Rubredoxins (Rds) are small proteins containing a tetrahedral Fe(SCys)4 site. Folded forms of metal free Rds (apoRds) show greatly impaired ability to incorporate iron compared with chaotropically unfolded apoRds. In this study, formation of the Rd holoprotein (holoRd) on addition of iron to a structured, but iron-uptake incompetent apoRd was investigated in the presence of polystyrene nanoparticles (NP). In our rationale, hydrophobic contacts between apoRd and the NP surface would expose protein regions (including ligand cysteines) buried in the structured apoRd, allowing iron incorporation and folding to the native holoRd. Burial of the hydrophobic regions in the folded holoRd would allow its detachment from the NP surface. We found that both rate and yield of holoRd formation increased significantly in the presence of NP and were influenced by the NP concentration and size. Rates and yields had an optimum at "catalytic" NP concentrations (0.2 g/L NP) when using relatively small NP (46 nm diameter). At these optimal conditions, only a fraction of the apoRd was bound to the NP, consistent with the occurrence of turnover events on the NP surface. Lower rates and yields at higher NP concentrations or when using larger NP (200 nm) suggest that steric effects and molecular crowding on the NP surface favor specific "iron-uptake-competent" conformations of apoRd on the NP surface. This bio-mimetic chaperone system may be applicable to other proteins requiring an unfolding step before cofactor-triggered refolding, particularly when over-expressed under limited cofactor accessibility.

Rubredoxin refolding on nanostructured hydrophobic surfaces : evidence for a new type of biomimetic chaperones / M. Miriani, S. Iametti, D.M. Kurtz, F. Bonomi. - In: PROTEINS. - ISSN 0887-3585. - 82:11(2014 Sep), pp. 3154-3162.

Rubredoxin refolding on nanostructured hydrophobic surfaces : evidence for a new type of biomimetic chaperones

M. Miriani
Primo
;
S. Iametti
Secondo
;
F. Bonomi
2014

Abstract

Rubredoxins (Rds) are small proteins containing a tetrahedral Fe(SCys)4 site. Folded forms of metal free Rds (apoRds) show greatly impaired ability to incorporate iron compared with chaotropically unfolded apoRds. In this study, formation of the Rd holoprotein (holoRd) on addition of iron to a structured, but iron-uptake incompetent apoRd was investigated in the presence of polystyrene nanoparticles (NP). In our rationale, hydrophobic contacts between apoRd and the NP surface would expose protein regions (including ligand cysteines) buried in the structured apoRd, allowing iron incorporation and folding to the native holoRd. Burial of the hydrophobic regions in the folded holoRd would allow its detachment from the NP surface. We found that both rate and yield of holoRd formation increased significantly in the presence of NP and were influenced by the NP concentration and size. Rates and yields had an optimum at "catalytic" NP concentrations (0.2 g/L NP) when using relatively small NP (46 nm diameter). At these optimal conditions, only a fraction of the apoRd was bound to the NP, consistent with the occurrence of turnover events on the NP surface. Lower rates and yields at higher NP concentrations or when using larger NP (200 nm) suggest that steric effects and molecular crowding on the NP surface favor specific "iron-uptake-competent" conformations of apoRd on the NP surface. This bio-mimetic chaperone system may be applicable to other proteins requiring an unfolding step before cofactor-triggered refolding, particularly when over-expressed under limited cofactor accessibility.
Biomimetic chaperones ; Hydrophobic interfaces ; Latex nanoparticles ; Metalloproteins ; Protein folding ; Protein-interface interactions ; Rubredoxin ; Molecular Biology ; Structural Biology ; Biochemistry
Settore BIO/10 - Biochimica
set-2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
prot24675.pdf

accesso riservato

Descrizione: ArticoloMiarianiRubredoxin refolding
Tipologia: Publisher's version/PDF
Dimensione 458.96 kB
Formato Adobe PDF
458.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/240105
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact