0) such that the following holds. Consider an
initial datum with

Eκ0 (0) = C0μ
4, Eκ(0) = 0 ∀ κ = (κ1,κ2) 	= κ0, (13)

and assume that μ < μ0. Then there exists ρ > 0 such that along the corresponding solution
one has

Eκ(t) � C1 μ
4e−ρ|(κ1/μ,κ2/μ

σ )| + C2 μ
4+γ , ∀ |t| � T0

μ3
(14)

for all κ.

Remark 2.2. Theorem 2.1 is the first rigorous result for two-dimensional lattices in which
the dynamics of the lattice in a genuinely two-dimensional regime is described by a system of
two-dimensional integrable PDEs. Moreover, in theorem 2.1 we do not mention the existence of
a sequence of almost-periodic functions approximating the specific energies of the modes, and
this is a difference with respect to theorem 5.3 in [BP06]. This is related to the construction of
action-angle/Birkhoff coordinates for the KP equation, which is an open problem in the theory
of integrable PDEs.

Remark 2.3. For the sake of simplicity, we have proved theorem 2.1 for initial data in which
only one low-frequency Fourier mode is excited. One can also prove that a variant of theorem
2.1 holds also in the case the higher harmonics of a low-frequency Fourier mode are excited,
provided that the energy decreases exponentially with respect to |(κ1/μ,κ2/μ

σ)|, and also for
initial data in which the symmetrical modes of a given low-frequency Fourier mode are excited.
To summarize, we are only able to prove stability of the solutions we constructed for initial
data with vanishing specific energy for a time-scale O(μ−3).

Remark 2.4. Here and in the following theorems we decided to write the bound on the spe-
cific energy with respect to the intensive variables κ = (κ1,κ2). This writing has the advantage
to be consistent with the previous literature (e.g. compare (13) above with (3.8) in [BP06]).
Anyway, let us emphasize that, using the definition of κ, (13) can be written equivalently as

Eκ(t) � C1μ
4 e−ρ|(k1,k2)| + C2μ

4+γ , ∀ t � T0

μ3
. (15)

This implies that, as the number of sites increase, the Fourier spectrum is exponentially
localized (and remains so, as μ→ 0) around κ = 0, apart from an error of order μ4+γ .

We also point out that there are also other regimes in which the dynamics of a two-
dimensional lattice can be approximated by integrable PDEs. For example, we can consider
α+ β model of (5) in the following regime:

(KdV) The very weakly transverse regime, where the effective dynamics is described by a system
of two uncoupled Korteweg–de Vries (KdV) equations. This corresponds to taking μ � 1
and 2 < σ < 7.

The corresponding result one can prove in such a regime is the following.

Theorem 2.5. Consider (5) with α 	= 0, 2 < σ < 7. Define γ0(σ) := 3
2

(
σ − 5

3

)
for

2 < σ < 3, and γ0(σ) := 1
2 (7 − σ) for 3 � σ < 7.
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Fix 0 < γ < γ0(σ) and two positive constants C0 and T0, then there exist positive constants
μ0, C1 and C2 (depending only on γ, C0, σ and on T0) such that the following holds. Consider
an initial datum with

Eκ0 (0) = C0μ
4, Eκ(0) = 0, ∀ κ = (κ1,κ2) 	= κ0, (16)

and assume that μ < μ0. Then there exists ρ > 0 such that along the corresponding solution
one has

Eκ(t) � C1μ
4e−ρ|(κ1/μ,κ2/μ

σ)| + C2μ
4+γ , ∀ |t| � T0

μ3
(17)

for all κ. Moreover, for any n2 with 0 � n2 � N2 there exists a sequence of almost-periodic
functions (Fn)n=(n1,n2)∈Z2

N1,N2,+
such that, if we define

Fκ0 = μ4Fn, Fκ = 0 ∀ κ 	= nκ0 (18)

then one has, for the specific energy distribution Eκ(t),

|Eκ(t) −Fκ(t)| � C2μ
4+γ , ∀ |t| � T0

μ3
. (19)

Remark 2.6. We point out that in the statement of theorem 2.5 the assumption σ > 2 comes
from an asymptotic expansion of the dispersion relation of the continuous approximation of
the lattice (see (88) and (89)), while the assumption σ < 7 comes from a technical assumption
under which we can approximate the dynamics of the lattice with the dynamics of the system
of uncoupled KdV equations (see the statement of proposition 6.6).

We can also consider two-dimensional KG lattices, which combine the nearest-neighbour
potential with an on-site one: the scalar model is described by

HKG(Q, P) =
∑

j∈Z2
N1,N2

P2
j

2
+

1
2

∑
j∈Z2

N1,N2

Q j(−Δ1Q) j +
∑

j∈Z2
N1,N2

U(Q j), (20)

U(x) = m2 x2

2
+ β

x2p+2

2p+ 2
, m > 0, β > 0, p � 1, (21)

(see [Ros03] for a physical interpretation of the model). The associated equations of motion
are

Q̈ j = (Δ1Q) j − m2Q j − βQ2p+1
j , j ∈ Z

2
N1,N2

. (22)

If we take p = 1, we obtain a generalization of the one-dimensional φ4 model.
We now introduce the Fourier coefficients of Q as in (6), and similarly for P, and denote by

Ek :=
|P̂k|2 + ω2

k |Q̂k|2
2

, (23)

ω2
k :=m2 + 4 sin2

(
k1π

2N1 + 1

)
+ 4 sin2

(
k2π

2N2 + 1

)
, (24)

the energy and the square of the frequency of the mode at site k = (k1, k2) ∈ Z
2
N1,N2

(see
figure 2).

In the rest of the paper we will assume that m = 1.
We consider the two-dimensional KG lattice (20) in the following regime:
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Figure 2. The dispersion relation for the KG lattice (20), namely ±ωk , k = (k1, k2), vs
the integer coordinates, for N1 = 10 and N2 = 100.

(1D NLS) The very weakly transverse regime, where the effective dynamics is described by a
cubic one-dimensional NLS equation. This corresponds to takingμ � 1 and 1 < σ <
7.

Theorem 2.7. Consider (20) with β > 0, 1 < σ < 7. Define γ1(σ) := 3
2

(
σ − 1

3

)
for 1 <

σ < 2, and γ1(σ) := 1
2 (7 − σ) for 2 � σ < 7.

Fix 0 < γ � γ1(σ) and two positive constants C0 and T0, then there exist positive constants
μ0, C1 and C2 (depending only on γ, C0, σ and on T0) such that the following holds. Consider
an initial datum with

Eκ0 (0) = C0μ
2, Eκ(0) = 0, ∀ κ = (κ1,κ2) 	= κ0, (25)

and assume that μ < μ0. Then there exists ρ > 0 such that along the corresponding solution
one has

Eκ(t) � C1 μ
2e−ρ|(κ1/μ,κ2/μ

σ )| + C2μ
2+γ , |t| � T0

μ2
(26)

for all κ. Moreover, for any n2 with 0 � n2 � N2 there exists a sequence of almost-periodic
functions (Fn)n=(n1,n2)∈Z2

N1,N2,+
such that, if we denote

Fκ0 = μ2Fn, Fκ = 0 ∀ κ 	= nκ0 (27)

then we have for the specific energy distribution

|Eκ(t) −Fκ(t)| � C2μ
2+γ , |t| � T0

μ2
. (28)

Remark 2.8. In theorem 2.7 we are able to prove stability of the solutions we constructed
for initial data with vanishing specific energy for a time-scale O(μ−2).

Remark 2.9. As for theorem 2.5, in the statement of theorem 2.7 the assumption σ > 1
comes from an asymptotic expansion of the dispersion relation of the continuous approxima-
tion of the lattice (see (105) and (106)), while the assumption σ < 7 comes from a technical
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assumption under which we can approximate the dynamics of the lattice with the dynamics of
the system of uncoupled NLS equations (see the statement of theorem 6.10).

2.1. Further remarks

Remark 2.10. The specific choice of the direction of longitudinal propagation in the regimes
that we have considered is not relevant.

Remark 2.11. We point out that the time of validity of theorem 2.7 for the KG lattice is
of order O(μ−2), which is different from the time of validity of theorems 2.5 and 2.1 for the
FPU lattice. In the one-dimensional case it has been observed that, for a fixed value of specific
energy ε and for long-wavelength modes initially excited, the φ4 model reached equipartition
faster than the FPU β model (see [2007], section 2.1.8).

Remark 2.12. Theorems 2.1, 2.5 and 2.7 can be generalized to higher dimensional lattices.
Indeed, let d � 2, define

Z
d
N1,...,Nd

:= {( j1, . . . , jd) : j1, . . . , jd ∈ Z, | j1| � N1, . . . , | jd| � Nd}, (29)

and consider the d-dimensional ETL

H(d)
ETL(Q, P) =

∑
j∈Zd

N1,...,Nd

(
−1

2
P j (Δ1P) j + (V(Q)) j

)
,

(V(Q)) j =
Q2

j

2
+ α

Q3
j

3
+ β

Q4
j

4
, j ∈ Z

d
N1,...,Nd

, (30)

and the d-dimensional nonlinear Klein–Gordon (NLKG) lattice

H(d)
KG(Q, P) =

∑
j∈Zd

N1,...,Nd

P2
j

2
+

1
2

∑
j,k∈Zd

N1,...,Nd
| j−k|=1

(Q j − Qk)2

2
+

∑
j∈Zd

N1,...,Nd

U(Q j),

U(x) =
x2

2
+ β

x4

4
, β > 0. (31)

We assume N1 � N2, . . . , Nd , and we introduce the quantities

μ :=
2

2N1 + 1
, σi := logN1+

1
2

(
Ni+1 +

1
2

)
, i = 1, . . . , d − 1. (32)

Then we can describe the following regimes:

(KdV-d) The model (30) for d � 4, in the very weakly transverse regime with μ � 1 and
2 < σ1, . . . , σd−1 < 7;

(KP-d) The model (30) for d � 4, in the weakly transverse regime with μ � 1 and σ1 = 2,
2 < σ2, . . . , σd−1 < 7;

(1DNLS-d) The model (31) for d � 6, in the very weakly transverse regime, with μ � 1,
1 < σ1, . . . , σd−1 < 7.

Remark 2.13. There are other interesting regimes for (5) and (22) especially for their rela-
tion with the modified KdV equation and two-dimensional NLS equation respectively. These
will be discussed in remarks 4.6 and 4.9 respectively.
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3. Galerkin averaging

In the next section we will show that for large N the dynamics of both ETL and KG lattices can
be approximated by an infinite dimensional Hamiltonian, which can be written as the sum of an
integrable part and a non-integrable perturbation. For this kind of systems it is often possible
to analyze the dynamics taking into account only the leading terms of the integrable part and
the ‘average effect’ of the perturbation, which describe the relevant qualitative behaviour of
the system for a sufficiently long time-scale.

In this section we prove an abstract averaging theorem whose assumptions are satisfied by
the systems we have introduced in section 2. This is the crucial technical result that allows to
rigorously approximate the infinite dimensional Hamiltonian system with the leading terms of
the integrable part and the average of the perturbation, up to the time-scales we are interested
in. Since the average has to be computed along the solutions of the unperturbed system (see
(47) below), the vector field of the averaged perturbation commutes with the vector field of the
unperturbed system, thus resulting in a system in normal form.

The idea of its proof (following [Bam05, BP06, Pas19]) is to make a Galerkin cutoff, namely
to approximate the original infinite dimensional system by a finite dimensional one, to put in
normal form the cutoffed system, and then to choose the dimension of the cutoffed system
in such a way that the error due to the Galerkin cutoff and the error due to the truncation
in the normalization procedure are of the same order of magnitude. The system one gets is
composed by a part which is in normal form, and by a remainder which is a smaller singular
perturbation.

If we neglect the remainder, we obtain a system whose solutions are approximate solutions
of the original system. In section 6 we will show how to control the error with respect to a true
solution of the original system.

This section is divided in two parts. In the first part we introduce the analytic setting we are
working with. This includes the definition functional setting of the problem and the average
theorem 3.3. In the second part we give a concise proof of the average theorem, deferring the
proof of the technical lemma 3.6 to appendix A.

3.1. An averaging theorem

To define the function spaces we are working with, we introduce a topology in the phase space.
This is conveniently done in terms of Fourier coefficients.

Definition 3.1. Fix two constants ρ � 0 and s � 0. We will denote by �2
ρ,s the Hilbert space

of complex sequences v = (vn)n∈Z2\{0} with obvious vector space structure and with scalar
product

〈v,w〉ρ,s :=
∑

n∈Z2\{0}

vnwn e2ρ|n||n|2s. (33)

and such that

‖v‖2
ρ,s := 〈v, v〉ρ,s =

∑
n∈Z2\{0}

|vn|2 e2ρ|n||n|2s (34)

is finite. We will denote by �2 the space �2
0,0.
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We will identify a two-periodic function f with the sequence of its Fourier coefficients
( f̂ n)n∈Z2\{0},

f (y) =
1
2

∑
n∈Z2

f̂ n eiπn·y,

and, with a small abuse of notation, we will say that f ∈ �2
ρ,s if the sequence of its Fourier

coefficients belong to �2
ρ,s.

Now fix ρ � 0 and s � 1, and consider the scale of Hilbert spaces Hρ,s := �2
ρ,s × �2

ρ,s � ζ =
(ξ, η), endowed with one of the following symplectic forms:

Ω1 :=

(
0 i
−i 0

)
, Ω2 :=

(
−∂−1

y1
0

0 ∂−1
y1

)
. (35)

Observe thatΩΓ : Hρ,s →Hρ,s+Γ−1 (Γ = 1, 2) is a well-defined operator. Moreover,Ω2 is well-
defined on the space of functions with zero-average with respect to the y1-variable, i.e. on those
functions ζ(y1, y2) such that for every y2 we have

∫ 1
−1 ζ(y1, y2)dy1 = 0.

If we fix Γ ∈ {1, 2}, s and Us ⊂ �2
ρ,s open, we define the gradient of K ∈ C∞(Us,R) with

respect to ξ ∈ �2
ρ,s as the unique function s.t.

〈∇ξK, h〉 = dξK(h), ∀ h ∈ �2
ρ,s.

Similarly, for an open set Us ⊂ Hρ,s the Hamiltonian vector field of the Hamiltonian function
H ∈ C∞(Us,R) is given by

XH(ζ) = Ω−1
Γ ∇ζH(ζ).

The open ball of radius R and center 0 in �2
ρ,s will be denoted by Bρ,s(R); we write

Bρ,s(R) :=Bρ,s(R) × Bρ,s(R) ⊂ Hρ,s.
Now, we introduce the Fourier projection operators π̂ j : �2

ρ,s → �2
ρ,s

π̂ j((vn)n∈Z2\{0}) :=

{
vn if j − 1 � |n| < j

0 otherwise
, j � 1, (36)

the operators π j : Hρ,s →Hρ,s

π j((ζn)n∈Z2\{0}) :=

{
ζn if j − 1 � |n| < j

0 otherwise
, j � 1, (37)

and the operators ΠM : Hρ,s →Hρ,s

ΠM((ζn)n∈Z2\{0}) :=

{
ζn if |n| � M

0 otherwise
, M � 0. (38)

Last, we define the operator π j := id − π j that will be used in Appendix C and Appendix E.

Lemma 3.2. The projection operators defined in (37) and (38) satisfy the following
properties for any ζ ∈ Hρ,s:
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(a) For any j � 0

ζ =
∑
j�0

π jζ;

(b) For any j � 0

‖ΠMζ‖Hρ,s � ‖ζ‖Hρ,s ;

(c) The following equality holds

‖ζ‖Hρ,s =

∥∥∥∥∥∥∥
⎡⎣∑

j∈N
j2s|π jζ|2

⎤⎦1/2
∥∥∥∥∥∥∥
Hρ,0

(39)

where |ζ|, for ζ ∈ Hρ,s is the element |ζ| ∈ Hρ,s whose nth element is

|ζ|n := (|ξn|, |ηn|)

and (ζα)n := (ξαn , ηαn ).

Now we consider a Hamiltonian system of the form

H = h0 + δF, (40)

where we assume that

(PER) h0 generates a linear periodic flow Φτ
h0

with period T ,

Φτ+T
h0

= Φτ
h0

∀ τ ,

which is analytic as a map from Hρ,s into itself for any s � 1. Furthermore, the flow
is an isometry for any s � 1.

(INV) For any s � 1, Φτ
h0

leaves invariant the space Π jHρ,s for any j � 0. Furthermore, for
any j � 0

π j ◦ Φτ
h0

= Φτ
h0
◦ π j.

Next, we assume that there exists ν ∈ [0, 1] such that the vector field of F admits
an asymptotic expansion in δ of the form

F ∼
∑
j�1

δν( j−1)F j, (41)

XF ∼
∑
j�1

δν( j−1)XF j , (42)

and that the following property is satisfied
(HVF) There exists R∗ > 0 such that for any j � 1

• XF j is analytic from Bρ,s+2 j+Γ(R∗) to Hρ,s.
Moreover, for any r � 1 we have that

• XF−
∑r

j=1δ
ν( j−1)F j

is analytic from Bρ,s+2(r+1)+Γ(R∗) to Hρ,s.

The main result of this section is the following theorem.

4995



Nonlinearity 34 (2021) 4983 M Gallone and S Pasquali

Theorem 3.3. Fix R > 0, s1 � 1. Consider (40), and assume (PER), (INV) and (HVF).
Then ∃s0 > 0 with the following properties: for any s � s1 there exists δs � 1 such that for
any δ < δs there exists Tδ : Bρ,s(R/2) →Bρ,s(R) analytic canonical transformation such that

H1 :=H ◦ Tδ = h0 + δZ1 + δ1+νR(1), (43)

where Z1 is in normal form, namely

{Z1, h0} = 0, (44)

and there exists a positive constant C′
s (that depends on s) such that

sup
Bρ,s+s0

(R/2)
‖XZ1‖Hρ,s � C′

s,

sup
Bρ,s+s0

(R/2)
‖XR(1)‖Hρ,s � C′

s, (45)

sup
Bρ,s(R/2)

‖Tδ − id‖Hρ,s � C′
sδ. (46)

In particular,

Z1(ζ) = 〈F1〉 (ζ), (47)

where 〈F1〉 (ζ) :=
∫ T

0 F1 ◦ Φτ
h0

(ζ) dτ
T .

3.2. Proof of the averaging theorem

The proof of theorem 3.3 is actually an application of the techniques used in [BP06, Pas19].
First notice that by assumption (INV) the Hamiltonian vector field of h0 generates a

continuous flow Φτ
h0

which leaves ΠMHρ,s invariant.
Now we set H = H1,M +R1,M +R1, where

H1,M :=h0 + δ F1,M , (48)

F1,M :=F1 ◦ΠM , (49)

and

R1,M := h0 + δF1 − H1,M , (50)

R1 := δ (F − F1) . (51)

The system described by the Hamiltonian (48) is the one that we will put in normal form.
In the following we will use the notation a � b to mean: there exists a positive constant

K independent of M and R (but eventually on s), such that a � Kb. We exploit the following
intermediate results:

Lemma 3.4. For any s � s1 there exists R > 0 such that ∀ σ > 0, M > 0

sup
ζ∈Bρ,s+Γ+σ+2(R)

‖XR1,M (ζ)‖Hρ,s � δ

(M + 1)σ
, (52)

sup
ζ∈Bρ,s+Γ+4(R)

‖XR1(ζ)‖Hρ,s � δ1+ν. (53)
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Proof. We recall that R1,M = h0 + δF1 − H1,M = δ(F1 − F1,M).
We first notice that ‖id −ΠM‖Hρ,s+σ→Hρ,s = (M + 1)−σ: indeed, using (39) we obtain∥∥∥∥∥∥

∑
j�M+1

π j f

∥∥∥∥∥∥
Hρ,s

=

∥∥∥∥∥∥∥
⎡⎣ ∑

j�M+1

| jsπ j f |2
⎤⎦1/2

∥∥∥∥∥∥∥
Hρ,0

� (M + 1)−σ

∥∥∥∥∥∥∥
⎡⎣ ∑

j�M+1

| js+σπ j f |2
⎤⎦1/2

∥∥∥∥∥∥∥
Hρ,0

� (M + 1)−σ‖ f ‖Hρ,s+σ ,

whereas the inequality ‖id −ΠM‖Hρ,s+σ→Hρ,σ � (M + 1)−σ is obtained with a function which
has non zero components only for | j| = M + 1, i.e. f = πM+1 f .

Inequality (52) follows from

sup
ζ∈Bρ,s+Γ+2+σ(R)

‖XR1,M (ζ)‖Hρ,s � ‖dXδF1‖L∞(Bρ,s+2+Γ(R),Hρ,s)‖id−ΠM‖L∞(Bρ,s+2+Γ+σ(R),Bρ,s+2+Γ(R))

� δ(M + 1)−σ,

while estimate (53) is an immediate consequence of (HVF). �

Lemma 3.5. For any s � s1

sup
ζ∈Bρ,s(R∗)

‖XF1,M (ζ)‖Hρ,s � K(F)
1,s M2+Γ,

where

K(F)
1,s := sup

ζ∈Bρ,s(R∗)
‖XF1 (ζ)‖Hρ,s−2−Γ < +∞.

Proof. Using (39) we have

sup
ζ∈Bρ,s(R)

∥∥∥∥∥∥
∑
h�M

πhXF1,M (ζ)

∥∥∥∥∥∥
Hρ,s

= sup
ζ∈Bρ,s(R)

∥∥∥∥∥∥∥
⎡⎣∑

h�M

|hsπhXF1,M (ζ)|2
⎤⎦1/2

∥∥∥∥∥∥∥
Hρ,0

(54)

� M2+Γ sup
ζ∈Bρ,s(R)

∥∥∥∥∥∥∥
⎡⎣∑

h�M

|hs−2−ΓπhXF1,M (ζ)|2
⎤⎦1/2

∥∥∥∥∥∥∥
Hρ,0

(55)

� M2+Γ sup
ζ∈Bρ,s(R)

‖XF1,M (ζ)‖Hρ,s−2−Γ = K(F)
1,s M2+Γ, (56)

where the last quantity is finite for R � R∗ by property (HVF). �
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To normalize (48) we need to prove a reformulation of theorem 4.4 in [Bam99]. Here we
report a statement of the result adapted to our context which is proved in appendix A.

Lemma 3.6. Let s � s1 + 2 + Γ, R > 0, and consider the system (48). Assume that δ <
1

301/ν , and that

12TK(F)
1,s M2+Γ δ < R (57)

where

K(F)
1,s := sup

ζ∈Bρ,s(R)
‖XF1 (ζ)‖Hρ,s−2−Γ.

Then there exists an analytic canonical transformation T (0)
δ,M : Bρ,s(R/2) →Bρ,s(R) such that

sup
ζ∈Bρ,s(R/2)

‖T (0)
δ,M(ζ) − ζ‖Hρ,s � 2TK(F)

1,s M2+Γδ, (58)

and that puts (48) in normal form up to a small remainder,

H1,M ◦ T (0)
δ,M = h0 + δZ(1)

M + δ1+νR(1)
M , (59)

with Z(1)
M in normal form, namely {h0,M, Z(1)

M } = 0, and

sup
ζ∈Bρ,s(R/2)

‖XZ(1)
M

(ζ)‖Hρ,s � K(F)
1,s M2+Γ (60)

sup
ζ∈Bρ,s(R/2)

‖XR(1)
M

(ζ)‖Hρ,s � 15K(F)
1,s M2+Γ. (61)

Now we conclude with the proof of theorem 3.3.

Proof. If we define δs := min{ 1
301/ν , R

12 T K(F)
1,s M2+Γ

} and we choose

s0 = σ + 2 + Γ,

σ � 2,

then the transformation Tδ := T (0)
δ,M defined by lemma 3.6 satisfies (43) because of (59).

Next, equation (44) follows from lemma 3.6, equation (45) follows from (60) and (61),
while (46) is precisely (58). Finally, (47) can be deduced by applying lemma A.6 to
G = F1. �

4. Applications to two-dimensional lattices

4.1. The KP regime for the ETL lattice

We want to study the behaviour of small amplitude solutions of (5) with initial data in which
only one low-frequency Fourier mode is excited.

As a first step, we introduce an interpolating function Q = Q(t, x) such that

(A1) Q(t, j) = Q j(t), for all j ∈ Z
2
N1,N2

;
(A2) Q is periodic with period 2N1 + 1 in the x1-variable, and periodic with period 2N2 + 1

in the x2-variable;
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(A3) Q has zero average,
∫[

−
(

N1+
1
2

)
,N1+

1
2

]
×

[
−

(
N2+

1
2

)
,N2+

1
2

]Q(t, x) dx = 0 ∀t;
(A4) Q fulfills

Q̈ = Δ1(Q + αQ2 + βQ3), (62)

Δ1 := 4 sinh2

(
∂x1

2

)
+ 4 sinh2

(
∂x2

2

)
. (63)

One can check that the operator (63) is equivalent to (3) by using functional calculus.
It is easy to verify that (62) is Hamiltonian with Hamiltonian function

HETL(Q, P) =
∫

[
− 1

μ , 1
μ

]
×

[
− 1

μ2 , 1
μ2

]
(
−PΔ1P + Q2

2
+ α

Q3

3
+ β

Q4

4

)
dx, (64)

where P is a periodic function which has zero average and is canonically conjugated to Q
The existence of such an interpolating function is obvious, indeed such function can be taken

to be a Fourier polynomial with N terms. However, by construction, items (A1)–(A4) do not
provide a unique interpolating function. Among all possible choices of interpolating functions
it is convenient to choose the Fourier polynomial supported on k ∈ [−N1, N1] × [−N2, N2]
(i.e. the analytic function supported in the lowest possible number of Fourier modes). Also let
us emphasize that (A4) ensures that if (A1) is valid for the initial time t = 0, then is valid for
all t ∈ R.

We consider (62), with α 	= 0, and we look for small amplitude solutions of the form

Q(t, x) = μ2 q(μt,μx1,μ2x2), (65)

with μ as in (11). We introduce the rescaled time τ = μt and the rescaled space variables
y1 = μx1, y2 = μ2x2.

Plugging (65) into (62), leads to

qττ =
Δμ,y1

μ2

(
q + μ2αq2 + μ4βq3

)
, (66)

Δμ,y1 := 4 sinh2

(
μ∂y1

2

)
+ 4 sinh2

(
μ2 ∂y2

2

)
, (67)

which is a Hamiltonian PDE corresponding to the Hamiltonian functional,

K1(q, p) =
∫

I

(
−pΔμ,y1 p

2μ2
+

q2

2
+ αμ2 q3

3
+ βμ4 q4

4

)
dy, (68)

where

I := [−1, 1]2, (69)

and p is the variable canonically conjugated to q.
Now, observe that the operatorΔμ,y1 admits the following asymptotic expansion up to terms

of order O(μ4),

Δμ,y1

μ2
∼ ∂2

y1
+ μ2∂2

y2
+

μ2

12
∂4

y1
+O(μ4), (70)
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therefore the Hamiltonian (68) admits the following asymptotic expansion

K1(q, p) ∼ ĥ0(q, p) + μ2F̂1(q, p) + μ4R̂(q, p), (71)

ĥ0(q, p) =
∫

I

[
p(−∂2

y1
p) + q2

2

]
dy, (72)

F̂1(q, p) =
∫

I

(
−

p∂4
y1

p

24
−

p∂2
y2

p

2
+ α

q3

3

)
dy. (73)

Following the approach of [BP06], we can introduce the following non-canonical change
of coordinates

ξ :=
1√
2

(q + ∂y1 p), η :=
1√
2

(q − ∂y1 p). (74)

which transforms the Poisson tensor into

J = ∂y1

(
−1 0
0 1

)
, (75)

and Hamilton equations associated to a Hamiltonian K are

∂τ ξ = −∂y1

δK
δξ

,

∂τη = ∂y1

δK
δη

.

Remark 4.1. By the explicit expression of the Poisson tensor (75) we can compute straight-
forwardly Casimir invariants associated to J, which are

C(ξ, η) = A(y2) + B(y2)
∫ 1

−1
ξ(τ , y1, y2)dy1 + C(y2)

∫ 1

−1
η(τ , y1, y2)dy1, (76)

where A, B and C are arbitrary functions of y2.
Since Casimir invariants are constants of motion, we can restrict our analysis on the

subspace defined by∫ 1

−1
[ξ(τ , y1, y2) − η(τ , y1, y2)] dy1 = 0, ∀ τ ∈ R, |y2| � 1. (77)

However, by recalling (74) one sees that (77) is equivalent to∫ 1

−1
∂y1 p(τ , y1, y2)dy1 = 0, ∀ τ ∈ R, |y2| � 1, (78)

which is trivially true due to periodic boundary conditions.

In the new coordinates the Hamiltonian takes the form

K1(ξ, η) ∼ h0(ξ, η) + μ2F1(ξ, η) + μ4R(ξ, η), (79)

h0(ξ, η) =
∫

I

ξ2 + η2

2
dy, (80)
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F1(ξ, η) =
∫

I

(
− [∂y1 (ξ − η)]2

48
+

[∂y2∂
−1
y1

(ξ − η)]2

4
+ α

(ξ + η)3

3 · 23/2

)
dy, (81)

where (81) is well defined because of (92).
Now we apply the averaging theorem 3.3 to the Hamiltonian (79), with δ = μ2, ν = 1.

Observe that the equations of motion of h0 have the following simple form:{
ξτ = −∂y1ξ

ητ = ∂y1η
;

{
ξ(τ , y) = ξ0(y1 − τ , y2)

η(τ , y) = η0(y1 + τ , y2)
. (82)

Proposition 4.2. The average of F1 in (79) with respect to the flow of h0 in (79) is given
by

〈F1〉 (ξ, η) =
∫

I

(
− (∂y1ξ)2 + (∂y1η)2

48
+

(∂y2∂
−1
y1
ξ)2 + (∂y2∂

−1
y1
η)2

4

)
dy

+
α

3 × 23/2
([ξ3] + [η3]) (83)

where we denote by [ f j] the average
∫

I f j(y) dy
4 .

Proof. For the computation of 〈F1〉(ξ, η) one can exchange the order of the integrations in y
and s. To compute averages we use the following elementary facts:

(a) Let u, v ∈ L2([−1, 1]), then∫ 1

−1
dy

∫ 1

−1
ds u(y ± s)v(y ∓ s) =

∫ 1

−1
u(y)dy

∫ 1

−1
v(y)dy;

(b) Let u ∈ L1([−1, 1]), then

1
2

∫ 1

−1
ds

∫ 1

−1
dy u(y ± s) =

∫ 1

−1
u(x)dx.

Since we assume our functions to be periodic, then also
∫

I∂yr u(y)dy = 0, r = 1, 2, and
hence only terms with only ξ or η are not cancelled by the average procedure. �

Corollary 4.3. The equations of motion associated to h0(ξ, η) + μ2 〈F1〉 (ξ, η) are given by⎧⎪⎪⎨⎪⎪⎩
ξτ = −∂y1ξ −

μ2

24
∂3

y1
ξ − μ2

2
∂−1

y1
∂2

y2
ξ − αμ2

2
√

2
∂y1 (ξ2)

ητ = ∂y1η +
μ2

2
∂−1

y1
∂2

y2
η +

μ2

24
∂3

y1
η +

αμ2

2
√

2
∂y1 (η2)

. (84)

More explicitly, we observe that (84) is a system of two uncoupled KP equations on a two-
dimensional torus in translating frames.

4.2. The KdV regime for the ETL lattice

For this regime we consider (62), with α 	= 0, and we look for small amplitude solutions of the
form

Q(t, x) = μ2 q(μt,μx1,μσx2), (85)
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where q : R× T
2 → R is a periodic function and μ, σ > 2 are defined in (11) and (12). We

introduce the rescaled variables τ = μt, y1 = μx1, y2 = μσx2, and we denote I is as in (69).
Plugging (85) into (62), we get

qττ =
Δμ,y1,σ

μ2

(
q + μ2αq2 + μ4βq3

)
,

Δμ,y1,σ := 4 sinh2

(
μ∂y1

2

)
+ 4 sinh2

(
μσ ∂y2

2

)
,

(86)

which is a Hamiltonian PDE corresponding to the Hamiltonian functional

K2(q, p) =
∫

I

(
−pΔμ,y1,σp

2μ2
+

q2

2
+ αμ2 q3

3
+ βμ4 q4

4

)
dy, (87)

and p is the variable canonically conjugated to q.
Now, observe that the operator Δμ,y1,σ admits the following asymptotic expansion,

Δμ,y1,σ

μ2
∼ ∂2

y1
+

μ2

12
∂4

y1
+ μ2(σ−1)∂2

y2
+

μ2(2σ−1)

12
∂4

y2

+
∑
m�2

cm

(
μ2m∂2(m+1)

y1
+ μ2[(m+1)σ−1]∂2(m+1)

y2

)
,

cm :=
2

(2m + 2)!
,

(88)

and by recalling that σ > 2 we have

Δμ,y1,σ

μ2
∼ ∂2

y1
+

μ2

12
∂4

y1
+O(μmin(2σ−2,4)). (89)

Therefore the Hamiltonian (87) admits the following asymptotic expansion

K2(q, p) ∼ ĥ0(q, p) + μ2F̂2(q, p) + μmin(2σ−2,4)R̂(q, p), (90)

ĥ0(q, p) =
∫

I

−p(∂2
y1

p) + q2

2
dy, F̂2(q, p) =

∫
I

(
−

p∂4
y1

p

24
+ α

q3

3

)
dy. (91)

Note that the nonlinearity of degree 4 does not affect the Hamiltonian up to order O(μ4).
By exploiting again the non-canonical change of coordinates (q, p) �→ (ξ, η) introduced in

(74) and the Poisson tensor (75), and∫ 1

−1
[ξ(τ , y1, y2) − η(τ , y1, y2)] dy1 = 0, ∀ τ ∈ R, |y2| � 1, (92)

we obtain

K2(ξ, η) ∼ h0(ξ, η) + μ2F2(ξ, η) + μmin(2σ−2,4)R(ξ, η), (93)

h0(ξ, η) =
∫

I

ξ2 + η2

2
dy, F2(ξ, η) =

∫
I

(
− [∂y1 (ξ − η)]2

48
+ α

(ξ + η)3

3 · 23/2

)
dy. (94)

Now we apply the averaging theorem 3.3 to the Hamiltonian (93), with δ = μ2, ν = min(σ −
2, 1).
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Proposition 4.4. The average of F2 in (93) with respect to the flow of h0 in (94) is given by

〈F2〉 (ξ, η) = −
∫

I

(∂y1ξ)2 + (∂y1η)2

48
dy +

α

3 × 23/2
([ξ3] + [η3]), (95)

where we denote by [f j] the average
∫

I f j(y) dy
4 .

Corollary 4.5. The equations of motion associated to h0(ξ, η) + μ2 〈F1〉 (ξ, η) are given by⎧⎪⎪⎨⎪⎪⎩
ξτ = −∂y1ξ −

μ2

24
∂3

y1
ξ − μ2 α

2
√

2
∂y1 (ξ2)

ητ = ∂y1η +
μ2

24
∂3

y1
η +

μ2α

2
√

2
∂y1 (η2)

. (96)

The latter is a system of two uncoupled KdV equations in translating frames with respect
to the y1-direction, for each fixed value of the coordinate y2.

Remark 4.6. One can also study the β model (namely, (62) with α = 0, β 	= 0) in the
following regime,

(mKdV) The β model in the very weakly transverse regime, Q(t, x) = μq(μt,μx1, μσx2),
where μ � 1, σ > 2.

Let us introduce again the rescaled variables τ = μt, y1 = μx1, y2 = μσx2, and the domain
I as in (69); plugging the ansatz for Q into (62), we get

qττ =
Δμ,y1,σ

μ2

(
q + μ2βq3

)
, (97)

where Δμ,y1,σ is the operator introduced in (86). Equation (97) is a Hamiltonian PDE with the
following corresponding Hamiltonian,

K3(q, p) =
∫

I

(
−pΔμ,y1,σp

2μ2
+

q2

2
+ βμ2 q4

4

)
dy, (98)

where p is the variable canonically conjugated to q. Recalling that (77) holds true, we exploit
again the non-canonical change of coordinates (74) and the Poisson tensor (75), obtaining that

K3(ξ, η) ∼ h0(ξ, η) + μ2F3(ξ, η) + μmin(2σ−2,4)R(ξ, η), (99)

where h0 is the same as in (94), while

F3(ξ, η) =
∫

I

(
− [∂y1 (ξ − η)]2

48
+ β

(ξ + η)4

24

)
dy. (100)

Applying theorem 3.3 to the Hamiltonian (99) with δ = μ2 and ν = min(σ − 2, 1), we get
that the equations of motion associated to h0(ξ, η) + μ2 〈F3〉 (ξ, η) are given by⎧⎪⎪⎨⎪⎪⎩

ξτ = −
(

1 +
3
4

[η2]

)
∂y1ξ −

μ2

24
∂3

y1
ξ − μ2β

4
∂y1 (ξ3)

ητ =

(
1 +

3
4

[ξ2]

)
∂y1η +

μ2

24
∂3

y1
η +

μ2β

4
∂y1 (η3)

(101)

which is a system of two uncoupled mKdV equations in translating frames with respect to the
y1-direction. The integrability properties of the mKdV equation and the existence of Birkhoff
coordinates for this model have been proved in [KST08].
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4.3. The one-dimensional NLS regime for the KG lattice

We want to study small amplitude solutions of (22), with initial data in which only one low-
frequency Fourier mode is excited.

Analogously to the procedure of the previous sections, the first step is to introduce an
interpolating function Q = Q(t, x) such that

(B1) Q(t, j) = Q j(t), for all j ∈ Z
2
N1,N2

;
(B2) Q is periodic with period 2N1 + 1 in the x1-variable, and periodic with period 2N2 + 1

in the x2-variable;
(B3) Q fulfills

Q̈ = Δ1Q − Q − βQ2p+1, (102)

where Δ1 is the operator defined in (63) (recall that we also assumed m = 1 in (21)).

It is easy to verify that (102) is Hamiltonian with Hamiltonian function

HKG(Q, P) =
∫

[
− 1

μ , 1
μ

]
×

[
− 1

μσ , 1
μσ

]
(

P2

2
+

Q2

2
− QΔ1Q

2
+ β

Q2p+2

2p+ 2

)
dx, (103)

where P is a periodic function and is canonically conjugated to Q.
Starting from the Hamiltonian (20), where p = 1, we look for small amplitude solutions of

the form

Q(t, x) = μq(μ2t,μx1,μσx2) (104)

where q : R× T
2 → R is a periodic function and σ, μ are defined respectively in (12) and (11).

We introduce the rescaled variables τ = μ2t, y1 = μx1 and y2 = μσx2, and we define I as
in (69). The Hamiltonian (20) in the rescaled variables is given by

K4(q, p) =
∫

I

(
p2

2
+

q2

2
− qΔμ,y1,σq

2
+ βμ2 q4

4

)
dy, (105)

with the operator Δμ,y1,σ as in (86), and p is the variable canonically conjugated to q. The
corresponding equation of motion is given by

qττ = −q +Δμ,y1,σq − βμ2q3. (106)

Recalling (89), we have that the Hamiltonian (105) admits the following asymptotic expansion

K4(q, p) ∼ ĥ4(q, p) + μ2F̂4(q, p) + μmin(2σ,4)R̂(q, p), (107)

ĥ4(q, p) =
∫

I

p2 + q2

2
dy, F̂4(q, p) =

∫
I

(
−

q∂2
y1

q

2
+ β

q4

4

)
dy, (108)

and the equation of motion associated to ĥ4 + μ2F̂4 is given by the following cubic one-
dimensional NLKG equation,

qττ = −(q − μ2∂2
y1

q) − μ2βq3. (109)

We now exploit the change of coordinates (q, p) �→ (ψ, ψ̄) given by

ψ =
1√
2

(q − ip), (110)
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therefore the inverse change of coordinates is given by

q =
1√
2

(ψ + ψ̄), p =
i√
2

(ψ − ψ̄), (111)

while the symplectic form is given by −idψ ∧ dψ̄. With this change of variables the Hamilto-
nian takes the form

K4(ψ, ψ̄) ∼ h4(ψ, ψ̄) + μ2F4(ψ, ψ̄) + μmin(2σ,4)R(ψ, ψ̄), (112)

h4(ψ, ψ̄) =
∫

I
ψψ̄ dy,

F4(ψ, ψ̄) =
∫

I

(
−

(ψ + ψ̄)[−∂2
y1

(ψ + ψ̄)]

4
+ β

(ψ + ψ̄)4

16

)
dy.

(113)

Now we apply the averaging theorem 3.3 to the Hamiltonian (112), with δ = μ2, ν = min(σ −
1, 1). Observe that h4 generates a periodic flow,

−i∂τψ = ψ; ψ(τ , y) = eiτψ0(y). (114)

Proposition 4.7. The average of F4 in (112) with respect to the flow of h4 (108) is given by

〈F4〉 (ψ, ψ̄) =
∫

I

ψ̄(−∂2
y1
ψ)

2
dy +

3β
8

∫
I
|ψ|4 dy. (115)

Corollary 4.8. The equations of motion associated to h4(ψ, ψ̄) + μ2 〈F4〉 (ψ, ψ̄) are given
by a cubic one-dimensional NLS equation for each fixed value of y2,

−iψτ = ψ − μ2∂2
y1
ψ + μ2 3β

4
|ψ|2ψ. (116)

Remark 4.9. If we apply the above argument to the Hamiltonian (20) in the regime

(2-D NLS) The scalar model (20) with m = 1, p = 1 and Q(t, x) = μq(μ2t,μx), where
μ � 1 and σ = 1,

We can obtain as a normal form equation the cubic NLS equation

−iψτ = ψ − μ2Δψ + μ2 3β
4
|ψ|2ψ. (117)

5. Dynamics of the normal form equation

5.1. The KP equation

In this section we recall some known facts on the dynamics of the KP equation on the two-
dimensional torus

ξτ = − 1
24

∂3
y1
ξ − 1

2
∂−1

y1
∂2

y2
ξ − α

2
√

2
∂y1 (ξ2), α = ±1, y ∈ T

2 :=R
2/(2πZ)2. (118)

The KP equation has been introduced in order to describe weakly-transverse solutions of
the water waves equations; it has been considered as a two-dimensional analogue of the KdV
equation, since also the KP equation admits an infinite number of constants of motions [CL87,

5005



Nonlinearity 34 (2021) 4983 M Gallone and S Pasquali

CLL83, LC82]. It is customary to refer to (118) as KP-I equation when α = −1, and as KP-II
equation when α = 1.

The global-well posedness for the KP-II equation on the two-dimensional torus has been dis-
cussed by Bourgain in [Bou93]. The main point of the result by Bourgain consists in extending
the local well-posedness result to a global one, even though the L2-norm is the only constant of
motion for the KP-II equation that allows an a priori bound for the solution (see theorems 8.10
and 8.12 in [Bou93]).

Theorem 5.1. Consider (118) with α = 1.
Let ρ � 0 and s � 0, and assume that the initial datum ξ(0, ·, ·) = ξ0 ∈ �2

ρ,s. Then (118) is
globally well-posed in �2

ρ,s. Moreover, the �2-norm of the solution is conserved,

‖ξ(t)‖�2 = ‖ξ0‖�2 , (119)

while

‖ξ(t)‖�2
0,s

� eC|t| ‖ξ0‖�2
0,s

, (120)

where C depends on s.

Remark 5.2. As pointed out by Bourgain in section 10.2 of [Bou93], a global well-
posedness result for sufficiently smooth solution of the KP-I equation (namely, (118) with
α = −1) on the two-dimensional torus can be obtained by generalizing the argument in [SJ87]
for small data and by using the a priori bounds given by the constants of motion for the KP-I
equation.

Last, we mention that for the KP equation the construction of action-angle/Birkhoff
coordinates is still an open problem.

5.2. The KdV equation

In this section we recall some known facts on the dynamics of the KdV equation with periodic
boundary conditions. The interested reader can find more detailed explanations and proofs in
[2003].

Consider the KdV equation

ξτ = − 1
24

∂3
y1
ξ − α

2
√

2
∂y1 (ξ2), y1 ∈ [0, 2]. (121)

Through the Lax pair formulation of the evolution problem (121) one get that the periodic
eigenvalues (λn)n∈N of the Sturm–Liouville operator

Lξ := − ∂2
y1
+ 6

√
2ξ(τ , y1) (122)

are conserved quantities under the evolution of the KdV equation (121). Moreover, if we define
the gaps of the spectrum γm :=λ2m − λ2m−1 (m � 1), it is well known that the squared spectral
gaps (γ2

m)m�1 form a complete set of constants of motion for (121).
The following relation between the sequence of the spectral gaps and the regularity of the

corresponding solution to the KdV equation holds (see theorems 9–11 in [2008]; see also
[Pös11])

Theorem 5.3. Assume that ξ ∈ L2, then ξ ∈ �2
0,s if and only if its spectral gaps satisfy∑

m�1

m2s|γm|2 < +∞.
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Moreover if ξ ∈ �2
ρ,s, then∑

m�1

m2s e2ρm |γm|2 < +∞; (123)

conversely, if (123) holds, then ξ ∈ �2
ρ′,0 for some ρ′ > 0.

Kappeler and Pöschel constructed the following global Birkhoff coordinates (see
theorem 1.1 in [2003]).

Theorem 5.4. There exists a diffeomorphism Ω : L2 → �2
0,1/2 × �2

0,1/2 such that:

• Ω is bijective, bianalytic and canonical;
• For each s � 0, the restriction of Ω to �2

0,s, namely the map

Ω : �2
0,s → �2

0,s+1/2 × �2
0,s+1/2

is bijective, bianalytic and canonical;
• The coordinates (x, y) ∈ �2

0,3/2 × �2
0,3/2 are Birkhoff coordinates for the KdV equation,

namely they form a set of canonically conjugated coordinates in which the Hamiltonian

of the KdV equation (121) depends only on the action Im := x2
m+y2

m
2 (m � 1).

The dynamics of the KdV equation (121) in terms of the variables (x, y) is trivial: it can
be immediately seen that any solution is periodic, quasiperiodic or almost periodic, depending
on the number of spectral gaps (equivalently, depending on the number of actions) initially
different from zero.

5.3. The one-dimensional cubic NLS equation

In this section we recall some known facts on the dynamics of the one-dimensional cubic
defocusing NLS equation with periodic boundary conditions. The interested reader can find
more detailed explanations and proofs in [GKK14, Mol14].

Consider the cubic defocusing NLS equation

iψτ = −∂2
y1
ψ + 2|ψ|2ψ, y1 ∈ T :=R/(2πZ). (124)

Equation (124) is a PDE admitting a Hamiltonian structure: indeed, we can setHρ,s = �2
ρ,s ×

�2
ρ,s as the phase space with elements denoted by φ = (φ1,φ2), while the associated Poisson

bracket and the Hamiltonian are given by

{F, G} := − i
∫
T

(
∂φ1F∂φ2G − ∂φ1G∂φ2F

)
dy1, (125)

HNLS(φ1,φ2) :=
∫
T

(
∂y1φ1∂y1φ2 + φ2

1φ
2
2

)
dy1. (126)

The defocusing NLS equation (124) is obtained by restricting (126) to the invariant subspace
of states of real type,

Hρ,s
r := {φ ∈ Hρ,s : φ2 = φ̄1}. (127)

The above Hamiltonian (126) is well-defined on Hρ,s with s � 1 and ρ � 0, while the initial
value problem for the NLS equation (124) is well-posed on H0,0 = �2 × �2.
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It is well known from the work by Zakharov and Shabat that the NLS equation (124) has a
Lax pair, and that it admits infinitely many constants of motion in involution. More precisely,
for any φ ∈ H0,0 consider the Zakharov–Shabat operator

L(φ) =

(
i 0
0 −i

)
∂y1 +

(
0 φ1

φ2 0

)
, (128)

where we call φ the potential of the operator L(φ). The spectrum of L(φ) on the interval [0, 2]
with periodic boundary conditions is pure point, and it consists of the following sequence of
periodic eigenvalues

. . . < λ−
−1 � λ+

−1 < λ−
0 � λ+

0 < λ−
1 � λ+

1 < . . . , (129)

where the quantities γm :=λ+
m − λ−

m (m ∈ Z) are called gap lengths. It has been proved that the
squared spectral lengths (γ2

m)m∈Z form a complete set of analytic constants of motion for (124).
Grébert et al proved the following relation between the sequence of the squared spectral

gaps and the regularity of the corresponding potential (see theorem in [GKM98]).

Theorem 5.5. Let ρ � 0 and s > 0, then for any bounded subset B ⊂ �2
ρ,s × �2

ρ,s there exists
n0 � 1 and M � 1 such that for any |k| � n0 and any (φ1,φ2) ∈ B, the following estimate holds∑

|k|�n0

(1 + |k|)2s e2ρ|k||γm|2 � M. (130)

Moreover, Grébert and Kappeler constructed the following global Birkhoff coordinates (see
theorems 20.1–20.3 in [2014])

Theorem 5.6. There exists a diffeomorphism Ω : L2
r →H0,0

r such that:

• Ω is bianalytic and canonical;
• For each s � 0, the restriction of Ω to H0,s

r , namely the map

Ω : H0,s
r →H0,s

r

is again bianalytic and canonical;
• The coordinates (x, y) ∈ H0,1

r are Birkhoff coordinates for the NLS equation, namely they
form a set of canonically conjugated coordinates in which the Hamiltonian of the NLS

equation (124) depends only on the action Im := x2
m+y2

m
2 (m ∈ Z).

The dynamics of the NLS equation (124) in terms of the variables (x, y) is trivial: it can
be immediately seen that any solution is periodic, quasiperiodic or almost periodic, depending
on the number of spectral gaps (equivalently, depending on the number of actions) initially
different from zero.

6. Approximation results

In this section we show how to use the normal form equations in order to construct approximate
solutions of (5) and (22), and we estimate the difference with respect to the true solutions with
corresponding initial data.

The approach is the same for all regimes (65), (85) and (104). First, we point out a relation
between the specific energy of normal mode Eκ = 2Ek/N (where the energy of normal mode
Ek is defined in (7) for (5), and in (23) for (22)), k ∈ Z

2
N1,N2

, and the Fourier coefficients of
the solutions of the normal form equations. This procedure has to be done carefully, since
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all wavevectors k + (N1L1, N2L2) contributes to the specific energy Eκ of the discrete system.
Then we have to prove that the approximate solutions approximate the specific energy of the
true normal mode Eκ up to the time-scale for which the continuous approximation is valid, and
finally we can deduce the result about the dynamics of the lattice. For simplicity we present in
this section only the main part of the argument, and we defer the proof of technical results to
appendices B–E.

6.1. The KP regime

Let I = [−1, 1]2 be as in (69) and let k = (k1, k2) ∈ Z
2. We define the Fourier coefficients of

the function q : I → R by

q̂k :=
1
2

∫
I
q(y1, y2)e−iπ(k1y1+k2y2) dy1 dy2, (131)

and similarly for the Fourier coefficients of the function p. Note that in this definition we
omitted an eventual time dependence because we are interested in relations among quanti-
ties for points in the phase space, i.e. pairs of functions (q, p) : I → R. These relations extend
automatically to trajectories and, in fact, this will be the subject of the last result of each
subsection.

Lemma 6.1. Consider the lattice (2) in the regime (KP) and with interpolating function
(65). Then for a state corresponding to (q, p) one has

Eκ =
μ4

2

∑
L=(L1,L2)∈Z2:μL1,μ2L2∈2Z

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

μ

∣∣∣∣2
)

,

∀ k : κ(k) = (μK1,μ2K2)

(132)

(where the ωk are defined as in (8)), and Eκ = 0 otherwise.

Proof. Take a smooth (2N1 + 1, 2N2 + 1)-periodic interpolating function Q for Q j, and
similarly for P j. We denote by

Q̂(k) :=
1√
N

∫
[
−

(
N1+

1
2

)
,
(

N1+
1
2

)]
×

[
−

(
N2+

1
2

)
,
(

N2+
1
2

)]Q(x)e−2πi k·x
N dx, (133)

so that by the interpolation property we obtain

Q j = Q( j) =
1√
N

∑
k∈Z2

Q̂(k)e2πi j·k
N

=
1√
N

∑
k=(k1,k2)∈Z2

2N1+1,2N2+1

⎡⎣ ∑
h=(h1,h2)∈Z2

Q̂ (k1 + (2N1 + 1)h1, k2+ (2N2 + 1)h2)

]
e2πi j·k

N ,

hence

Q̂K =
∑
h∈Z2

Q̂(K1 + (2N1 + 1)h1, K2 + (2N2 + 1)h2). (134)
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The relation between Q̂(k) and q̂k can be deduced from (65) and from the rescalings τ = μt,
y1 = μx1, y2 = μ2x2,

Q( j) = μ2q(μ j1,μ2 j2);

Q̂(k) =
1
2
μ3/2

∫
[
− 1

μ , 1
μ

]
×

[
− 1

μ2 , 1
μ2

]Q(x1, x2)e−iπ(k1x1μ+k2x2μ
2) dx1 dx2

=
1
2
μ3/2

∫
[
− 1

μ , 1
μ

]
×

[
− 1

μ2 , 1
μ2

]μ2q
(
μx1,μ2x2

)
× e−iπ(k1x1μ+k2x2μ

2) dx1 dx2

(85)
=

1
2
μ1/2

∫
I
q(y)e−iπ(k1y1+k2y2) dy = μ1/2q̂k, (135)

and similarly

P̂(k) = μ−1/2 p̂k. (136)

By using (7), (10) and (134)–(136) we have

Eκ
(10)
= μ3 1

2

∑
L=(L1,L2)∈Z2:μL1,μ2L2∈2Z

(
|Q̂(K + L)|2 + ω2

k |P̂(K + L)|2
)

(135)
= μ4 1

2

∑
L=(L1,L2)∈Z2:μL1,μ2L2∈2Z

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

μ

∣∣∣∣2
)

for all k such that κ(k) = (μK1, μ2K2), and this leads to (132). �

Proposition 6.2. Fix ρ > 0 and 0 < δ � 1. Consider the normal form system (84), and
define the Fourier coefficients of (ξ, η) through the following formula

ξ(y) =
1
2

∑
h∈Z2

ξ̂h eiπh·y, (137)

η(y) =
1
2

∑
h∈Z2

η̂h eiπh·y. (138)

Suppose that (ξ, η) ∈ Hρ,0, and denote by Eκ the specific energy of the normal mode with index
κ as defined in (9) and (10). Then for any positive μ sufficiently small∣∣∣∣∣Eκ − μ4 |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣ � Cμ4+3/2‖(ξ, η)‖2
Hρ,0 (139)

for all k such that κ(k) = (μK1, μ2K2) and |K1|+ |K2| � (2+δ)| log μ|
ρ . Moreover,

|Eκ| � Cμ8‖(ξ, η)‖2
Hρ,0 (140)

for all k such that κ(k) = (μK1, μ2K2) and |K2
1 + K2

2 |1/2 > (2+δ)| log μ|
ρ , and Eκ = 0 otherwise.
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The proof of the above proposition is deferred to appendix B.
Now, consider the following system of uncoupled KP equations

ξτ = − 1
24

∂3
y1
ξ − 1

2
∂−1

y1
∂2

y2
ξ − α

2
√

2
∂y1 (ξ2), (141)

ητ =
1
2
∂−1

y1
∂2

y2
η +

1
24

∂3
y1
η +

α

2
√

2
∂y1 (η2). (142)

and consider a solution (τ , y) �→ (ξ̃a(τ , y), η̃a(τ , y)) such that it belongs to Hρ,n, for some n � 1.
We consider the approximate solutions (Qa, Pa) of the ETL model (62) defined by formulas

(143) and (144).

Qa(t, y) :=
μ2

√
2

[
ξ̃a(μ2τ , y1 − τ , y2) + η̃a(μ2τ , y1 + τ , y2)

]
(143)

∂y1 Pa(t, y) :=
μ√
2

[
ξ̃a(μ2τ , y1 − τ , y2) − η̃a(μ2τ , y1 + τ , y2)

]
, (144)

where we made a little abuse of notation since the left-hand side depends on t and right-hand
side on τ that are related as τ = μt.

We need to compare the difference between the approximate solution (143) and (144)
and the true solution of (5). Let us consider (5), and take an initial datum (Q0, P0) with
corresponding Fourier coefficients (Q̂0,k, P̂0,k) given by (6). Observe that

Q̂0,k 	= 0 only if κ(k) = (μK1,μ2K2) (145)

and that, as a consequence of the analyticity of Q0 and P0, there exist C, ρ > 0 such that

|Q̂0,k|2 + ω2
k |P̂0,k|2

N
� C e−2ρ|(κ1(k)/μ,κ2(k)/μ2)|. (146)

Moreover, we define an interpolating function for the initial datum (Q0, P0) by

Q0(y) =
1√
N

∑
K:(μ2|K1|2+μ4|K2|2)1/2

=|κ(k)|�1

Q̂0,k eiπ(μK1y1+μ2K2y2),

and similarly for y �→ P0(y).
Next we show that we can exploit the analyticity of the solution of the approximating

integrable PDEs to prove the vicinity between the approximate solution and the true solution.

Proposition 6.3. Consider (5) with σ = 2, and fix 0 < γ < 1
2 . Let us assume that the initial

datum for (5) satisfies (145) and (146), and denote by (Q j(t), P j(t)) j∈Z2
N1,N2

the correspond-

ing solution. Consider the approximate solution (ξ̃a, η̃a) with the corresponding initial datum.
Assume that (ξ̃a, η̃a) ∈ Hρ,n for some ρ > 0 and for some n � 1 for all times, and fix T0 > 0
and 0 < δ � 1.

Then there exists μ0 = μ0(T0, ‖(ξ̃a(0), η̃a(0))‖Hρ,n) such that, if μ < μ0, we have that there
exists C > 0 such that

sup
j
|Q j(t) − Qa(t, j)|+ |P j(t) − Pa(t, j)| � Cμγ , ∀ |t| � T0

μ3
, (147)
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where (Qa, Pa) are given by (143) and (144). Moreover,∣∣∣∣∣Eκ(t) − μ4 |ξ̂K(τ )|2 + |η̂K(τ )|2
2

∣∣∣∣∣ � Cμ4+γ ∀ |t| � T0

μ3
(148)

for all k such that κ(k) = (μK1, μ2K2) and |K1|+ |K2| � (2+δ)| log μ|
ρ . Moreover,

|Eκ(τ )| � μ4+γ ∀ |t| � T0

μ3
(149)

for all k such that κ(k) = (μK1, μ2K2) and |K1|+ |K2| > (2+δ)| log μ|
ρ

, and Eκ = 0 otherwise.

The proof of the above proposition is deferred to appendix C.

Proof of theorem 2.1. First we prove (14).
We consider an initial datum as in (13); when passing to the continuous approximation (62),

this initial datum corresponds to an initial data (ξ0, η0) ∈ Hρ0,n for some ρ0 > 0 and n � 1. By
theorem 5.1 the corresponding solution (ξ(τ ), η(τ )) is analytic in a complex strip of width ρ(t).
Taking the minimum of such quantities one gets the coefficient ρ appearing in the statement
of theorem (2.1). Applying proposition 6.3, we can deduce the corresponding result for the
discrete model (5) and the specific quantities (10). �

6.2. The KdV regime

Similarly to lemma 6.1 and proposition 6.2 we can prove the following results

Lemma 6.4. Consider the lattice (2) in the regime (KdV) and with interpolating function
(85). Then for a state corresponding to (q, p) one has

Eκ =
μ4

2

∑
L=(L1,L2)∈Z2:μL1,μσL2∈2Z

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

μ

∣∣∣∣2
)

,

∀ k : κ(k) = (μK1,μσK2)

(150)

(where the ωk are defined as in (8) and the Eκ in (10)), and Eκ = 0 otherwise.

Proof. As in lemma 6.4 we introduce a (2N1 + 1, 2N2 + 1)-periodic interpolating function
for Q j and P j. We denote Q̂(t, k) and Q̂K(t) as in (133) and (134).

The relation between Q̂(k) and q̂k can be deduced from (85) and from the rescalings
y1 = μx1, y2 = μσx2,

Q( j) = μ2q(μ j1,μσ j2);

Q̂(k) =
1
2
μ(σ+1)/2

∫
[
− 1

μ , 1
μ

]
×

[
− 1

μσ , 1
μσ

]Q(x1, x2)e−iπ(k1 x1μ+k2x2μ
σ) dx1 dx2

=
1
2
μ(σ+1)/2

∫
[
− 1

μ , 1
μ

]
×

[
− 1

μσ , 1
μσ

]μ2q (μx1,μσx2)

× e−iπ(k1 x1μ+k2x2μ
σ ) dx1 dx2

(85)
=

1
2
μ(3−σ)/2

∫
I
q(y)e−iπ(k1y1+k2y2) dy = μ(3−σ)/2q̂k, (151)
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and similarly

P̂(k) = μ(1−σ)/2 p̂k. (152)

By using (7), (10), (151) and (152) we have

Eκ
(10)
= μσ+1 1

2

∑
L=(L1,L2)∈Z2:μL1,μσL2∈2Z

(
|Q̂(K + L)|2 + ω2

k |P̂(K + L)|2
)

(151),(151)
= μσ+1 μ3−σ 1

2

∑
L=(L1,L2)∈Z2:μL1,μσL2∈2Z

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

μ

∣∣∣∣2
)

for all k such that κ(k) = (μK1, μσK2), and this leads to (150). �

Proposition 6.5. Fix ρ > 0 and 0 < δ � 1. Consider the normal form system (96), and
define the Fourier coefficients of (ξ, η) through the following formula

ξ(y) =
1
2

∑
h∈Z2

ξ̂h eiπh·y, (153)

η(y) =
1
2

∑
h∈Z2

η̂h eiπh·y. (154)

Suppose that (ξ, η) ∈ Hρ,0, and denote by Eκ the specific energy of the normal mode with index
κ as defined in (9) and (10). Then for any positive μ sufficiently small∣∣∣∣∣Eκ − μ4 |ξ̂K |2 + |η̂K |2

2

∣∣∣∣∣ � Cμ4+3/2‖(ξ, η)‖2
Hρ,0 (155)

for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| � (2+δ)| log μ|
ρ . Moreover,

|Eκ| � Cμ8‖(ξ, η)‖2
Hρ,0 (156)

for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| > (2+δ)| log μ|
ρ

, and Eκ = 0 otherwise.

We defer the proof of the above proposition to appendix B.
Now, consider the following system of uncoupled KdV equations

ξτ = − 1
24

∂3
y1
ξ − α

2
√

2
∂y1 (ξ2), (157)

ητ =
1
24

∂3
y1
η +

α

2
√

2
∂y1 (η2), (158)

and consider a solution (τ , y) �→ (ξ̃a(τ , y), η̃a(τ , y)) such that it belongs to Hρ,n, for some n � 1.
We consider the approximate solutions (Qa, Pa) of the ETL model (62) defined by formulas

(143) and (144).
We need to compare the difference between the approximate solution (143) and (144)

and the true solution of (5). Let us consider (5), and take an initial datum (Q0, P0) with
corresponding Fourier coefficients (Q̂0,k, P̂0,k) given by (6); observe that

Q0,k 	= 0 only if κ(k) = (μK1,μσK2). (159)
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Since Q0 and P0 are analytic functions, there exist C, ρ > 0 such that

|Q̂0,k|2 + ω2
k |P̂0,k|2

(2N1 + 1)(2N2 + 1)
� C e−2ρ|(κ1(k)/μ,κ2(k)/μσ )|. (160)

Moreover, we define an interpolating function for the initial datum (Q0, P0) by

Q0(y, t) =
1√
N

∑
K:(μ2|K1|2+μ2σ|K2|2)1/2

=|κ(k)|�1

Q̂0,k(t)eiπ(μK1y1+μσK2y2),

and similarly for y �→ P0(y).

Proposition 6.6. Consider (5) with σ > 2 and γ � 1 such that σ + 2γ < min(4σ − 5, 7).
Let us assume that the initial datum satisfies (159) and (160), and denote by (Q(t), P(t)) the
corresponding solution. Consider the approximate solution (ξ̃a(t, x), η̃a(t, x)) with the corre-
sponding initial datum. Assume that (ξ̃a, η̃a) ∈ Hρ,n for some ρ > 0 and for some n � 1 for all
times, and fix T0 > 0 and 0 < δ � 1.

Then there exists μ0 = μ0(T0, σ, ‖(ξ̃a(0), η̃a(0))‖Hρ,n) such that, if μ < μ0, we have that
there exists C > 0 such that

sup
j
|Q j(t) − Qa(t, j)|+ |P j(t) − Pa(t, j)| � Cμγ , ∀ |t| � T0

μ3
, (161)

where (Qa, Pa) are given by (143) and (144). Moreover,∣∣∣∣∣Eκ(t) − μ4 |ξ̂K(τ )|2 + |η̂K(τ )|2
2

∣∣∣∣∣ � Cμ4+γ , ∀ |t| � T0

μ3
(162)

for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| � (2+δ)| log μ|
ρ . Moreover,

|Eκ(t)| � μ4+γ , ∀ |t| � T0

μ3
(163)

for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| > (2+δ)| log μ|
ρ , and Eκ = 0 otherwise.

We defer the proof to appendix C.

Remark 6.7. The conditionsσ + 2γ < min(4σ − 5, 7), which, together with γ > 0, implies
the upper bound σ < 7 found in the statement of theorem 2.5, is the consequence of a techni-
cal condition which allows to estimate the error in the proof of proposition 6.6 (see claim 2,
together with (238) and (239)).

Proof of theorem 2.5. First we prove (17).
We consider an initial datum as in (16); when passing to the continuous approximation (62),

this initial datum corresponds to an initial data (ξ0, η0) ∈ Hρ0,n for some ρ0 > 0 and n � 1.
By theorem 5.3 the corresponding sequence of gaps belongs to Hρ0,n, and that the solution
(ξ(τ ), η(τ )) is analytic in a complex strip of width ρ(t). Taking the minimum of such quantities
one gets the coefficient ρ appearing in the statement of theorem 2.5. Applying proposition
6.6, we can deduce the corresponding result for the discrete model (5) and the specific
quantities (10).
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Next, we prove (19). In order to do so, we exploit the Birkhoff coordinates (x, y) introduced
in theorem 5.4; indeed, by rewriting the normal form system (96) in Birkhoff coordinates we
get that every solution is almost-periodic in time. Now, let us introduce the quantities

E(1)
K :=

∣∣∣ξ̂K

∣∣∣2
,

E(2)
K := |η̂K |2,

then τ �→ E(1)
K (x(τ ), y(τ )) and τ �→ E(2)

K (x(τ ), y(τ )) are almost-periodic. If we set

EK := 1
2

(
E(1)

K + E(2)
K

)
, we can exploit (162) in proposition 6.6 to translate the results in

terms of the specific quantities Eκ, and we get the thesis. �

6.3. The one-dimensional NLS regime

Let β > 0 and let I be as in (69), we define the Fourier coefficients of the function q : I → R

by

q̂k :=
1
2

∫
I
q(y1, y2)e−iπ(k1y1+k2y2) dy1 dy2, (164)

and similarly for the Fourier coefficients of the function p.

Lemma 6.8. Consider the lattice (20) in the regime (1D NLS) and with interpolating
function (104). Then for a state corresponding to (q, p) one has

Eκ =
μ2

2

∑
L=(L1,L2)∈Z2:μL1,μσL2∈2Z

(
|p̂K+L|2 + ω2

k |q̂K+L|2
)

,

∀ k : κ(k) = (μK1,μσK2)

(165)

(where the ωk are defined as in (24)), and Eκ = 0 otherwise.

Proof. We introduce a (2N1 + 1, 2N2 + 1)-periodic interpolating function for Q j and Pj. We

denote Q̂(t, k) and Q̂k(t) as in (133) and (134). By the interpolation property we obtain (134).
The relation between Q̂(t, k) and q̂k(t) can be deduced from (104) and from the rescalings

τ = μt, y1 = μx1, y2 = μσx2,

Q( j) = μq(μ j1,μσ j2);

Q̂(k) =
1
2
μ(σ+1)/2

∫
[
− 1

μ , 1
μ

]
×

[
− 1

μσ , 1
μσ

]Q(x1, x2)e−iπ(k1 x1μ+k2x2μ
σ) dx1 dx2

(104)
=

1
2
μ(σ+1)/2

∫
[
− 1

μ , 1
μ

]
×

[
− 1

μσ
, 1
μσ

]μq (μx1,μσx2)

× e−iπ(k1 x1μ+k2x2μ
σ ) dx1 dx2

=
1
2
μ(1−σ)/2

∫
I
q(y)e−iπ(k1y1+k2y2)dy = μ(1−σ)/2q̂k, (166)

and similarly

P̂(k) = μ(1−σ)/2 p̂k. (167)
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By using (23), (10), (134) and (167) we have

Eκ
(10)
= μσ+1 1

2

∑
L=(L1,L2)∈Z2:μL1,μσL2∈2Z

(
|P̂(K + L)|2 + ω2

k |Q̂(K + L)|2
)

(166)
= μσ+1μ1−σ 1

2

∑
L=(L1,L2)∈Z2:μL1,μσL2∈2Z

(
|p̂K+L|2 + ω2

k |q̂K+L|2
)

for all k such that κ(k) = (μK1, μσK2), and this leads to (165). �
Proposition 6.9. Fix ρ > 0 and 0 < δ � 1. Consider the normal form equation (116), and
define the Fourier coefficients of (ψ, ψ̄) through the following formula

ψ(y) =
1
2

∑
h∈Z2

ψ̂h eiπh·y. (168)

Suppose that (ψ, ψ̄) ∈ Hρ,0, and denote by Eκ the specific energy of the normal mode with
index κ as defined in (9) and (10). Then for any positive μ sufficiently small∣∣∣∣∣Eκ − μ2 |ψ̂K |2

2

∣∣∣∣∣ � Cμ2+3/2‖(ψ, ψ̄)‖2
Hρ,0 (169)

for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| � (2+δ)| log μ|
ρ

. Moreover,

|Eκ| � Cμ6‖(ψ, ψ̄)‖2
Hρ,1 (170)

for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| > (2+δ)| log μ|
ρ , and Eκ = 0 otherwise.

We defer the proof of the above proposition to appendix D.
Now, consider the normal form equation, namely the following cubic defocusing one-

dimensional NLS

−iψτ = −∂2
y1
ψ +

3β
4
|ψ|2ψ. (171)

and consider a solution (ψ̃a,
¯̃
ψa) such that it belongs to Hρ,n, for some n > 0.

We consider the approximate solutions (Qa, Pa) of the KG lattice (20) (in the following
τ = μ2t)

Qa(t, y) :=
μ√
2

[
eiτ ψ̃a(τ , y1, y2) + e−iτ ¯̃ψa(τ , y1, y2)

]
, (172)

Pa(t, y) :=
μ√
2i

[
eiτ ψ̃a(τ , y1, y2) + e−iτ ¯̃ψa(τ , y1, y2)

]
. (173)

We need to compare the difference between the approximate solution (172) and (173)
and the true solution of (20). Let us consider (20), and take an initial datum (Q0, P0) with
corresponding Fourier coefficients (Q̂0,k, P̂0,k) given by (6); observe that

Q̂0,k 	= 0 only if κ(k) = (μK1,μσK2). (174)

Since P0 and Q0 are analytic functions, there exist C, ρ > 0 such that

|P̂0,k|2 + ω2
k |Q̂0,k|2

N
� C e−2ρ|(κ1(k)/μ,κ2(k)/μσ )|. (175)
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Moreover, we define an interpolating function for the initial datum (Q0, P0) by

Q0(t, y) =
1√
N

∑
K:(μ2|K1|2+μ2σ|K2|2)1/2

=|κ(k)|�1

Q̂0,K(t)eiπ(μK1y1+μσK2y2),

and similarly for y �→ P0(y).

Proposition 6.10. Consider (20) with σ > 1 and γ > 0 such that σ + 2γ < min(4σ −
1, 7). Let us assume that the initial datum satisfies (174) and (175), and denote
by (Q j(t), P j(t)) j∈ZN1,N2

the corresponding solution. Consider the approximate solution

(ψ̃a(t, x),
¯̃
ψa(t, x)) with the corresponding initial datum. Assume that (ψ̃a,

¯̃
ψa) ∈ Hρ,n for some

ρ > 0 and for some n � 0 for all times, and fix T0 > 0 and 0 < δ � 1.

Then there exists μ0 = μ0(T0, σ, ‖(ψ̃a(0),
¯̃
ψa(0))‖Hρ,n) such that, if μ < μ0, we have that

there exists C > 0 such that

sup
j
|Q j(t) − Qa(t, j)|+ |P j(t) − Pa(t, j)| � Cμγ , ∀ |t| � T0

μ2
, (176)

where (Qa, Pa) are given by (172) and (173). Moreover,∣∣∣∣∣Eκ(t) − μ2 |ψ̂K(τ )|2
2

∣∣∣∣∣ � Cμ2+γ , |t| � T0

μ2
(177)

for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| � (2+δ)| log μ|
ρ

. Moreover,

|Eκ(t)| � μ2+γ , |t| � T0

μ2
(178)

for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| > (2+δ)| log μ|
ρ

, and Eκ = 0 otherwise.

We defer the proof to appendix E.

Remark 6.11. The conditionσ + 2γ < min(4σ − 1, 7), which, together with γ > 0, implies
the upper bound σ < 7 found in the statement of theorem (2.7), is the consequence of a tech-
nical condition which allows to estimate the error in the proof of proposition 6.10 (see claim
2, together with (268)–(270)).

Proof of theorem 2.7. First we prove (26).
We consider an initial datum as in (25); when passing to the continuous approximation

(103), this initial datum corresponds to an initial data (ξ0, η0) ∈ Hρ0,n. By theorem 5.5 the
corresponding sequence of gaps belongs to Hρ0,n, and that the solution (ξ(τ ), η(τ )) is analytic
in a complex strip of width ρ(t). Taking the minimum of such quantities one gets the coefficient
ρ appearing in the statement of theorem (2.7). Applying proposition 6.10, we can deduce the
corresponding result for the discrete model (22) and the specific quantities (10).

Next, we prove (28). In order to do so, we exploit the Birkhoff coordinates (x, y) introduced
in theorem 5.6; indeed, by rewriting the normal form system (116) in Birkhoff coordinates we
get that every solution is almost-periodic in time. Now, let us introduce the quantity

EK :=
1
2

∣∣∣ψ̂K

∣∣∣2
,

then τ �→ EK(x(τ ), y(τ )) is almost-periodic. Hence we can exploit (177) in proposition 6.10 to
translate the results in terms of the specific quantities Eκ, and we get the thesis. �

5017



Nonlinearity 34 (2021) 4983 M Gallone and S Pasquali

Acknowledgments

The authors would like to thank Dario Bambusi, Alberto Maspero, Tiziano Penati and Anto-
nio Ponno for useful comments and suggestions. We also thank the anonymous referees for
suggesting improvements to the paper. SP acknowledges financial support from the Spanish
‘Ministerio de Ciencia, Innovación y Universidades’, through the María de Maeztu Programme
for Units of Excellence (2015–2019) and the Barcelona Graduate School of Mathematics, and
partial support by the Spanish MINECO-FEDERGrant MTM2015-65715-P. MG acknowl-
edges financial support from the MIUR-PRIN 2017 project MaQuMA cod. 2017ASFLJR,
INdAM (GNFM) and also the Department of Mathematics at ‘Universitat Politécnica de
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Appendix A. Proof of lemma 3.6

This appendix is devoted to the proof of the lemma 3.6, which is a key step to normalize the
system (48). Its proof is an adaptation of theorem 4.4 in [Bam99] and it is based on the method
of Lie transform, briefly recalled in the following. Throughout this section, we consider s � s1

and ρ � 0 to be fixed quantities.
Given an auxiliary function χ analytic on Hρ,s, we consider the auxiliary differential

equation

ζ̇ = Xχ(ζ) (179)

and denote by Φt
χ its flow at time t.

Lemma A.1. Let χ and its vector field be analytic in Bρ,s(R). Fix d < R, and assume that

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s � d.

Then, if we consider the time-t flow Φt
χ of Xχ we have that for |t| � 1

sup
ζ∈Bρ,s(R−d)

‖Φt
χ(ζ) − ζ‖Hρ,s � sup

ζ∈Bρ,s(R)
‖Xχ(ζ)‖Hρ,s .

Definition A.2. The map Φχ :=Φ1
χ is called the Lie transform generated by χ.

Given G analytic on Hρ,s, let us consider the differential equation

ζ̇ = XG(ζ), (180)

where by XG we denote the vector field of G. Now define

Φ∗
χG(ζ̃) :=G ◦ Φχ(ζ̃).

By exploiting the fact that Φχ is a canonical transformation, we have that in the new variable
ζ̃ defined by ζ = Φχ(ζ̃) equation (180) is equivalent to

˙̃ζ = XΦ∗
χG(ζ̃). (181)
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Using the relation

d
dt
Φ∗

χG = Φ∗
χ{χ, G}, (182)

and the Poisson bracket formalism {G1, G2}(ζ) := dG1(ζ)[XG2 (ζ)] we formally get

Φ∗
χG =

∞∑
�=0

G�,

G0 :=G,

G� :=
1
�
{χ, G�−1}, � � 1.

(183)

In order to estimate the vector field of the terms appearing in (183), we exploit the following
results

Lemma A.3. Let R > 0, and assume thatχ, G are analytic on Bρ,s(R) as well as their vector
fields. Then, for any d ∈ (0, R) we have that {χ, G} is analytic on Bρ,s(R − d), and

sup
ζ∈Bρ,s(R−d)

‖X{χ,G}(ζ)‖Hρ,s � 2
d

(
sup

ζ∈Bρ,s(R)
‖Xχ(ζ)‖Hρ,s

)(
sup

ζ∈Bρ,s(R)
‖XG(ζ)‖Hρ,s

)
.

(184)

Proof. Observe that

‖X{χ,G}(ζ)‖Hρ,s = ‖dXχ(ζ)XG(ζ) − dXG(ζ)Xχ(ζ)‖Hρ,s

� ‖dXχ(ζ)XG(ζ)‖Hρ,s + ‖dXG(ζ)Xχ(ζ)‖Hρ,s ,

and since for any d ∈ (0, R) Cauchy inequality gives

sup
ζ∈Bρ,s(R−d)

‖dXχ(ζ)‖Hρ,s→Hρ,s � 1
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s ,

we finally get

sup
ζ∈Bρ,s(R−d)

‖dXχ(ζ)XG(ζ)‖Hρ,s � 1
d

(
sup

ζ∈Bρ,s(R)
‖Xχ(ζ)‖Hρ,s

)

×
(

sup
ζ∈Bρ,s(R)

‖XG(ζ)‖Hρ,s

)
.

With a similar estimate for the other term we obtain the thesis. �

Lemma A.4. Let R > 0, and assume thatχ, G are analytic on Bρ,s(R) as well as their vector
fields. Let � � 1, and consider G� as defined in (183); for any d ∈ (0, R), G� is analytic on
Bρ,s(R − d) as well as it vector field, and

sup
ζ∈Bρ,s(R−d)

‖XG�
(ζ)‖Hρ,s �

(
2e
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

)�

sup
ζ∈Bρ,s(R)

‖XG(ζ)‖Hρ,s.

(185)
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Proof. Fix � � 1. We look for a sequence C(�)
m such that

sup
ζ∈Bρ,s(R−md/�)

‖XGm (ζ)‖Hρ,s � C(�)
m , ∀ m � �.

Lemma A.3 ensures that the following sequence satisfies this property.

C(�)
0 := sup

ζ∈Bρ,s(R)
‖XG(ζ)‖Hρ,s ,

C(�)
m =

2�
dm

C(�)
m−1 sup

ζ∈Bρ,s(R)
‖Xχ(ζ)‖Hρ,s.

One has

C(�)
� =

1
�!

(
2�
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

)�

sup
ζ∈Bρ,s(R)

‖XG(ζ)‖Hρ,s ,

and by using the inequality �� < �!e� one obtains the estimate (185). �

Before stating the next lemma, we point out that the Poisson tensor Ω−1
2 , obtained by inver-

sion from the associated symplectic form Ω2 in (35), is not a bounded operator on Hρ,s. We
thus have to weaken the hypothesis of theorem 4.4 in [Bam99]; indeed, we just assume that

‖Ω−1 f ‖Hρ,s � ‖ f ‖Hρ,s+1.

This property is satisfied by both Ω−1
1 and Ω−1

2 .

Lemma A.5. Let χ and F be analytic onBρ,s(R) as well as their vector fields. Fix d ∈ (0, R),
and assume also that

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s � d/3.

Then for |t| � 1

sup
ζ∈Bρ,s(R−d)

‖X(Φt
χ)∗F−F(ζ)‖Hρ,s � 9

d
sup

ζ∈Bρ,s(R)
‖Xχ(ζ)‖Hρ,s sup

ζ∈Bρ,s(R)
‖XF(ζ)‖Hρ,s . (186)

Proof. Since the bound on the norm of Xχ implies that Φt
χ(ζ) ∈ Bρ,s(R) when ζ ∈ Bρ,s(R −

d/3), using Cauchy inequality and lemma A.1

sup
ζ∈Bρ,s(R−d)

‖dΦ−t
χ (Φt

χ(ζ)) − id‖Hρ,s→Hρ,s

� sup
ζ∈Bρ,s(R−2d/3)

‖dΦ−t
χ (ζ) − id‖Hρ,s→Hρ,s

� 3
d

sup
ζ∈Bρ,s(R−d/3)

‖Φ−t
χ (ζ) − ζ‖Hρ,s

� 3
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s.
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Since Φt
χ is a canonical transformation, a direct computation shows

Ω−1d(F ◦ Φt
χ)(ζ) = (dΦ−t

χ (Φt
χ(ζ)) − id)Ω−1dF(Φt

χ) +Ω−1 dF(Φt
χ(ζ))

hence

sup
ζ∈Bρ,s(R−d)

‖X(Φt
χ)∗F−F (ζ) ‖Hρ,s

= sup
ζ∈Bρ,s(R−d)

‖Ω−1d
(
F
(
Φt

χ (ζ)
)
− F (ζ)

)
‖Hρ,s

� sup
ζ∈Bρ,s(R−d)

‖
(
dΦ−t

χ

(
Φt

χ (ζ)
)
− id

)
Ω−1 dF

(
Φt

χ

)
+Ω−1 d

(
F
(
Φt

χ (ζ)
)
− F (ζ)) ‖Hρ,s

� sup
ζ∈Bρ,s(R−d)

‖dΦ−t
χ

(
Φt

χ (ζ)
)
− id‖Hρ,s→Hρ,s

× sup
ζ∈Bρ,s(R−d)

‖XF
(
Φt

χ (ζ)
)
‖Hρ,s + sup

ζ∈Bρ,s(R−d)
‖XF

(
Φt

χ (ζ)
)
− XF (ζ) ‖Hρ,s

� 3
d

sup
ζ∈Bρ,s(R)

‖Xχ (ζ) ‖Hρ,s sup
ζ∈Bρ,s(R)

‖XF (ζ) ‖Hρ,s

+ sup
ζ∈Bρ,s(R−d)

∥∥∥∥∫ t

0
[Xχ, XF]

(
Φs

χ (ζ)
)

ds

∥∥∥∥
Hρ,s

.

To estimate the last term we use Cauchy inequality

sup
ζ∈Bρ,s(R−d)

∥∥∥∥∫ t

0
[Xχ, XF](Φs

χ(ζ))ds

∥∥∥∥
Hρ,s

� 2 sup
ζ∈Bρ,s(R−2d/3)

‖[Xχ, XF](ζ)‖Hρ,s

� 6
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
ζ∈Bρ,s(R)

‖XF(ζ)‖Hρ,s .

Then the thesis follows. �

Lemma A.6. Assume that G is analytic on Bρ,s(R) as well as its vector field, and that h0

satisfies (PER). Then there exists χ analytic on Bρ,s(R) and Z analytic on Bρ,s(R) with Z in
normal form, namely {h0, Z} = 0, such that

{χ, h0}+ G = Z. (187)

Such Z and χ are given explicitly by

Z(ζ) =
1
T

∫ T

0
G(Φt

h0
(ζ))dt, (188)

χ(ζ) =
1
T

∫ T

0
t
[
Z(Φt

h0
(ζ)) − G(Φt

h0
(ζ))

]
dt. (189)
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Furthermore, we have that the vector fields of χ and Z are analytic on Bρ,s(R), and satisfy

sup
ζ∈Bρ,s(R)

‖XZ(ζ)‖Hρ,s � sup
ζ∈Bρ,s(R)

‖XG(ζ)‖Hρ,s ,

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s � 2T sup
ζ∈Bρ,s(R)

‖XG(ζ)‖Hρ,s

. (190)

Proof. We check directly that the solution of (187) is (189). Indeed,

{χ, h0}(ζ) =
d
ds

∣∣∣∣
s=0

χ(Φs
h0

(ζ))

=
1
T

∫ T

0
t

d
ds

∣∣∣∣
s=0

[
Z(Φt+s

h0
(ζ)) − G(Φt+s

h0
(ζ))

]
dt

=
1
T

∫ T

0
t

d
dt

[
Z(Φt

h0
(ζ)) − G(Φt

h0
(ζ))

]
dt

=
1
T

[
tZ(Φt

h0
(ζ)) − tG(Φt

h0
(ζ))

]T

t=0
− 1

T

∫ T

0

[
Z(Φt

h0
(ζ))− G(Φt

h0
(ζ))

]
dt

= Z(ζ) − G(ζ).

In the last step we used the explicit expression of Z provided in (188). Finally, the first estimate
in (190) follows from the explicit expression of Z in (188) while for the second estimate we
write explicitly the vector field Xχ:

Xχ(ζ) =
1
T

∫ T

0
tDΦ−t

h0
(Φt

h0
(ζ)) ◦ XZ−G(Φt

h0
(ζ))dt.

Hypothesis (PER) guarantees that Φt
h0

as well as its derivatives and the inverses are uniformly
bounded as operators from Hρ,s into itself. Moreover, for any t ∈ R, the map ζ �→ Φt

h0
(ζ) is a

diffeomorphism of Bρ,s(R) into itself. Using the fact that Φt
h0

is an isometry, we have

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s � T sup
ζ∈Bρ,s(R)

(
‖XZ(ζ)‖Hρ,s + ‖XG(ζ)‖Hρ,s

)
� 2T sup

ζ∈Bρ,s(R)
‖XG(ζ)‖Hρ,s

where in the last step we used the first inequality in (190). �

Lemma A.7. Assume that G and its vector fields are analytic onBρ,s(R), and that h0 satisfies
(PER). Let χ and its vector field be analytic on Bρ,s(R), and assume that χ solves (187). For
any � � 1 denote by h0,� the functions defined recursively as in (183) from h0. Then for any
d ∈ (0, R) one has that h0,� and its vector field are analytic on Bρ,s(R − d), and

sup
ζ∈Bρ,s(R−d)

‖Xh0,�(ζ)‖Hρ,s � 2 sup
ζ∈Bρ,s(R)

‖XG(ζ)‖Hρ,s

(
9
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s

)�

. (191)

Proof. By using (187) one gets that h0,1 = Z − G is analytic on Bρ,s(R). Then by exploiting
(186) one gets the result. �
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Lemma A.8. Assume that G and its vector field are analytic on Bρ,s(R), and that h0 satisfies
(PER). Let χ be the solution of (187), denote by Φt

χ the flow of the Hamiltonian vector field
associated to χ and by Φχ the corresponding time-one map. Moreover, denote by

F (ζ) :=h0(Φχ(ζ)) − h0(ζ) − {χ, h0}(ζ).

Let d < R, and assume that

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s � d/3.

Then we have that F and its vector field are analytic on Bρ,s(R − d), and

sup
ζ∈Bρ,s(R−d)

‖XF (ζ)‖Hρ,s � 18
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
ζ∈Bρ,s(R)

‖XG(ζ)‖Hρ,s. (192)

Proof. Since

h0(Φχ(ζ)) − h0(ζ) =
∫ 1

0
{χ, h0} ◦ Φt

χ(ζ)dt

(187)
=

∫ 1

0
Z(Φt

χ(ζ)) − G(Φt
χ(ζ))dt,

if we define F(ζ) :=Z(ζ) − G(ζ), we get

F (ζ) =
∫ 1

0

(
F(Φt

χ(ζ)) − F(ζ)
)

dt.

Now, we have

sup
ζ∈Bρ,s(R−d)

‖XF (ζ)‖Hρ,s

= sup
ζ∈Bρ,s(R−d)

∥∥∥∥Ω−1d

[∫ 1

0

(
F(Φt

χ(ζ)) − F(ζ)
)

dt

]∥∥∥∥
Hρ,s

� sup
ζ∈Bρ,s(R−d)

∥∥∥∥∫ 1

0

[
(dΦ−t

χ (Φt
χ(ζ)) − id)Ω−1 dF(Φt

χ)

+Ω−1 d(F(Φt
χ(ζ)) − F(ζ))

]
dt

∥∥∥∥
Hρ,s

� sup
ζ∈Bρ,s(R−d)

∥∥∥∥∫ 1

0
(dΦ−t

χ (Φt
χ(ζ)) − id)Ω−1 dF(Φt

χ)dt

∥∥∥∥
Hρ,s

+ sup
ζ∈Bρ,s(R−d)

∥∥∥∥∫ 1

0

(
XF(Φt

χ(ζ)) − XF(ζ)
)

dt

∥∥∥∥
Hρ,s

and by dominated convergence we can bound the last quantity by

sup
ζ∈Bρ,s(R−d)

sup
t∈[0,1]

‖dΦ−t
χ (Φt

χ(ζ)) − id‖Hρ,s→Hρ,s

× sup
ζ∈Bρ,s(R−d)

‖XF(Φt
χ(ζ))‖Hρ,s
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+ sup
ζ∈Bρ,s(R−d)

sup
t∈[0,1]

‖XF(Φt
χ(ζ)) − XF(ζ)‖Hρ,s

� sup
t∈[0,1]

sup
ζ∈Bρ,s(R−d)

‖dΦ−t
χ (Φt

χ(ζ)) − id‖Hρ,s→Hρ,s

× sup
ζ∈Bρ,s(R−d)

‖XF(Φt
χ(ζ))‖Hρ,s

+ sup
t∈[0,1]

sup
ζ∈Bρ,s(R−d)

‖XF(Φt
χ(ζ)) − XF(ζ)‖Hρ,s

� 3
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
ζ∈Bρ,s(R)

‖XF(ζ)‖Hρ,s

+ sup
t∈[0,1]

sup
ζ∈Bρ,s(R−d)

∥∥∥∥∫ t

0
[Xχ, XF](Φs

χ(ζ))ds

∥∥∥∥
Hρ,s

,

where we can estimate the last term by Cauchy inequality

sup
ζ∈Bρ,s(R−d)

∥∥∥∥∫ t

0
[Xχ, XF](Φs

χ(ζ))ds

∥∥∥∥
Hρ,s

� 2 sup
ζ∈Bρ,s(R−2d/3)

‖[Xχ, XF](ζ)‖Hρ,s

� 6
d

sup
ζ∈Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
ζ∈Bρ,s(R)

‖XF(ζ)‖Hρ,s .

By the above computations and (190) we obtain

sup
ζ∈Bρ,s(R−d)

‖XF (ζ)‖Hρ,s � 9
d

sup
Bρ,s(R)

‖Xχ(ζ)‖Hρ,s sup
ζ∈Bρ,s(R)

‖XF(ζ)‖Hρ,s

(190)
� 18

d
sup

ζ∈Bρ,s(R)
‖Xχ(ζ)‖Hρ,s sup

ζ∈Bρ,s(R)
‖X G (ζ)‖Hρ,s .

�

Lemma A.9. Let s � s1 � 1, R > 0, m � 0, 0 < ν � 1, and consider the Hamiltonian

H(m)(ζ) = h0(ζ) + δZ(m)(ζ) + δνm+1F(m)(ζ). (193)

Assume that h0 satisfies (PER) and (INV), and that

sup
ζ∈Bρ,s(R)

‖XF(0) (ζ)‖Hρ,s � F.

Fix d < R
m+1 , and set Rm :=R − md (m � 1).

Assume also that Z(m) is analytic on Bρ,s(Rm), and that

sup
ζ∈Bρ,s(Rm)

‖XZ(0) (ζ)‖Hρ,s = 0,

sup
ζ∈Bρ,s(Rm)

‖XZ(m) (ζ)‖Hρ,s � F
m−1∑
i=0

δνiKi
0, m � 1, (194)
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sup
ζ∈Bρ,s(Rm)

‖XF(m) (ζ)‖Hρ,s � FKm
0 , m � 1, (195)

with K0 � 15 and d > 3TδF.
Then, if δνK0 < 1/2 there exists a canonical transformation T (m)

δ analytic on Bρ,s(Rm+1)
such that

sup
ζ∈Bρ,s(Rm+1)

‖T (m)
δ (ζ) − ζ‖Hρ,s � 2Tδνm+1Km

0 F, (196)

H(m+1) :=H(m) ◦ T (m) has the form (193) and satisfies (195) with m replaced by m + 1.

Proof. The key point of the proof is to look for T (m)
δ as the time-one map of the Hamiltonian

vector field of an analytic function δνm+1χm. Hence, consider the differential equation

ζ̇ = Xδνm+1χm
(ζ). (197)

By standard theory we have that, if ‖Xδνm+1χm
‖Bρ,s(Rm) is small enough (e.g.‖Xδνm+1χm

‖Bρ,s(Rm) �
md

m+1 ) and ζ0 ∈ Bρ,s(Rm+1), then the solution of (197) exists for |t| � 1.
Therefore we can define T t

m,δ : Bρ,s(Rm+1) →Bρ,s(Rm), and in particular the corresponding

time-one map T (m)
δ := T 1

m,δ , which is an analytic canonical transformation, δνm+1-close to the
identity. We have

(T (m)
δ )∗(h0 + δZ(m) + δm+1F(m)) = h0 + δZ(m) + δνm+1

[
{χm, h0}+ F(m)]

+
(

h0 ◦ T (m)
δ − h0 − δνm+1{χm, h0}

)
+ δ

(
Z(m) ◦ T (m)

δ − Z(m)
)

(198)

+ δνm+1
(

F(m) ◦ T (m)
δ − F(m)

)
. (199)

It is easy to see that the first two terms on the right-hand side are already normalized, that the
third term is the non-normalized part of order m + 1 that can be normalized through the choice
of a suitable χm, and that (198) and (199) contain all the terms of order higher than m + 1.

In order to normalize the third term on the right-hand side we solve the homological equation

{χm, h0}+ F(m) = Zm+1,

with Zm+1 in normal form. Lemma A.6 ensures the existence of χm and Zm+1 as well as their
explicit expressions:

Zm+1(ζ) =
1
T

∫ T

0
F(m)(Φt

h0
(ζ))dt,

χm(ζ) =
1
T

∫ T

0
t[F(m)(Φt

h0
(ζ)) − Zm+1(Φt

h0
(ζ))]dt.

The explicit expression of Xχm can be computed following the argument of lemma A.6. Using
this explicit expression, the analyticity of the flow Φt

h0
ensured by (PER) and (190) one has

sup
ζ∈Bρ,s(Rm)

‖Xχm(ζ)‖Hρ,σ � 2T sup
ζ∈Bρ,s(Rm)

‖XF(m)‖Hρ,σ � 2TKm
0 F. (∗)
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Straightforwardly, from the explicit expression of Zm+1(ζ) and (195) one has

sup
ζ∈Bρ,s(Rm)

‖XZm+1‖Hρ,s � Km
0 F.

Now define Z(m+1) :=Z(m) + δνmZm+1 and notice that as a consequence of the latter estimate
and (194) we have

sup
ζ∈Bρ,s(Rm+1)

‖XZ(m+1) (ζ)‖ � sup
ζ∈Bρ,s(Rm+1)

‖XZ(m) (ζ)‖Hρ,s + sup
ζ∈Bρ,s(Rm+1)

‖XδνmZm+1 (ζ)‖Hρ,s

� F

⎛⎝m−1∑
j=0

δν jK j
0 + δνmKm

0

⎞⎠ .

Defining now T (m)
δ (ζ) :=Φ1

δνm+1χm
(ζ) we can apply lemma A.1 and (∗) to obtain

sup
ζ∈Bρ,s(Rm+1)

‖T (m)
δ (ζ) − ζ‖Hρ,s = sup

ζ∈Bρ,s(Rm+1)
‖Φ1

δνm+1χm
(ζ) − ζ‖Hρ,s

� sup
ζ∈Bρ,s(Rm)

‖Xδνm+1χm
‖Hρ,s

� 2Tδνm+1Km
0 F.

Let us set now δν(m+1)+1F(m+1) := (198) + (199). Using lemma A.5 one can estimate sep-
arately the three pieces. We notice that supBρ,s(Rm) ‖Xδνm+1χm

‖Hρ,s � 2Tδνm+1Km
0 F and since

δνK0 < 1
2 we have supBρ,s(Rm) ‖Xδνm+1χm

‖Hρ,s < TδF < d
3 � (m+1)d

3 . We can thus apply lemmas
A.5 and A.8 to get

sup
ζ∈B(Rm+1)

‖XZ(m)◦T (m)
δ

−Z(m) (ζ)‖Hρ,s

� 27δνm+1

(m + 1)d
sup

ζ∈Bρ,s(Rm)
‖Xχm(ζ)‖Hρ,s sup

ζ∈Bρ,s(Rm)
‖XZ(m)‖Hρ,s ,

sup
ζ∈B(Rm+1)

‖XF(m)◦T (m)
δ

−F(m) (ζ)‖Hρ,s

� 27δνm+1

(m + 1)d
sup

ζ∈Bρ,s(Rm)
‖Xχm(ζ)‖Hρ,s sup

ζ∈Bρ,s(Rm)
‖XF(m)‖Hρ,s ,

sup
ζ∈B(Rm+1)

‖Xh0◦T (m)
δ

−h0−δνm+1{χm ,h0}
‖Hρ,s

� 18 δ2mν+2

(m + 1)d
sup

ζ∈Bρ,s(Rm)
‖Xχm(ζ)‖Hρ,s sup

ζ∈Bρ,s(Rm)
‖XF(m) (ζ)‖Hρ,s .

By means of these inequalities and by exploiting ‖Xδνm+1χm
‖Hρ,s � (m+1)d

3 together with
assumptions (194) and (195), we can estimate

sup
ζ∈Bρ,s(Rm+1)

‖Xδν(m+1)+1F(m+1) (ζ)‖Hρ,s

� 9δν(m+1)+1 sup
ζ∈Bρ,s(Rm)

‖XZ(m) (ζ)‖Hρ,s + 9δ2mν+2 sup
ζ∈Bρ,s(Rm)

‖XF(m) (ζ)‖Hρ,s
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+ 6δ2mν+2 sup
ζ∈Bρ,s(Rm)

‖XF(m) (ζ)‖Hρ,s

� 9δν(m+1)+1F
m−1∑
i=0

δiKi
0 + 9δ2mν+2FKm

0 + 6δ2mν+2FKm
0

= δν(m+1)+1

(
9F

m−1∑
i=0

δiKi
0 + 9δν(m−1)+1FKm

0 + 6δν(m−1)+1FKm
0

)
.

If m = 0 then we have

sup
ζ∈Bρ,s(R1)

‖Xδ1+νF(1)‖Hρ,s � δ1+ν(9F + 6F).

If m � 1 we exploit the smallness condition δνK0 < 1
2 to get

∑m−1
i=0 δ

νiKi
0 < 2 and

sup
ζ∈Bρ,s(Rm+1)

‖Xδν(m+1)+1F(m+1)‖Hρ,s

� δν(m+1)+1

(
6F + 9δK0

F
2m−1

+ 6δK0
F

2m−1

)
, (200)

and since 0 < ν � 1 the right-hand side of (200) can be bounded by

δν(m+1)+1

(
6F + 9δ1−ν F

2m
+ 6δ1−ν F

2m

)
� 15δν(m+1)+1F.

�

Proof of lemma 3.6. The Hamiltonian (48) satisfies the assumptions of lemma A.9 with
m = 0, F1,M in place of F(0), F = K(F)

1,s M2+Γ. So we apply lemma A.9 with d = R/4, provided
that

δ <
R

12TF
=

R

12TK(F)
1,s M2+Γ

which is true due to (57). Hence there exists an analytic canonical transformation T (0)
δ,M :

Bρ,s(3R/4) →Bρ,s(R) with

sup
ζ∈Bρ,s(3R/4)

‖T (0)
δ,M(ζ) − ζ‖Hρ,s � 2TFδ,

such that

H1,M ◦ T (0)
δ,M = h0 + δZ(1)

M + δ1+νR(1)
M , (201)

Z(1)
M := 〈F1,M〉 , (202)

δ1+νR(1)
M := δ1+νF(1)

=
(

h0 ◦ T (0)
δ,M − h0 − δ{χ1, h0}

)
+ δ

(
Z(1)

M ◦ T (0)
δ,M − Z(1)

M

)
+ δ1+ν

(
F1,M ◦ T (0)

δ,M − F1,M

)
, (203)
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sup
ζ∈Bρ,s(3R/4)

‖XZ(1)
M

(ζ)‖Hρ,s � F, (204)

sup
ζ∈Bρ,s(3R/4)

‖XR(1)
N

(ζ)‖Hρ,s � 15F. (205)

and K0 = 15, hence δ < 1
301/ν . �

Appendix B. Proof of propositions 6.5 and 6.2

Proof of proposition 6.5. In order to prove proposition 6.5 we first discuss the specific
energies associated to the high modes, and then the ones associated to the low modes.

First we remark that for all k such that κ(k) = (μK1, μσK2) we have∣∣∣∣ω2
k

μ2

∣∣∣∣ (8)
=

4
μ2

[
sin2

(
k1π

2N1 + 1

)
+ sin2

(
k2π

2N2 + 1

)]
=

4
μ2

[
sin2

(
μK1π

2

)
+ sin2

(
μσK2π

2

)]
� π2(K2

1 + μ2(σ−1)K2
2 ); (206)

moreover, for K1 	= 0

|q̂K|2 + π2(K2
1 + μ2(σ−1)K2

2 )|p̂K|2
2

� π2 e−2ρ|K| |q̂K|2 + (K2
1 + μ2(σ−1)K2

2 )|p̂K|2
2

e2ρ|K|

� π2 e−2ρ|K|
(

1 + μ2(σ−1) K2
2

K2
1

)
‖(ξ, η)‖2

Hρ,0, (207)

while for |K2| � |K1|

|q̂K|2 + π2(K2
1 + μ2(σ−1)K2

2 )|p̂K|2
2

|K2|�|K1 |
� 2π2 e−2ρ|K|‖(ξ, η)‖2

Hρ,0. (208)

In order to estimate Eκ for large K1 and K2, it is convenient to divide the frequency-space in
different regions and bound the terms supported in each region separately. Unlike the one-
dimensional case, only few terms will turn out to be exponentially small with respect to μ, so
the introduction of different regions in the frequency space will help us estimating most of the
terms in an efficient way. Let us define

L μ,δ,ρ :=

{
L = (L1, L2) ∈ Z

2 : μL1,μσL2 ∈ 2Z, |K1|

+ |K2| >
(2 + δ)| log μ|

ρ

}
. (209)
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Using the explicit expression (150) we obtain

Eκ
μ4

=
∑

L∈L μ,δ,ρ
|K2+L2|�|K1+L1|

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

μ

∣∣∣∣2
)

+
∑

L∈L μ,δ,ρ
|K2+L2|>|K1+L1|

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

μ

∣∣∣∣2
)

(206),(208),(77)
� π2‖(ξ, η)‖2

Hρ,02
∑

L∈L μ,δ,ρ
|K2+L2|�|K1+L1|

e−2ρ|K+L|

+ π2‖(ξ, η)‖2
Hρ,0

∑
L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0

e−2ρ|K+L|

×
(

1 + μ2(σ−1) (K2 + L2)2

(K1 + L1)2

)
+ π2 ‖(ξ, η)‖2

Hρ,0

×
∑

L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1=0

e−2ρ|K2+L2|.

Now, ∑
L∈L μ,δ,ρ

e−2ρ|K+L| � e−2ρ|K| +
∑

L∈L μ,δ,ρ
L1=0,L2 	=0

e−2ρ|K+L|

+
∑

L∈L μ,δ,ρ
L1 	=0,L2=0

e−2ρ|K+L| +
∑

L∈L μ,δ,ρ
L1,L2 	=0

e−2ρ|K+L|. (210)

We now estimate the last sum in (210); we point out that for L1, L2 	= 0 we have |L| � 2
μ
+ 2

μσ
,

hence 2|K| � |L|.
Therefore, for any k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| � (2+δ)| log μ|

ρ∑
L∈L μ,δ,ρ
L1,L2 	=0

e−2ρ|K+L| �
∑

L∈L μ,δ,ρ
L1,L2 	=0

e−2ρ||K|−|L|| �
∑

L∈L μ,δ,ρ
L1,L2 	=0

e2ρ|K| e−2ρ|L|

� e2ρ|K|2π
∫ +∞

2|K|
R e−2ρR dR

= 2π e2ρ|K|
(
−1

2

)
d

dρ

[∫ +∞

2|K|
e−2ρR dR

]

= −π e2ρ|K| d
dρ

(
e−4ρ|K|

2ρ

)
=

π

2ρ

(
1
ρ
+ 4

)
e−2ρ|K|. (211)

5029



Nonlinearity 34 (2021) 4983 M Gallone and S Pasquali

Next we estimate the second sum in (210); we have∑
L∈L μ,δ,ρ

L1 	=0,L2=0

e−2ρ|K+L| � e−2ρ(|K1|+|K2|)
∑

�∈Z\{0}
e−4ρ|�|/μ, (212)

which is exponentially small with respect to μ. Similarly,∑
L∈L μ,δ,ρ

L1=0,L2 	=0

e−2ρ|K+L| � e−2ρ(|K1|+|K2|)
∑

�∈Z\{0}
e−4ρ|�|/μσ. (213)

Then, ∑
L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

� e−2ρ|K|
(

K2

K1

)2

+
∑

L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0
L1 	=0,L2=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

+
∑

L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0
L1=0,L2 	=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

+
∑

L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0
L1,L2 	=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2
. (214)

First we estimate the last term in (214): we have that |L + K| � |K|, hence∑
L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0
L1,L2 	=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

=

∫ +∞

|K|

∫ π/4

0
e−2ρξ ξ tan2 φ dφ dξ

=
(

1 − π

4

)
e−2ρ|K| 1 + 2ρ|K|

4ρ2

�
(

1 − π

4

)
μ4e−2ρ

[
|K|− 2| log μ|

ρ − 1
2ρ log(2ρ|K|)

]

δ<1−1/e
�

(
1 − π

4

)
μ4 e−2ρ

[
δ|K|− 2| log μ|

ρ

]

=
(

1 − π

4

)
μ8 e−2ρδ|K|. (215)
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Now we bound the other two nontrivial terms in (214); on the one hand, we notice that

∑
L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0
L1 	=0,L2=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

= K2
2

∑
L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0
L1 	=0,L2=0

e−2ρ|K+L| 1
(K1 + L1)2

� K2
2 e−2ρ|K|

∑
�∈Z\{0}

e−4ρ|�|/μ

� 2K2
2 e−2ρ|K|

∫ +∞

1
e−4ρ|�|/μ d�, (216)

where the last integral is exponentially small with respect to μ, while on the other hand

∑
L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0
L1 	=0,L2=0

e−2ρ|K+L| (K2 + L2)2

(K1 + L1)2

� 1
K2

1

∑
L∈L μ,δ,ρ
|K2+L2|>|K1+L1|
K1+L1 	=0
L1=0,L2 	=0

e−2ρ|K+L|(K2 + L2)2

� 1
K2

1

e−2ρ|K|
∑

�∈Z\{0}
e−4ρ|�|/μσ

(
K2

1 + 2K1
�

μσ
+

�2

μ2σ

)

� 2 e−2ρ|K|

K2
1

∫ +∞

1
e−4ρ|�|/μσ

(
K2

1 + 2K1
�

μσ
+

�2

μ2σ

)
d�, (217)

and the last integral is again exponentially small with respect to μ.
On the other hand, for any k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| � (2+δ)| log μ|

ρ∣∣∣∣∣Eκμ4
− |ξ̂K|2 + |η̂K |2

2

∣∣∣∣∣
�

∣∣∣∣ω2
k − μ2 π2K2

1

2μ2

∣∣∣∣ |p̂K|2 +
1
2

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(
|q̂K+L|2 + ω2

k

∣∣∣∣ p̂K+L

μ

∣∣∣∣2
)

,

(206)
� (μ2π4K4

1 + π2μ2(σ−1)K2
2)|p̂K |2

+
1
2

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(
|q̂K+L|2 + π2

[
(K1 + L1)2
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+ μ2(σ−1)(K2 + L2)2
]
|p̂K+L|2

)
,

�
(
π4μ2K4

1 + π2μ2(σ−1) 9| log μ|2
ρ2

)
|p̂K|2

+
1
2

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(
|q̂K+L|2 + π2

[
(K1 + L1)2

+ μ2(σ−1)(K2 + L2)2
]
|p̂K+L|2

)
,

�
(
π4 μ2 + π2μ2(σ−1)

) 9| log μ|2
ρ2

2‖(ξ, η)‖2
Hρ,0 (218)

+
π2

2

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

e2ρ|K+L|(|ξ̂K+L|2 + |η̂K+L|2)

×
(

1 + 2μ2(σ−1) K2
2 + L2

2

(K1 + L1)2

)
e−2ρ|K+L|, (219)

and we can conclude by estimating (218) by exploiting the fact that |logμ| � μ−1/4, while we
can estimate (219) by

π2

2
‖(ξ, η)‖2

Hρ,0

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(
1 + 2μ2(σ−1) K2

2 + L2
2

(K1 + L1)2

)
e−2ρ|K+L|

� π2

2
‖(ξ, η)‖2

Hρ,0

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(
1 + 2μ2(σ−1)K2

2 + 2μ2(σ−1)L2
2

)

× e−2ρ|K+L|

� π2

2
‖(ξ, η)‖2

Hρ,0

[
(1 + 2μ2(σ−1)K2

2)2π
∫ +∞

2/μ
e−2ρ� �d�

+ 4π
∫ +∞

2/μ
e−2ρ� �3d�

]

=
π2

2
‖(ξ, η)‖2

Hρ,0

×
[

2π

(
1 + 2μ2(σ−1) 9| log μ|2

ρ2

)
e−4ρ/μ μ+ 4ρ

4μρ2

+ 4π e−4ρ/μ 3μ3 + 12ρμ2 + 24ρ2 μ+ 32ρ3

8μ3ρ4

]
. (220)

�

Proof of proposition 6.2. Proposition 6.2 is obtained as a corollary of proposition 6.5 by
setting σ = 2. �
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Appendix C. Proof of propositions 6.6 and 6.3

Proof of proposition 6.6. The argument follows along the lines of appendix C in [BP06].
Exploiting the canonical transformation found in theorem 3.3, we also define

ζa := (ξa, ηa) = Tμ2 (ξ̃a, η̃a) = ζ̃a + ψa(ζ̃a), (221)

where ψa(ζ̃a) := (ψξ(ζ̃a),ψη(ζ̃a)); by (46) we have

sup
ζ∈Bρ,n(R)

‖ψa(ζ)‖Hρ,n � C′
nμ

2R. (222)

For convenience we define

qa(τ , y) :=
1√
2

[
ξa(μ2τ , y1 − τ , y2) + ηa(μ2τ , y1 + τ , y2)

]
(223)

∂y1 pa(τ , y) :=
1√
2

[
ξa(μ2τ , y1 − τ , y2) − ηa(μ2τ , y1 + τ , y2)

]
. (224)

We observe that the pair (qa, pa) satisfies

μ2(qa)t = −Δ1μpa + μmin(2σ,6)Rq,μ(pa)t

= −μ2qa − μ4απ0q2
a + μmin(2σ−1,5)Rp,

where the operator Δ1 acts on the variable x, π0 is the projector on the space of the func-
tions with zero average (defined in section 3), and the remainders are functions of the rescaled
variables τ and y which satisfy

sup
Bρ,n(R)

‖Rq‖�2
ρ,0

� C, sup
Bρ,n(R)

‖Rp‖�2
ρ,1

� C.

We now restrict the space variables to integer values; keeping in mind that qa and pa are
periodic, we assume that j ∈ Z

2
N1,Nσ

1
.

For a finite sequence Q = (Q j) j∈Z2
N1,Nσ

1

we define the norm

‖Q‖2
�2

N1,Nσ
1

:=
∑

j∈Z2
N1,Nσ

1

|Q j|2. (225)

Now we consider the discrete model (5): we rewrite in the following form,

Q̇ j = −(Δ1P) j (226)

Ṗ j = −Q j − απ0Q2
j (227)

and we want to show that there exist two sequences E = (E j) j∈Z2
N1,Nσ

1

and F = (F j) j∈Z2
N1,Nσ

1

such

that

Q = μ2qa + μ2+γE, P = μpa + μ2+γF

fulfills (226) and (227), where γ > 0 is a parameter we will fix later in the proof. Therefore,
we have that

Ė = −Δ1F − μmin(2σ,6)−2−γRq (228)
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Ḟ = −E − απ0(μ22qaE + μ2+γE2) − μmin(2σ−1,5)−2−γRp, (229)

where we impose initial conditions on (E, F) such that (q̃, p̃) has initial conditions correspond-
ing to the ones of the true initial datum,

μ2qa(0,μ j1,μσ j2) + μ2+γE0, j = Q0, j,

μpa(0,μ j1,μσ j2) + μ2+γF0, j = P0, j.

We now define the operator ∂i, i = 1, 2, by (∂i f ) j := f j − f j−ei for each f ∈ �2
N1,Nσ

1
.

• Claim 1: let σ > 2 and γ > 0, we have

‖E0‖�2
N1,Nσ

1

� C′μ(3−2γ−σ)/2, ‖∂1F0‖�2
N1,Nσ

1

� C′μ(3−2γ−σ)/2, ‖∂2F0‖�2
N1,Nσ

1

� C′μ(1−2γ+σ)/2.

To prove claim 1 we observe that

E0 = μ2 ξa + ηa − (ξ̃a + η̃a)√
2μ2+γ

= μ−γ ψξ + ψη√
2

,

F0 = μ
∂−1

y1
[ξa − ηa − (ξ̃a − η̃a)]√

2μ2+γ
= μ−1−γ ∂

−1
y1

(ψξ − ψη)√
2

,

from which we can deduce

‖E0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|E0, j|2 � C4Nσ+1
1 (μ2−γ)2 = Cμ3−2γ−σ,

‖∂1F0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|∂1F0, j|2 � C4Nσ+1
1 (μ2−γ)2 � C μ3−2γ−σ,

‖∂2F0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|∂2F0, j|2 � C4Nσ+1
1 (μ1+σ−γ)2 = Cμ1−2γ+σ

and this leads to the thesis.

• Claim 2: fix n � 0, T0 > 0 and K∗ > 0, then for any μ < μs and for any σ > 2 and γ > 0
such that σ + 2γ < min(4σ − 5, 7) we have

‖E‖2
�2

N1,Nσ
1

+ ‖∂1F‖2
�2

N1,Nσ
1

+ ‖∂2F‖2
�2

N1,Nσ
1

� K∗, ∀ |t| < T0

μ3
. (230)

To prove the claim, we define

G(E, F) :=
∑

j∈Z2
N1,Nσ

1

(
E2

j + F j(−Δ1F) j

2
+

2μ2αqa, jE2
j

2

)
, (231)
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and we remark that, using the boundedness of qa, j,

1
2
G(E, F) � ‖E‖2

�2
N1,Nσ

1

+ ‖∂1F0‖2
�2

N1,Nσ
1

+ ‖∂2F0‖2
�2

N1,Nσ
1

� 4G(E, F).

Now we compute the time derivative of G. Exploiting (228) and (229)

Ġ =
∑

j

E j

[
−(Δ1F) j − μmin(2σ−2,4)−γ(Rq) j

]
(232)

+
∑

j

(−Δ1F) j

[
−E j − α(μ22qa, jE j + μ2+γE2

j )

− μmin(2σ−3,3)−γ(Rp) j

]
(233)

+
∑

j

2μ2αqa, jE j

[
−(Δ1F) j − μmin(2σ−2,4)−γ(Rq) j

]
(234)

+
∑

j

μ2αE2
j μ

∂qa, j

∂τ
(235)

=
∑

j

− E jμ
min(2σ−2,4)−γ(Rq) j +

∑
j

(−Δ1F) j

[
−αμ2+γE2

j

− μmin(2σ−3,3)−γ(Rp) j

]
(236)

−
∑

j

2μ2αqa, jE jμ
min(2σ−2,4)−γ(Rq) j +

∑
j

μ2αE2
jμ

∂qa, j

∂τ
(237)

In order to estimate (236) and (237), we notice that

sup
j
|(Δ1F) j| � 2 sup

j
|(∂1F) j|+ |(∂2F) j| � 4

√
G,

‖Rq‖2
�2

N1,Nσ
1

�
∑

j

|(Rq) j|2 � 4Nσ+1
1 sup

y
|Rq(y)|2 � Cμ−1−σ,

and that |(∂iRp) j| � μ supy

∣∣∣ ∂Rp
∂y (y)

∣∣∣, which implies

‖∂iRp‖2
�2

N1,Nσ
1

� Cμ1−σ.

Now, the first sum in (236) is estimated by CG1/2μ(2 min(2σ−2,4)−1−2γ−σ)/2; the second sum in
(236) can be bounded by

C(μ2+γG3/2 + μ(2 min(2σ−3,3)+1−2γ−σ)/2G1/2).

Recalling that qa, j is bounded, the first sum in (237) can be bounded by
CG1/2μ(2 min(2σ,6)−1−2γ−σ)/2, while the second one is estimated by Cμ3G. Hence, as long
as G < 2K∗ we have
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∣∣∣Ġ∣∣∣ � C
∣∣∣(μ(min(4σ−5,7)−2γ−σ)/2 + μ(min(4σ−5,7)−2γ−σ)/2

+ μ(min(4σ−1,11)−2γ−σ)/2
)
G1/2 + μ2+γG3/2 + μ3G

∣∣∣
� C(μ2+γ

√
2K1/2

∗ + μ3)G + C
(

2μ(min(4σ−5,7)−2γ−σ)/2

+ μ(min(4σ−1,11)−2γ−σ)/2
)√

2K1/2
∗ , (238)

γ�1
� Cμ32

√
2K1/2

∗ G + C3μ(min(4σ−5,7)−2γ−σ)/2
√

2K1/2
∗ , (239)

and by applying Gronwall’s lemma we get

G(t) � G(0)eC2
√

2K
1/2
∗ μ3t + eC2

√
2K

1/2
∗ μ3tC2

√
2K1/2

∗ μ3t

× C3μ(min(4σ−5,7)−2γ−σ)/2
√

2K1/2
∗ , (240)

from which we can deduce the thesis. �

Proof of proposition 6.3. Proposition 6.3 can be obtained from proposition 6.6 by setting
σ = 2. �

Appendix D. Proof of proposition 6.9

We argue as in the proof of proposition 6.5.
First we remark that for all k such that κ(k) = (μK1, μσK2) we have

|ω2
k |

(24)
= 1 + 4

[
sin2

(
k1π

2N1 + 1

)
+ sin2

(
k2π

2N2 + 1

)]
= 1 + 4

[
sin2

(
μK1π

2

)
+ sin2

(
μσK2π

2

)]
� 1 + π2(μ2K2

1 + μ2σK2
2 ) � π2(1 + μ2K2

1 + μ2σ K2
2 ), (241)

hence

|p̂K |2 + π2(1 + μ2K2
1 + μ2σK2

2 )|q̂K |2
2

� π2 e−2ρ|K| |p̂K |2 + (1 + μ2K2
1 + μ2σK2

2 )|q̂K |2
2

e2ρ|K|

� π2 e−2ρ|K| (1 + μ2K2
1 + μ2σ K2

2

)
‖(ψ, ψ̄)‖2

Hρ,0 . (242)

Hence, analogously to appendix B, it is convenient to define L μ,δ,ρ as in (209) and by (165)
we obtain that for all k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| > (2+δ)| log μ|

ρ
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Eκ
μ2

�
∑

L∈L μ,δ,ρ

(
|p̂K+L|2 + ω2

k |q̂K+L|2
)

(241),(242)
� π2‖(ψ, ψ̄)‖2

Hρ,02
∑

L∈L μ,δ,ρ

e−2ρ|K+L| [1 + μ2(K1 + L1)2

+ μ2σ(K2 + L2)2
]

, (243)

=
∑

L∈L μ,δ,ρ

e−2ρ|K+L| + μ2
∑

L∈L μ,δ,ρ

e−2ρ|K+L|(K1 + L1)2

+ μ2σ
∑

L∈L μ,δ,ρ

e−2ρ|K+L|(K2 + L2)2. (244)

Now, ∑
L∈L μ,δ,ρ

e−2ρ|K+L| � e−2ρ|K| +
∑

L∈L μ,δ,ρ
L1=0,L2 	=0

e−2ρ|K+L| +
∑

L∈L μ,δ,ρ
L1 	=0,L2=0

e−2ρ|K+L|

+
∑

L∈L μ,δ,ρ
L1,L2 	=0

e−2ρ|K+L|, (245)

and we can estimate the above terms as for (210) in proposition 6.5; indeed, by (211)–(213)
we have that the last sum in (245) is bounded by

e−2ρ|K| + π

(
1

2ρ2
+ 2|K|

)
e−2ρ|K| + e−2ρ (|K1|+|K2|)

∑
�∈Z\{0}

e−4ρ|�|/μ

+ e−2ρ (|K1 |+|K2|)
∑

�∈Z\{0}
e−4ρ|�|/μσ. (246)

Next, we have∑
L∈L μ,δ,ρ

e−2ρ|K+L|(K1 + L1)2 � e−2ρ|K| K2
1 +

∑
L∈L μ,δ,ρ
L1 	=0,L2=0

e−2ρ|K+L|

× (K1 + L1)2 +
∑

L∈L μ,δ,ρ
L1=0,L2 	=0

e−2ρ|K+L| K2
1

+
∑

L∈L μ,δ,ρ
L1,L2 	=0

e−2ρ|K+L|(K1 + L1)2. (247)

First we estimate the last term in (247): we have that |L + K| � |K|, hence
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∑
L∈L μ,δ,ρ
L1,L2 	=0

e−2ρ|K+L| (K1 + L1)2 =

∫ +∞

|K|

∫ 2π

0
e−2ρξ ξ cos2 φ dφ dξ

= π e−2ρ|K| 1 + 2ρ|K|
4ρ2

� π μ4 e
−2ρ

[
|K|− 2| log,μ|

ρ − 1
2ρ log(2ρ|K|)

]

δ<1−1/e
� π μ4 e−2ρ

[
δ|K|− 2| log μ|

ρ

]
. (248)

Now we bound the other two nontrivial terms in (247); on the one hand, we notice that∑
L∈L μ,δ,ρ
L1=0,L2 	=0

e−2ρ|K+L|(K1 + L1)2 � 2
∑

L∈L μ,δ,ρ
L1=0,L2 	=0

e−2ρ|K+L|K2
1

+ 2
∑

L∈L μ,δ,ρ
L1=0,L2 	=0

e−2ρ|K+L|L2
1, (249)

where the first sum can be bounded as the second term in (245), while∑
L∈L μ,δ,ρ
L1=0,L2 	=0

e−2ρ|K+L|L2
1 � e−2ρ|K|

∑
�∈Z\{0}

e−4ρ|�|/μ �
2

μ2

� 2 e−2ρ|K|
∫ +∞

1
e−4ρ|�|/μ �2

μ2
d�, (250)

where the last integral is exponentially small with respect to μ. Similarly,∑
L∈L μ,δ,ρ
L1=0,L2 	=0

e−2ρ|K+L|L2
2 � e−2ρ|K|

∑
�∈Z\{0}

e−4ρ|�|/μσ �2

μ2σ

� 2 e−2ρ|K|
∫ +∞

1
e−4ρ|�|/μσ �2

μ2σ
d�, (251)

where the last integral is exponentially small with respect to μ.
On the other hand, for any k such that κ(k) = (μK1, μσK2) and |K1|+ |K2| � (2+δ)| log μ|

ρ∣∣∣∣∣Eκμ2
− |ψ̂K |2

2

∣∣∣∣∣ �
∣∣ω2

k − 1
∣∣ |q̂K|2 +

1
2

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(
|p̂K+L|2 + ω2

k |q̂K+L|2
)

(241)
� (μ2π2K2

1 + π2μ2σK2
2 )|p̂K|2

+
1
2

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(
|p̂K+L|2 + |q̂K+L|2

+ π2[μ2(K1 + L1)2 + μ2σ(K2 + L2)2]|q̂K+L|2
)

,
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�
(
π2 μ2K2

1 + π2μ2σ K2
2

)
|p̂K|2 + ‖(ψ, ψ̄)‖2

Hρ,0

×
∑

L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

e−2ρ|K+L| [1 + π2μ2(K1 + L1)2

+ π2μ2σ(K2 + L2)2
]

� π2μ2
(
1 + μ2(σ−1)

) 9| log μ|2
ρ2

‖(ψ, ψ̄)‖2
Hρ,0 (252)

+ ‖(ψ, ψ̄)‖2
Hρ,0

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

e−2ρ|K+L| (253)

+ π2μ2‖(ψ, ψ̄)‖2
Hρ,0

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

e−2ρ|K+L|(K1 + L1)2

(254)

+ π2μ2σ‖(ψ, ψ̄)‖2
Hρ,0

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

e−2ρ|K+L|(K2 + L2)2

(255)

and we can conclude by estimating (252) by exploiting the fact that |logμ| � μ−1/4, while we
can bound (253) and (254) by

π2

2
‖(ψ, ψ̄)‖2

Hρ,0

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

[1 + μ2(K1 + L1)2]e−2ρ|K+L|

� π2

2
‖(ψ, ψ̄)‖2

Hρ,0

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(1 + 2μ2 K2
1 + 2μ2 L2

1)e−2ρ|K+L|

� π2

2
‖(ψ, ψ̄)‖2

Hρ,0

[
(1 + 2μ2K2

1 )2π
∫ +∞

2/μ
e−2ρ� � d�

+ 4π μ2
∫ +∞

2/μ
e−2ρ��3 d�

]

=
π2

2
‖(ψ, ψ̄)‖2

Hρ,0

[
2π

(
1 + 2μ2 9| log μ|2

ρ2

)
e−4ρ/μ μ+ 4ρ

4μρ2

+ 4πμ2e−4ρ/μ 3μ3 + 12ρμ2 + 24ρ2 μ+ 32ρ3

8μ3ρ4

]
, (256)

and we can estimate (255) by
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π2

2
‖(ψ, ψ̄)‖2

Hρ,0μ
2(σ−1)

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(K2 + L2)2 e−2ρ|K+L|

� π2

2
‖(ψ, ψ̄)‖2

Hρ,0 μ
2(σ−1)

∑
L=(L1,L2)∈Z2\{0}
μL1,μσL2∈2Z

(2K2
2 + 2L2

2)e−2ρ|K+L|

� π2

2
‖(ψ, ψ̄)‖2

Hρ,0μ
2(σ−1)

[
2K2

12π
∫ +∞

2/μσ
e−2ρ��d�

+ 4π
∫ +∞

2/μσ
e−2ρ��3 d�

]

=
π2

2
‖(ψ, ψ̄)‖2

Hρ,0μ
2(σ−1)

[
4π

9| log μ|2
ρ2

e−4ρ/μσ μσ + 4ρ
4μσρ2

+ 4πe−4ρ/μσ 3μ3σ + 12ρμ2σ + 24ρ2μσ + 32ρ3

8μ3σρ4

]
. (257)

Appendix E. Proof of proposition 6.10

The argument follows along the lines of appendix C in [BP06].
Exploiting the canonical transformation found in theorem 3.3, we also define

ζa := (ψa, ψ̄a) = Tμ2 (ψ̃a,
¯̃
ψa) = ζ̃a + φa(ζ̃a), (258)

where φa(ζ̃a) := (φξ(ζ̃a),φη(ζ̃a)); by (46) we have

sup
ζ∈Bρ,n(R)

‖φa(ζ)‖Hρ,n � C′
nμ

2R. (259)

For convenience we define

qa(τ , y) :=
1√
2

[
eiτ ψ̃a(τ , y1, y2) + e−iτ ¯̃ψa(τ , y1, y2)

]
(260)

pa(τ , y) :=
1√
2i

[
eiτ ψ̃a(τ , y1, y2) − e−iτ ¯̃ψa(τ , y1, y2)

]
. (261)

We observe that the pair (qa, pa) satisfies

μ(qa)t = μpa + μmin(2σ+1,5)Rq,

μ(pa)t = −μqa + μΔ1qa − μ3βπ0q3
a + μmin(2σ+1,5)Rp,

where the operator Δ1 acts on the variable x, π0 is the projector on the space of the functions
with zero average, and the remainders are functions of the rescaled variables τ and y which
satisfy

sup
Bρ,n(R)

‖Rq‖�2
ρ,0

� C, sup
Bρ,n(R)

‖Rp‖�2
ρ,1

� C.
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We now restrict the space variables to integer values; keeping in mind that qa and pa are
periodic, we assume that j ∈ Z

2
N1,Nσ

1
.

For a finite sequence Q = (Q j) j∈Z2
N1,Nσ

1

we use the norm ‖Q‖2
�2

N1,Nσ
1

defined in (225).

Now we consider the discrete model (5): we rewrite in the following form,

Q̇ j = P j (262)

Ṗ j = −Q j + (Δ1Q) j − β π0Q3
j (263)

and we want to show that there exist two sequences E = (E j) j∈Z2
N1,Nσ

1

and F = (F j) j∈Z2
N1,Nσ

1

such

that

Q = μ qa + μ1+γE, P = μpa + μ1+γF

fulfills (262) and (263), where γ > 0 is a parameter we will fix later in the proof. Therefore,
we have that

Ė = F − μmin(2σ+1,5)−1−γRq (264)

Ḟ = −E +Δ1E − βπ0(3μ2q2
aE + 3μ2+γqaE2 + μ2+2γE3)

− μmin(2σ+1,5)−1−γRp, (265)

where we impose initial conditions on (E, F) such that (q̃, p̃) has initial conditions correspond-
ing to the ones of the true initial datum,

μqa(0,μ j1,μσ j2) + μ1+γE0, j = Q0, j,

μpa(0,μ j1,μσ j2) + μ1+γF0, j = P0, j.

We now define the operator ∂i, i = 1, 2, by (∂i f ) j := f j − f j−ei for each f ∈ �2
N1,Nσ

1
.

• Claim 1: let σ > 1 and γ > 0, we have

‖E0‖�2
N1,Nσ

1

� C′μ(3−2γ−σ)/2,

‖F0‖�2
N1,Nσ

1

� C′μ(3−2γ−σ)/2,

‖∂1E0‖�2
N1,Nσ

1

� C′μ(5−2γ−σ)/2,

‖∂2E0‖�2
N1,Nσ

1

� C′μ(3−2γ+σ)/2,

‖∂1F0‖�2
N1,Nσ

1

� C′μ(5−2γ−σ)/2,

‖∂2F0‖�2
N1,Nσ

1

� C′μ(3−2γ+σ)/2.

To prove claim 1 we observe that

E0 = μ
ψa + ψ̄a − (ψ̃a +

¯̃
ψa)√

2μ1+γ
= μ−γ φξ + φη√

2
,
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F0 = μ
ψa − ψ̄a − (ψ̃a − ¯̃

ψa)√
2iμ1+γ

= μ−γ φξ − φη√
2i

,

from which we can deduce

‖E0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|E0, j|2 � C 4Nσ+1
1

(
μ2−γ

)2
= C μ3−2γ−σ,

‖F0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|F0, j|2 � C 4Nσ+1
1

(
μ2−γ

)2
= C μ3−2γ−σ,

‖∂1E0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|∂1E0, j|2 � C 4Nσ+1
1

(
μ2+1−γ

)2 � C μ5−2γ−σ,

‖∂2E0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|∂2E0, j|2 � C 4Nσ+1
1

(
μ2+σ−γ

)2
= C μ3−2γ+σ,

‖∂1F0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|∂1F0, j|2 � C 4Nσ+1
1

(
μ2+1−γ

)2 � C μ5−2γ−σ,

‖∂2F0‖2
�2

N1,Nσ
1

�
∑

j∈Z2
N1,Nσ

1

|∂2F0, j|2 � C 4Nσ+1
1

(
μ2+σ−γ

)2
= C μ3−2γ+σ,

and this leads to the thesis.

• Claim 2: fix n � 0, T0 > 0 and K∗ > 0, then for any μ < μs and for any σ > 1 and γ > 0
such that σ + 2γ < min(4σ − 1, 7) we have

‖E‖2
�2

N1,Nσ
1

+ ‖F‖2
�2

N1,Nσ
1

+ ‖∂1E0‖2
�2

N1,Nσ
1

+ ‖∂2E0‖2
�2

N1,Nσ
1

� K∗, ∀ |t| < T0

μ2
. (266)

To prove the claim, we define

G(E, F) :=
∑

j∈Z2
N1,Nσ

1

(
F2

j + E2
j + E j(−Δ1E) j

2

+
3μ2βq2

aE2
j + 3μ2+γβqaE3

j

2

)
, (267)

and we remark that

1
2
G(E, F) � ‖E‖2

�2
N1,Nσ

1

+ ‖∂1F0‖2
�2

N1,Nσ
1

+ ‖∂2F0‖2
�2

N1,Nσ
1

� 2G(E, F).

Now we compute the time derivative of G. Exploiting (228) and (229) and using a procedure
analogous to appendix C, we finally obtain as long as G < 2K∗

5042



Nonlinearity 34 (2021) 4983 M Gallone and S Pasquali

∣∣∣Ġ∣∣∣ � C
[
μ2+γK1/2

∗ + μ2+2γK∗ + μ3 + μ2+γK1/2
∗ + μmin(2σ+2,6)−(1+σ)/2

+ μ2+γK1/2
∗

]
G (268)

+ C
[
2μmin(2σ,4)−γ−(1+σ)/2 + μmin(2σ,4)−γ+(1−σ)/2+ μmin(2σ+2,6)−γ−(1+σ)/2

]
K1/2
∗ (269)

σ+2γ<min(4σ−1,7)
� Cμ2(1 + K1/2

∗ )G + Cμ(min(4σ−1,7)−2γ−σ)/2K1/2
∗ (270)

and by applying Gronwall’s lemma we get

G(t) � G(0)eC(1+K
1/2
∗ )μ2t + eC(1+K

1/2
∗ )μ2tC(1 + K1/2

∗ )μ2t

× Cμ(min(4σ−1,7)−2γ−σ)/2K1/2
∗ , (271)

from which we can deduce the thesis.
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