The ability of plants to release chemicals that affect the growth of other plants offers potential benefits for weed management and sustainable agriculture. This review explores the use of Camelina sativa as a promising cover crop with weed control potential. Camelina sativa, known for its high oil content and adaptability to diverse climatic conditions, exhibits allelopathic potential by releasing chemical compounds that inhibit weed growth. The crop’s vigorous growth and canopy architecture contribute to effective weed suppression, reducing the prevalence and spread of associated pathogens. Furthermore, the chemical compounds released by camelina through the solubilization of compounds from leaves by rain, root exudation, or deriving from microbial-mediated decay of camelina’s tissues interfere with the growth of neighbouring plants, indicating allelopathic interactions. The isolation and identification of benzylamine and glucosinolates as allelochemicals in camelina highlight their role in plant–plant interactions. However, the studies carried out on this species are outdated, and it cannot be excluded that other chemicals deriving from the breakdown of the glucosinolates or belonging to other classes of specialized metabolites can be involved in its allelopathic potential. Camelina sativa also demonstrates disease suppression capabilities, with glucosinolates exhibiting fungicidal, nematocidal, and bactericidal activities. Additionally, camelina cover crops have been found to reduce root diseases and enhance growth and yields in corn and soybeans. This review sheds light on the allelopathic and agronomic benefits of Camelina sativa, emphasizing its potential as a sustainable and integrated pest management strategy in agriculture.

Camelina sativa (L.) Crantz as a Promising Cover Crop Species with Allelopathic Potential / M. Ghidoli, M. Pesenti, F. Colombo, F.F. Nocito, R. Pilu, F. Araniti. - In: AGRONOMY. - ISSN 2073-4395. - 13:8(2023), pp. 2187.1-2187.17. [10.3390/agronomy13082187]

Camelina sativa (L.) Crantz as a Promising Cover Crop Species with Allelopathic Potential

M. Ghidoli
Primo
;
M. Pesenti
Secondo
;
F. Colombo;F.F. Nocito;R. Pilu
Penultimo
;
F. Araniti
Ultimo
2023

Abstract

The ability of plants to release chemicals that affect the growth of other plants offers potential benefits for weed management and sustainable agriculture. This review explores the use of Camelina sativa as a promising cover crop with weed control potential. Camelina sativa, known for its high oil content and adaptability to diverse climatic conditions, exhibits allelopathic potential by releasing chemical compounds that inhibit weed growth. The crop’s vigorous growth and canopy architecture contribute to effective weed suppression, reducing the prevalence and spread of associated pathogens. Furthermore, the chemical compounds released by camelina through the solubilization of compounds from leaves by rain, root exudation, or deriving from microbial-mediated decay of camelina’s tissues interfere with the growth of neighbouring plants, indicating allelopathic interactions. The isolation and identification of benzylamine and glucosinolates as allelochemicals in camelina highlight their role in plant–plant interactions. However, the studies carried out on this species are outdated, and it cannot be excluded that other chemicals deriving from the breakdown of the glucosinolates or belonging to other classes of specialized metabolites can be involved in its allelopathic potential. Camelina sativa also demonstrates disease suppression capabilities, with glucosinolates exhibiting fungicidal, nematocidal, and bactericidal activities. Additionally, camelina cover crops have been found to reduce root diseases and enhance growth and yields in corn and soybeans. This review sheds light on the allelopathic and agronomic benefits of Camelina sativa, emphasizing its potential as a sustainable and integrated pest management strategy in agriculture.
Camelina sativa; allelopathy; cover crop; glucosinolates; weed control
Settore AGR/07 - Genetica Agraria
Settore AGR/13 - Chimica Agraria
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
agronomy-13-02187-v3.pdf

accesso aperto

Descrizione: Review
Tipologia: Publisher's version/PDF
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/998229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact