Amyotrophic lateral sclerosis is the most common motor neuron disease and manifests as a clinically and genetically heterogeneous neurodegenerative disorder mainly affecting the motor systems. To date, despite promising results and accumulating knowledge on the pathomechanisms of amyotrophic lateral sclerosis, a specific disease-modifying treatment is still not available. In vitro and in vivo disease models coupled with multiomics techniques have helped elucidate the pathomechanisms underlying this disease. In particular, omics approaches are powerful tools for identifying new potential disease biomarkers that may be particularly useful for diagnosis, prognosis and assessment of treatment response. In turn, these findings could support physicians in stratifying patients into clinically relevant subgroups for the identification of the best therapeutic targets. Here, we provide a comprehensive review of the most relevant literature highlighting the importance of proteomics approaches in determining the role of pathogenic misfolded/aggregated proteins and the molecular mechanisms involved in the pathogenesis and progression of amyotrophic lateral sclerosis. In addition, we explored new findings arising from metabolomic and lipidomic studies, which can aid to elucidate the intricate metabolic alterations underlying amyotrophic lateral sclerosis pathology. Moreover, we integrated these insights with microbiomics data, providing a thorough understanding of the interplay between metabolic dysregulation and microbial dynamics in disease progression. Indeed, a greater integration of these multiomics data could lead to a deeper understanding of disease mechanisms, supporting the development of specific therapies for amyotrophic lateral sclerosis.

Unveiling amyotrophic lateral sclerosis complexity: insights from proteomics, metabolomics and microbiomics / S. Scarcella, L. Brambilla, L. Quetti, M. Rizzuti, V. Melzi, N. Galli, L. Sali, G. Costamagna, G.P. Comi, S. Corti, D. Gagliardi. - In: BRAIN COMMUNICATIONS. - ISSN 2632-1297. - 7:2(2025), pp. fcaf114.1-fcaf114.18. [10.1093/braincomms/fcaf114]

Unveiling amyotrophic lateral sclerosis complexity: insights from proteomics, metabolomics and microbiomics

S. Scarcella
Primo
;
L. Brambilla
Secondo
;
M. Rizzuti;N. Galli;G. Costamagna;G.P. Comi;S. Corti
Penultimo
;
D. Gagliardi
Ultimo
2025

Abstract

Amyotrophic lateral sclerosis is the most common motor neuron disease and manifests as a clinically and genetically heterogeneous neurodegenerative disorder mainly affecting the motor systems. To date, despite promising results and accumulating knowledge on the pathomechanisms of amyotrophic lateral sclerosis, a specific disease-modifying treatment is still not available. In vitro and in vivo disease models coupled with multiomics techniques have helped elucidate the pathomechanisms underlying this disease. In particular, omics approaches are powerful tools for identifying new potential disease biomarkers that may be particularly useful for diagnosis, prognosis and assessment of treatment response. In turn, these findings could support physicians in stratifying patients into clinically relevant subgroups for the identification of the best therapeutic targets. Here, we provide a comprehensive review of the most relevant literature highlighting the importance of proteomics approaches in determining the role of pathogenic misfolded/aggregated proteins and the molecular mechanisms involved in the pathogenesis and progression of amyotrophic lateral sclerosis. In addition, we explored new findings arising from metabolomic and lipidomic studies, which can aid to elucidate the intricate metabolic alterations underlying amyotrophic lateral sclerosis pathology. Moreover, we integrated these insights with microbiomics data, providing a thorough understanding of the interplay between metabolic dysregulation and microbial dynamics in disease progression. Indeed, a greater integration of these multiomics data could lead to a deeper understanding of disease mechanisms, supporting the development of specific therapies for amyotrophic lateral sclerosis.
ALS; lipidomics; metabolomics; microbiomics; proteomics;
Settore MEDS-12/A - Neurologia
2025
11-mar-2025
Article (author)
File in questo prodotto:
File Dimensione Formato  
fcaf114.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 4.02 MB
Formato Adobe PDF
4.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1166175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact