Aims: The objective of this study was to investigate the inactivation of a selected yeast Dekkera bruxellensis strain 4481 in red wine by application of low electric current treatment (LEC). Methods and Results: LEC (200 mA) was applied for 60 days to a red wine, Montepulciano d'Abruzzo, in an alternative strategy to the SO2 addition during wine storage. The LEC effect on both cell activity and microflora viability was assessed. LEC decreased significantly the survival viable cells and increased the death rate of D. bruxellensis strain 4481 yeast. A final comparison was made of the main physico-chemical parameters of the wine after the different treatments. The study suggests the importance of an appropriate LEC treatment which limits wine deterioration in terms of off-flavours synthesis. Conclusions: The results demonstrate that the growth of undesirable Dekkera can be inhibited by low voltage treatment; LEC was shown to be useful to prevent wine spoilage and has the potential of being a concrete alternative method for controlling wine spoilage. Significance and Impact of the Study: Wine spoilage can be avoided by preventing the growth of undesirable Dekkera yeasts, through the effective use of LEC in the winemaking process.

Inactivation of wine spoilage yeasts Dekkera bruxellensis using low electric current treatment (LEC) / G. Lustrato, I. Vigentini, A. De Leonardis, G. Alfano, A. Tirelli, R. Foschino, G. Ranalli. - In: JOURNAL OF APPLIED MICROBIOLOGY. - ISSN 1364-5072. - 109:2(2010), pp. 594-604.

Inactivation of wine spoilage yeasts Dekkera bruxellensis using low electric current treatment (LEC)

I. Vigentini
Secondo
;
A. Tirelli;R. Foschino
Penultimo
;
2010

Abstract

Aims: The objective of this study was to investigate the inactivation of a selected yeast Dekkera bruxellensis strain 4481 in red wine by application of low electric current treatment (LEC). Methods and Results: LEC (200 mA) was applied for 60 days to a red wine, Montepulciano d'Abruzzo, in an alternative strategy to the SO2 addition during wine storage. The LEC effect on both cell activity and microflora viability was assessed. LEC decreased significantly the survival viable cells and increased the death rate of D. bruxellensis strain 4481 yeast. A final comparison was made of the main physico-chemical parameters of the wine after the different treatments. The study suggests the importance of an appropriate LEC treatment which limits wine deterioration in terms of off-flavours synthesis. Conclusions: The results demonstrate that the growth of undesirable Dekkera can be inhibited by low voltage treatment; LEC was shown to be useful to prevent wine spoilage and has the potential of being a concrete alternative method for controlling wine spoilage. Significance and Impact of the Study: Wine spoilage can be avoided by preventing the growth of undesirable Dekkera yeasts, through the effective use of LEC in the winemaking process.
Dekkera bruxellensis; ethylphenol; inactivation; low electric current; wine spoilage yeast
Settore AGR/16 - Microbiologia Agraria
Settore AGR/15 - Scienze e Tecnologie Alimentari
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/180116
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 20
social impact