This study evaluates the morpho-functional modifications that characterize meniscal development from neonatal to adult dogs. Even if menisci are recognized as essential structures for the knee joint, poor information is available about their morphogenesis, in particular in dog models. Menisci from a group of Dobermann Pinchers aged 0, 10, 30 days, and 4 years (T0, T10, T30, adult, respectively) were analyzed by SEM, histochemistry (Safranin O and Picro Sirius Red Staining analyzed under a polarized light microscope), immunofluorescences (collagen type I and II), biomechanical (compression) and biochemical analyses (glycosaminoglycans, GAGs, and DNA content). SEM analyses revealed that the T0 meniscus is a bulgy structure that during growth tends to flatten, firstly in the inner zone (T10) and then even in the outer zone (T30), until the achievement of the completely smooth adult final shape. These results were further supported by the histochemistry analyses in which the deposition of GAGs started from T30, and the presence of type I birefringent collagen fibers was observed from T0 to T30, while poorly refringent type III collagen fibers were observed in the adult dogs. Double immunofluorescence analyses also evidenced that the neonatal meniscus contains mainly type I collagen fibers, as well as the T10 meniscus, and demonstrated a more evident regionalization and crimping in the T30 and adult meniscus. Young's elastic modulus of the meniscus in T0 and T10 animals was lower than the T30 animals, and this last group was also lower than adult ones (T0-T10 vs T30 vs adult). Biochemical analysis confirmed that cellularity decreases over time from neonatal to adult (p<0.01). The same decreasing trend was observed in GAGs deposition. These results may suggest that the postnatal development of canine meniscus may be related to the progressive functional locomotory development: after birth, the meniscus acquires its functionality over time, through movement, load, and growth itself.
Postnatal morpho-functional development of a dog's meniscus / S.C. Modina, L. Aidos, V.R.H. Millar, M. Pallaoro, U. Polito, M.C. Veronesi, G. Peretti, L. Mangiavini, L. Carnevale, F. Boschetti, F. Abbate, A. Di Giancamillo. - In: ANNALS OF ANATOMY. - ISSN 0940-9602. - 250:(2023 Jul 25), pp. 152141.1-152141.11. [10.1016/j.aanat.2023.152141]
Postnatal morpho-functional development of a dog's meniscus
S.C. ModinaPrimo
;L. AidosSecondo
;V.R.H. Millar;M. Pallaoro;U. Polito;M.C. Veronesi;G. Peretti;L. Mangiavini;A. Di Giancamillo
Ultimo
2023
Abstract
This study evaluates the morpho-functional modifications that characterize meniscal development from neonatal to adult dogs. Even if menisci are recognized as essential structures for the knee joint, poor information is available about their morphogenesis, in particular in dog models. Menisci from a group of Dobermann Pinchers aged 0, 10, 30 days, and 4 years (T0, T10, T30, adult, respectively) were analyzed by SEM, histochemistry (Safranin O and Picro Sirius Red Staining analyzed under a polarized light microscope), immunofluorescences (collagen type I and II), biomechanical (compression) and biochemical analyses (glycosaminoglycans, GAGs, and DNA content). SEM analyses revealed that the T0 meniscus is a bulgy structure that during growth tends to flatten, firstly in the inner zone (T10) and then even in the outer zone (T30), until the achievement of the completely smooth adult final shape. These results were further supported by the histochemistry analyses in which the deposition of GAGs started from T30, and the presence of type I birefringent collagen fibers was observed from T0 to T30, while poorly refringent type III collagen fibers were observed in the adult dogs. Double immunofluorescence analyses also evidenced that the neonatal meniscus contains mainly type I collagen fibers, as well as the T10 meniscus, and demonstrated a more evident regionalization and crimping in the T30 and adult meniscus. Young's elastic modulus of the meniscus in T0 and T10 animals was lower than the T30 animals, and this last group was also lower than adult ones (T0-T10 vs T30 vs adult). Biochemical analysis confirmed that cellularity decreases over time from neonatal to adult (p<0.01). The same decreasing trend was observed in GAGs deposition. These results may suggest that the postnatal development of canine meniscus may be related to the progressive functional locomotory development: after birth, the meniscus acquires its functionality over time, through movement, load, and growth itself.File | Dimensione | Formato | |
---|---|---|---|
Modina Annals Anat 2023_compressed.pdf
accesso aperto
Descrizione: Research article
Tipologia:
Publisher's version/PDF
Dimensione
954.1 kB
Formato
Adobe PDF
|
954.1 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.