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Background: The Gorkov approach to self-consistent Green’s function theory has been formulated in [V. Somà,
T. Duguet, C. Barbieri, Phys. Rev. C 84, 064317 (2011)]. Over the past decade, it has become a method of
reference for first-principle computations of semi-magic nuclear isotopes. The currently available implementation
is limited to a second-order self-energy and neglects particle-number non-conserving terms arising from contracting
three-particle forces with anomalous propagators. For nuclear physics applications, this is sufficient to address
first-order energy differences (i.e. two neutron separation energies, excitation energies of states dominating the
one-nucleon spectral function), ground-state radii and moments on an accurate enough basis. However, addressing
absolute binding energies, fine spectroscopic details of N±1 particle systems or delicate quantities such as second-
order energy differences associated to pairing gaps, requires to go to higher truncation orders.

Purpose: The formalism is extended to third order in the algebraic diagrammatic construction (ADC) expansion
with two-body Hamiltonians.

Methods: The expansion of Gorkov propagators in Feynman diagrams is combined with the algebraic diagram-
matic construction up to the third order as an organization scheme to generate the Gorkov self-energy.

Results: Algebraic expressions for the static and dynamic contributions to the self-energy, along with equations
for the matrix elements of the Gorkov eigenvalue problem, are derived. It is first done for a general basis
before specifying the set of equations to the case of spherical systems displaying rotational symmetry. Workable
approximations to the full self-consistency problem are also elaborated on. The formalism at third order it thus
complete for a general two-body Hamiltonian.

Conclusion: Working equations for the full Gorkov-ADC(3) are now available for numerical implementation.

I. INTRODUCTION

Ab initio quantum many-body computations are cru-
cial to high precision investigations in several fields of
physics. Most applications to finite-size fermion systems
concern Nuclear Physics and Quantum Chemistry, to the
point that these disciplines often share the same compu-
tational techniques and cross fertilization among the two
has led to advancements of ab initio theories over the
years. For nuclear physics, the past two decades have wit-
nessed remarkable breakthroughs in first-principle com-
putations of nuclear structure that exploited soft nuclear
interactions based on chiral effective field theory [1]. The
availability of many-body methods that scale favourably
with particle number has enabled precision predictions
of medium-mass isotopes and the possibility to confront
experimental information of exotic isotopes at the limits
of stability (see Refs. [2, 3] for a review).

Many successful approaches, such as many-body per-
turbation theory (MBPT) [4], self-consistent Green’s
function (SCGF) [5], coupled cluster (CC) [6] and in-
medium similarity renormalization group [7] can reach
sizable systems by restricting the Fock space to selected
excited configurations for which it is possible to resum

infinite series of diagrams. However, in their basic for-
malism, they are limited to closed-shell systems. For
open-shell cases, near-degeneracies in the single-particle
spectrum often prevent the use of any perturbation ex-
pansion. The possible ways around this issue are ei-
ther multi-reference approaches or the use of symmetry-
breaking reference states. In the first case, all degenerate
configurations are diagonalized explicitly, which however
adds a costly step to the calculation that scales exponen-
tially with system’s size [8], with the notable exception
of a recently proposed multi-reference many-body per-
turbation theory [9–11]. The second path relies on using
a reference state that explicitly breaks some symmetries
of the Hamiltonian, in exchange for lifting the energy de-
generacy. One is left with similar computational require-
ments as the original approach but needs to worry about
projecting the final wave function, when possible [12–15],
or addressing the uncertainties due to an only partially
restored symmetry.

Besides ground-state properties, the SCGF approach
is particularly suited to inform on the spectroscopic re-
sponse to the addition and removal of a nucleon to the
system [16, 17], on the shell structure [18, 19] and on
elastic nucleon scattering [20]. State-of-the-art SCGF
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calculations exploit the algebraic diagrammatic construc-
tion (ADC) truncation scheme that provides a hierarchy
for systematic improvements of the method, i.e. of the
computation of the self-energy [21–23]. The third-order
truncation, or ADC(3), resums full Tamm-Dancoff series
of ladder and rings diagrams among other terms and it
has become a method of reference for closed-shell nuclei
and molecules, providing chemical accuracy predictions
for binding energies and ionization potentials [24].

In Refs. [25, 26], the standard SCGF formalism was
extended to the Gorkov formulation to handle open-shell
systems. In this formulation, the reference state is al-
lowed to break U(1) global-gauge symmetry associated
with particle-number conservation thus accounting for
pairing correlations and lifting the problematic degener-
acy of symmetry-conserving reference states with respect
to elementary excitations. Doing so, the reach of SCGF
calculations was enlarged from the small set of doubly
closed-shell nuclei to the much larger set of semi-magic
nuclei. Applications have covered complete isotopic and
isotonic chains around O, Ca and Ni [27–32], eventually
stretching to heavier isotopes up to A=140 [33]. The
Gorkov SCGF formalism has so far been been devised
only for a second-order self-energy, i.e. at the ADC(2)
truncation level, which can grasp around 90% of correla-
tion energy and predict accurate trends of nuclear bind-
ing energies and radii with varying proton-neutron asym-
metry. Nevertheless, confronting the predictive power of
chiral Hamiltonians on absolute nuclear masses and spec-
troscopic data requires more accurate computations by
going to ADC(3) or higher orders. At the same time, sim-
ple truncations such as ADC(2) remain significantly af-
fected by the violation of global-gauge symmetry. While
this issue is expected to resolve when going to higher
truncation levels, it is not possible to assess the rate at
which good particle number is restored without comput-
ing a proper sequence of ADC(n) results with increasing
orders n = 1, 2, 3 and so on. In this work we pave the
way to addressing these open questions by deriving the
Gorkov ADC(3) approximation in full for a Hamiltonian
with up to two-body forces.

Section II A reviews key concepts of the Gorkov
Green’s function formalism and sets out the details
needed for its implementation. In particular, the ana-
lytical form of the self-energy and the Gorkov eigenma-
trix problem, which are central to the following devel-
opments, are discussed. Working ADC(2) and ADC(3)
equations are presented in full in Sec. III. While the
focus is eventually on a self-consistent implementation,
Sec. III C provides a detailed overview of the compos-
ite diagrams required in a standard (non self-consistent)
theory. Sec. IV deals with practical limitations in the
application of SCGF theory and sets out a systematic
way to implement partial self-consistency without intro-
ducing uncontrolled uncertainties. The main results of
this work are then collected in Sec. V, which summarises
the specific terms and working equations at each level
of ADC(n) truncation. A number of further technical

details are relegated to the appendices, in decreasing or-
der of importance. Appendix A discusses the angular-
momentum coupling of the ADC(n) equations applicable
to spherical bases. While these are conceptually the same
formulae as the ones discussed in the main text, they pro-
vide implementation-ready working equations for appli-
cations to semi-magic nuclei. The contributions of com-
posite diagrams to the static self-energy are not needed
in most application but are derived in App. B for com-
pleteness. App. C demonstrates some (somewhat ped-
agogical) details regarding how the final ADC(3) equa-
tions discussed in this paper are derived. Conclusions are
drawn in Sec. VI.

II. GORKOV GREEN’S FUNCTION
FORMALISM

We are interested in solving for a general many-fermion
system described by an energy-independent Hamiltonian
with up to two-body interactions

H = T + V

=
∑

αβ

tαβ c
†
αcβ +

1

4

∑

αβγδ

vαβ,γδ c
†
αc
†
βcδcγ , (1)

where α, β, γ . . . label a complete orthonormal one-body
basis whereas c†α (cα) denote associate creation (anni-
hilation) operators1. In Eq. (1), T captures the com-
plete one-body sector of the Hamiltonian: it typically re-
duces to the kinetic energy for self-bound systems, such
as atomic nuclei, but it may include an external poten-
tial in the general case. The two-body matrix elements,
vαβ,γδ, are intended as being properly antisymmetrized.

