Training agents to play in contemporary multiplayer actions game is a challenging task, especially when agents are expected to cooperate in a hostile environment while performing several different actions at the same time. Nonetheless, this topic is assuming a growing importance due to the rampaging diffusion of this game genre and its related e-sports. Agents playing in a multiplayer survival first person shooter game should mimic a human player, hence they should learn how to: survive in unexplored environment, improve their combat skills, deal with unexpected events, coordinate with allies and reach a good ranking among the players community. Our aim has been to design, develop and test a preliminary solution that exploits Proximal Policy Optimization algorithms to train agents without the need of a human expert, with the final goal of creating teams composed only by artificial players.
Deep reinforcement learning to train agents in a multiplayer first person shooter: Some preliminary results / D. Piergigli, L.A. Ripamonti, D. Maggiorini, D. Gadia (IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES). - In: 2019 IEEE Conference on Games (CoG)[s.l] : IEEE, 2019. - ISBN 9781728118840. - pp. 1-8 (( convegno IEEE Conference on Games, CoG tenutosi a London nel 2019 [10.1109/CIG.2019.8848061].
Deep reinforcement learning to train agents in a multiplayer first person shooter: Some preliminary results
L.A. Ripamonti
;D. Maggiorini;D. Gadia
2019
Abstract
Training agents to play in contemporary multiplayer actions game is a challenging task, especially when agents are expected to cooperate in a hostile environment while performing several different actions at the same time. Nonetheless, this topic is assuming a growing importance due to the rampaging diffusion of this game genre and its related e-sports. Agents playing in a multiplayer survival first person shooter game should mimic a human player, hence they should learn how to: survive in unexplored environment, improve their combat skills, deal with unexpected events, coordinate with allies and reach a good ranking among the players community. Our aim has been to design, develop and test a preliminary solution that exploits Proximal Policy Optimization algorithms to train agents without the need of a human expert, with the final goal of creating teams composed only by artificial players.File | Dimensione | Formato | |
---|---|---|---|
CoG-19_paper_86.pdf
accesso riservato
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
08848061.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.35 MB
Formato
Adobe PDF
|
1.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.