Climate change is going to be one of the biggest challenges for the agricultural sector in the future. One of the most important changes is related to the increase of temperature that could affect crop performance inducing heat stress. This represents a severe condition for the crops, affecting the plant growth and quality. For these reasons, it has been largely investigated. Plants respond to heat stress in different ways, showing physiological alteration, morphological symptoms, and effects on secondary metabolism. These alterations can be seen also at cellular and molecular levels, as the alteration of cell and organelle and with the regulation of many genes involved in multiple regulatory pathways. The objective of the work is to deepen the knowledge about Diplotaxis tenuifolia response mechanisms to heat stress. Plants were cultivated in a growth chamber under controlled conditions (24 °C), and for the heat stress, the temperature has been increased to 37° C for 4 hours/day, for 4 days. For each condition (stressed vs control), plant material has been sampled for physiological and molecular analyses. Several physiological parameters have been analyzed, including chlorophyll a fluorescence and pigments content, nitrate concentration and sugars content. Also, RNA-sequencing has been performed to underline molecular changes induced by high temperature. Chlorophyll fluorescence and physiological assays results confirmed the effect of the heat stress: a reduction of chlorophyll content and leaf functionality were observed. Sugars and nitrate content also show alteration due to heat stress. The transcriptomic profiling confirmed the heat stress effects on rocket plants, showing the different regulation of the metabolic and physiological pathways in the two conditions (control vs. heat). These data allowed a deeper understanding of the physiological and transcriptional mechanisms induced by heat stress in rocket and represent a useful basis for further studies.

Transcriptomic and physiological responses of Diplotaxis tenuifolia under heat stress / A. Petrini, G. Cocetta, A. Ferrante. ((Intervento presentato al 31. convegno International Horticulture Congress - Symposium 11 Adaptation of horticultural plants to abiotic stresses tenutosi a Angers nel 2022.

Transcriptomic and physiological responses of Diplotaxis tenuifolia under heat stress

A. Petrini
Primo
;
G. Cocetta
Secondo
;
A. Ferrante
Ultimo
2022

Abstract

Climate change is going to be one of the biggest challenges for the agricultural sector in the future. One of the most important changes is related to the increase of temperature that could affect crop performance inducing heat stress. This represents a severe condition for the crops, affecting the plant growth and quality. For these reasons, it has been largely investigated. Plants respond to heat stress in different ways, showing physiological alteration, morphological symptoms, and effects on secondary metabolism. These alterations can be seen also at cellular and molecular levels, as the alteration of cell and organelle and with the regulation of many genes involved in multiple regulatory pathways. The objective of the work is to deepen the knowledge about Diplotaxis tenuifolia response mechanisms to heat stress. Plants were cultivated in a growth chamber under controlled conditions (24 °C), and for the heat stress, the temperature has been increased to 37° C for 4 hours/day, for 4 days. For each condition (stressed vs control), plant material has been sampled for physiological and molecular analyses. Several physiological parameters have been analyzed, including chlorophyll a fluorescence and pigments content, nitrate concentration and sugars content. Also, RNA-sequencing has been performed to underline molecular changes induced by high temperature. Chlorophyll fluorescence and physiological assays results confirmed the effect of the heat stress: a reduction of chlorophyll content and leaf functionality were observed. Sugars and nitrate content also show alteration due to heat stress. The transcriptomic profiling confirmed the heat stress effects on rocket plants, showing the different regulation of the metabolic and physiological pathways in the two conditions (control vs. heat). These data allowed a deeper understanding of the physiological and transcriptional mechanisms induced by heat stress in rocket and represent a useful basis for further studies.
15-ago-2022
heat stress; rocket; RNAseq
Settore AGR/04 - Orticoltura e Floricoltura
International Society for Horticultural Science (ISHS)
https://www.ihc2022.org/symposia/s11-adaptation-of-horticultural-plants-to-abiotic-stresses/
Transcriptomic and physiological responses of Diplotaxis tenuifolia under heat stress / A. Petrini, G. Cocetta, A. Ferrante. ((Intervento presentato al 31. convegno International Horticulture Congress - Symposium 11 Adaptation of horticultural plants to abiotic stresses tenutosi a Angers nel 2022.
Conference Object
File in questo prodotto:
File Dimensione Formato  
IHC_2022_Rocket_Heatstress_Curative.pdf

accesso aperto

Tipologia: Altro
Dimensione 164.67 kB
Formato Adobe PDF
164.67 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/951951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact