Background and aims: Lupin seed is referred to as an antidiabetic product in traditional medicine. Conglutin-γ, a lupin seed glycoprotein, was found to cause a significant plasma glucose reduction when orally administered to rats in glucose overload trials. Conglutin-γ was identified as being responsible for the claimed biological activity, and the aim of this work was to envisage its hypothetical insulin-mimetic cellular mechanism of action. Insulin is responsible for proteosynthesis control through IRS/AKT/P70S6k/PHAS1 pathways modulation, glucose homeostasis through PKC/Flotillin-2/caveolin-3/Cbl activation and muscle differentiation/hypertrophy via muscle-specific MHC gene transcription control. Methods and results: To assess whether conglutin-γ modulates the same insulin-activated kinases, myoblastic C2C12 cells were incubated after 72. h of differentiation with 100. nM insulin or 0.5. mg/mL (∼10 μM) conglutin-γ. Metformin-stimulated cells were used as a positive control. The effect on the above mentioned pathways was evaluated after 5, 10, 20 and 30. min. In the control cells medium insulin, conglutin-γ and metformin were not added. We demonstrated that insulin or conglutin-γ cell stimulation resulted in the persistent activation of protein synthetic pathway kinases and increased glucose transport, glut4 translocation and muscle-specific gene transcription regulation. Conclusions: Our results indicate that conglutin-γ may regulate muscle energy metabolism, protein synthesis and MHC gene transcription through the modulation of the same insulin signalling pathway, suggesting the potential therapeutic use of this natural legume protein in the treatment of diabetes and other insulin-resistant conditions, as well as the potential conglutin-γ influence on muscle cells differentiation and regulation of muscle growth.

Insulin-mimetic action of conglutin-γ, a lupin seed protein, in mouse myoblasts / I. Terruzzi, P. Senesi, C. Magni, A. Montesano, A. Scarafoni, L. Luzi, M. Duranti. - In: NMCD. NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES. - ISSN 0939-4753. - 21:3(2011 Mar), pp. 197-205. [10.1016/j.numecd.2009.09.004]

Insulin-mimetic action of conglutin-γ, a lupin seed protein, in mouse myoblasts

I. Terruzzi
Primo
;
P. Senesi
Secondo
;
C. Magni;A. Montesano;A. Scarafoni;L. Luzi
;
M. Duranti
Ultimo
2011

Abstract

Background and aims: Lupin seed is referred to as an antidiabetic product in traditional medicine. Conglutin-γ, a lupin seed glycoprotein, was found to cause a significant plasma glucose reduction when orally administered to rats in glucose overload trials. Conglutin-γ was identified as being responsible for the claimed biological activity, and the aim of this work was to envisage its hypothetical insulin-mimetic cellular mechanism of action. Insulin is responsible for proteosynthesis control through IRS/AKT/P70S6k/PHAS1 pathways modulation, glucose homeostasis through PKC/Flotillin-2/caveolin-3/Cbl activation and muscle differentiation/hypertrophy via muscle-specific MHC gene transcription control. Methods and results: To assess whether conglutin-γ modulates the same insulin-activated kinases, myoblastic C2C12 cells were incubated after 72. h of differentiation with 100. nM insulin or 0.5. mg/mL (∼10 μM) conglutin-γ. Metformin-stimulated cells were used as a positive control. The effect on the above mentioned pathways was evaluated after 5, 10, 20 and 30. min. In the control cells medium insulin, conglutin-γ and metformin were not added. We demonstrated that insulin or conglutin-γ cell stimulation resulted in the persistent activation of protein synthetic pathway kinases and increased glucose transport, glut4 translocation and muscle-specific gene transcription regulation. Conclusions: Our results indicate that conglutin-γ may regulate muscle energy metabolism, protein synthesis and MHC gene transcription through the modulation of the same insulin signalling pathway, suggesting the potential therapeutic use of this natural legume protein in the treatment of diabetes and other insulin-resistant conditions, as well as the potential conglutin-γ influence on muscle cells differentiation and regulation of muscle growth.
Lupinus albus; Conglutin-gamma; Insulin signalling; Insulin action
Settore BIO/10 - Biochimica
Settore MED/13 - Endocrinologia
mar-2011
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0939475309002178-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 922.07 kB
Formato Adobe PDF
922.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/141431
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 66
social impact