The aim of this study was to characterize films obtained from fish gelatin (GelA, 3% w/w), encapsulated with cinnamon essential oil (CEO, 0.03–0.48% v/w), and loaded with bacterial cellulose nanocrystals (BCNCs, 0.06% w/w) at pH = 3.5. CEO-GelA/BCNC films were prepared by casting, and thickness, light transmittance (TT) and haze (H), surface hydrophobicity, tensile properties, chemical composition, and water solubility (WS) thereof were assessed. All films displayed outstanding optical properties (TT > 89.4%), with haze slightly exceeding a 3% value only at the highest CEO loading within the nanoemulsion formulation. The CEO plasticizing effect increased the elongation at break (EAB, from 0.84% up to 3.79%) and decreased the tensile strength (TS, from 8.98 MPa down to 1.93 MPa). The FT-IR spectra of films revealed good interaction among nanoemulsion components via hydrogen bonding. The CEO hydrophobic nature negatively impacted the WS (from 52.08% down to 8.48%) of the films. The results of this work confirmed the possibility of producing packaging systems from renewable sources to be potentially used in the form of edible films/coatings for the preservation of water-sensitive food products, both vegan-based (fruits/vegetables) and animal-based (meat/seafood).

Cinnamon Essential-Oil-Loaded Fish Gelatin–Cellulose Nanocrystal Films Prepared under Acidic Conditions / A. Golmohammadi, M.S. Razavi, M. Tahmasebi, D. Carullo, S. Farris. - In: COATINGS. - ISSN 2079-6412. - 13:8(2023), pp. 1360.1-1360.11. [10.3390/coatings13081360]

Cinnamon Essential-Oil-Loaded Fish Gelatin–Cellulose Nanocrystal Films Prepared under Acidic Conditions

D. Carullo
Penultimo
;
S. Farris
Ultimo
2023

Abstract

The aim of this study was to characterize films obtained from fish gelatin (GelA, 3% w/w), encapsulated with cinnamon essential oil (CEO, 0.03–0.48% v/w), and loaded with bacterial cellulose nanocrystals (BCNCs, 0.06% w/w) at pH = 3.5. CEO-GelA/BCNC films were prepared by casting, and thickness, light transmittance (TT) and haze (H), surface hydrophobicity, tensile properties, chemical composition, and water solubility (WS) thereof were assessed. All films displayed outstanding optical properties (TT > 89.4%), with haze slightly exceeding a 3% value only at the highest CEO loading within the nanoemulsion formulation. The CEO plasticizing effect increased the elongation at break (EAB, from 0.84% up to 3.79%) and decreased the tensile strength (TS, from 8.98 MPa down to 1.93 MPa). The FT-IR spectra of films revealed good interaction among nanoemulsion components via hydrogen bonding. The CEO hydrophobic nature negatively impacted the WS (from 52.08% down to 8.48%) of the films. The results of this work confirmed the possibility of producing packaging systems from renewable sources to be potentially used in the form of edible films/coatings for the preservation of water-sensitive food products, both vegan-based (fruits/vegetables) and animal-based (meat/seafood).
edible films; essential oils; IR spectroscopy; nanoemulsions; surface properties
Settore AGR/15 - Scienze e Tecnologie Alimentari
   One Health Action Hub: task force di Ateneo per la resilienza di ecosistemi territoriali (1H_Hub) Linea Strategica 3, Tema One health, one earth
   1H_Hub
   UNIVERSITA' DEGLI STUDI DI MILANO
2023
Article (author)
File in questo prodotto:
File Dimensione Formato  
coatings-13-01360.pdf

accesso aperto

Descrizione: Article
Tipologia: Publisher's version/PDF
Dimensione 997.21 kB
Formato Adobe PDF
997.21 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/991029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact