Background and aim: Cereals’ iron content is a major contributor to dietary iron intake in Europe and a potential for biofortification. A simulation of daily iron intake from wheat and rice over the next 20 years will be quantified. Methods: Food items, and energy and iron intake by age classes are estimated using the Italian dietary survey (IV SCAI). Iron intake and adequacy estimation trends were categorized in four scenarios compared to a baseline (basic scenario; only climate change effects): over wheat and rice biofortification effects (scenario 1); over the shift in whole wheat consumption of up to 50% of the total amount of wheat-based foods (scenario 2); over the shift in brown rice consumption up to 100% of the total amount of rice (scenario 3); over the cumulative effects of biofortifications and whole wheat and brown rice consumption (scenario 4). Results: Increasing the iron intake from wheat and rice biofortification and the shift in whole wheat consumption is similar and sufficient to recover the baseline iron depletion effect due to climate change. The shift in brown rice consumption produces a negligible increment in iron intake. The cumulative effects of the corrective actions considered in the scenarios can significantly reduce the iron intake inadequacy, despite not reaching the recommended levels. Conclusions: Corrective actions including biofortification and whole grain consumption are still far from ensuring the full recovery in children and females of fertile age as at-risk groups of iron deficiency. Further actions are needed considering other biofortified food sources, fortified foods, and/or dietary food diversification.

Simulation of daily iron intake by actual diet considering future trends in wheat and rice biofortification, environmental, and dietary factors: an Italian case study / L. Benvenuti, S. Sette, A. De Santis, P. Riso, K. Petroni, C. Crosatti, A. Losa, D. Martone, D. Martini, L. Cattivelli, M. Ferrari. - In: NUTRIENTS. - ISSN 2072-6643. - 16:23(2024 Dec), pp. 4097.1-4097.18. [10.3390/nu16234097]

Simulation of daily iron intake by actual diet considering future trends in wheat and rice biofortification, environmental, and dietary factors: an Italian case study

P. Riso;K. Petroni;D. Martini;
2024

Abstract

Background and aim: Cereals’ iron content is a major contributor to dietary iron intake in Europe and a potential for biofortification. A simulation of daily iron intake from wheat and rice over the next 20 years will be quantified. Methods: Food items, and energy and iron intake by age classes are estimated using the Italian dietary survey (IV SCAI). Iron intake and adequacy estimation trends were categorized in four scenarios compared to a baseline (basic scenario; only climate change effects): over wheat and rice biofortification effects (scenario 1); over the shift in whole wheat consumption of up to 50% of the total amount of wheat-based foods (scenario 2); over the shift in brown rice consumption up to 100% of the total amount of rice (scenario 3); over the cumulative effects of biofortifications and whole wheat and brown rice consumption (scenario 4). Results: Increasing the iron intake from wheat and rice biofortification and the shift in whole wheat consumption is similar and sufficient to recover the baseline iron depletion effect due to climate change. The shift in brown rice consumption produces a negligible increment in iron intake. The cumulative effects of the corrective actions considered in the scenarios can significantly reduce the iron intake inadequacy, despite not reaching the recommended levels. Conclusions: Corrective actions including biofortification and whole grain consumption are still far from ensuring the full recovery in children and females of fertile age as at-risk groups of iron deficiency. Further actions are needed considering other biofortified food sources, fortified foods, and/or dietary food diversification.
iron adequacy; food consumption; wheat; rice; iron content; carbon dioxide emission
Settore BIOS-14/A - Genetica
   ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security – Working ON Foods
   ON Foods
   MINISTERO DELL'UNIVERSITA' E DELLA RICERCA

   ERA-NET Biomarkers for Nutrition and Health implementing the JPI HDHL objectives
   ERA-HDHL
   European Commission
   Horizon 2020 Framework Programme
   696295
dic-2024
28-nov-2024
Article (author)
File in questo prodotto:
File Dimensione Formato  
Benvenuti et al 2024-iron climate change wheat rice.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/1121441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact