Background: The Gorkov approach to self-consistent Green's function theory has been formulated by Soma, Duguet, and Barbieri in [Phys. Rev. C 84, 064317 (2011)]. Over the past decade, it has become a method of reference for first-principles computations of semimagic nuclear isotopes. The currently available implementation is limited to a second-order self-energy and neglects particle-number nonconserving terms arising from contracting three-particle forces with anomalous propagators. For nuclear physics applications, this is sufficient to address first-order energy differences (i.e., two neutron separation energies, excitation energies of states dominating the one-nucleon spectral function), ground-state radii and moments on an accurate enough basis. However, addressing absolute binding energies, fine spectroscopic details of N +/- 1 particle systems or delicate quantities such as second-order energy differences associated with pairing gaps, requires going to higher truncation orders. Purpose: The formalism is extended to third order in the algebraic diagrammatic construction (ADC) expansion with two-body Hamiltonians. Methods: The expansion of Gorkov propagators in Feynman diagrams is combined with the algebraic diagrammatic construction up to the third order as an organization scheme to generate the Gorkov self-energy. Results: Algebraic expressions for the static and dynamic contributions to the self-energy, along with equations for the matrix elements of the Gorkov eigenvalue problem, are derived. It is first done for a general basis before specifying the set of equations to the case of spherical systems displaying rotational symmetry. Workable approximations to the full self-consistency problem are also elaborated on. The formalism at third order it thus complete for a general two-body Hamiltonian. Conclusions: Working equations for the full Gorkov-ADC(3) are now available for numerical implementation.
Gorkov algebraic diagrammatic construction formalism at third order / C. Barbieri, T. Duguet, V. Somà. - In: PHYSICAL REVIEW C. - ISSN 2469-9985. - 105:4(2022 Apr 28), pp. 044330.044330-1-044330.044330-29. [10.1103/PhysRevC.105.044330]
Gorkov algebraic diagrammatic construction formalism at third order
C. Barbieri
Primo
;
2022
Abstract
Background: The Gorkov approach to self-consistent Green's function theory has been formulated by Soma, Duguet, and Barbieri in [Phys. Rev. C 84, 064317 (2011)]. Over the past decade, it has become a method of reference for first-principles computations of semimagic nuclear isotopes. The currently available implementation is limited to a second-order self-energy and neglects particle-number nonconserving terms arising from contracting three-particle forces with anomalous propagators. For nuclear physics applications, this is sufficient to address first-order energy differences (i.e., two neutron separation energies, excitation energies of states dominating the one-nucleon spectral function), ground-state radii and moments on an accurate enough basis. However, addressing absolute binding energies, fine spectroscopic details of N +/- 1 particle systems or delicate quantities such as second-order energy differences associated with pairing gaps, requires going to higher truncation orders. Purpose: The formalism is extended to third order in the algebraic diagrammatic construction (ADC) expansion with two-body Hamiltonians. Methods: The expansion of Gorkov propagators in Feynman diagrams is combined with the algebraic diagrammatic construction up to the third order as an organization scheme to generate the Gorkov self-energy. Results: Algebraic expressions for the static and dynamic contributions to the self-energy, along with equations for the matrix elements of the Gorkov eigenvalue problem, are derived. It is first done for a general basis before specifying the set of equations to the case of spherical systems displaying rotational symmetry. Workable approximations to the full self-consistency problem are also elaborated on. The formalism at third order it thus complete for a general two-body Hamiltonian. Conclusions: Working equations for the full Gorkov-ADC(3) are now available for numerical implementation.File | Dimensione | Formato | |
---|---|---|---|
PhysRevC.105.044330.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Gkv_ADC2n3_final.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
754.31 kB
Formato
Adobe PDF
|
754.31 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.