In this work we follow Ref. [25] and associate to a given
basis, {|α〉}, of the one-body Hilbert-space H1 a dual ba-
sis {|ᾱ〉} that is related to the former through an antiu-
nitary transformation T . Specifically, one starts with the
set of quantum numbers α specifying a state of the origi-
nal basis and associate a new set α̃ that is in a self-inverse
one-to-one correspondence with the former, i.e. ˜̃α = α.
The dual basis state is defined by adding the antiunitary
real phase ηα (ηαηα̃ = −1)

|ᾱ〉 = T |α〉 ≡ ηα |α̃〉 , (2)

such that dual creation and annihilation operators are
related to the original ones through

c̄†α ≡ ηα c†α̃ , (3a)

c̄α ≡ ηα cα̃ , (3b)

1 Note that greek letters refer to a general single-particle ba-
sis throughout this work, while latin letters are reserved for
j-coupled bases as discussed in App. A. This choice differs from
our initial Gorkov work of Ref. [25] but maintains a continuity
of notation with our other SCGF developments [16, 23, 34–41]
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while the matrix elements of the operators entering the
Hamiltonian can be expressed completely in the dual ba-
sis or in a mixed representation

tᾱβ̄ = ηα ηβ tα̃β̃ , (4a)

vᾱβ̄,γ̄δ̄ = ηα ηβ ηγ ηδ vα̃β̃,γ̃δ̃ , (4b)

vᾱβ,γδ̄ = ηα ηδ vα̃β,γδ̃ , (4c)

and so on. The advantage of the above relations is that
many-body operators are invariant with respect to (par-
tial) changes of the single-particle basis as long as barred
quantities are transformed consistently for each separate
index. For example,

∑

αβ

tαβ c
†
αcβ =

∑

ᾱβ

tᾱβ c̄
†
αcβ =

∑

ᾱβ̄

tᾱβ̄ c̄
†
αc̄β (5)

and similarly for all other components of Eq. (1). This
property facilitates the definition of the Gorkov propaga-
tors in Sec. II A and propagates to all tensor products of
propagators and operators arising in the diagrammatic
expansion of perturbation and SCGF theories.

The introduction of the dual basis is not strictly
mandatory such that the Gorkov formalism presented in
this work could be derived without making use of barred
indices. However, definition (2) makes it easier to ele-
gantly handle Nambu indices for normal and anomalous
propagators and accounts automatically for the phases
that are related to broken symmetries in the formalism.
Only in the last step of deriving working Gorkov-ADC(3)
equations the transformation T is identified with the time
reversal operator and the phases ηα explicitly stated (see
also App. A). More importantly, the combined use of
Nambu indices and an appropriate dual basis can be ex-
tended into a generalised Nambu-covariant formalism as
discussed in Refs. [40, 41]. In Nambu-covariant Green’s
function theory, all normal and anomalous propagators
appear as specific elements of a unique propagator carry-
ing the common features in their spectral representations.

A. Gorkov propagators

The Gorkov-SCGF approach builds on relaxing the re-
quirement that the unperturbed state is an eigenstate of
the particle-number operator and seeking for the solution
of the grand-canonical-like Hamiltonian2

Ω ≡ H − µN , (6)

where µ denotes the chemical potential and N the par-
ticle number operator. The Hamiltonian is partitioned

2 Being presently interested in a zero-temperature formalism the
T-dependent term of the grand-canonical potential drops out.
Moreover, it is understood that a separate chemical potential
for each different fermion is to be considered when the system
consists of more than one type of particle.

into a unperturbed term ΩU containing only one-body
vertices and an interacting part as follows

Ω ≡ ΩU + ΩI

= (T + U − µN) + (−U + V ) , (7)

where U denotes an external mean-field like potential.
We consider eigenstates of the Hamiltonian conserving

even- (e) or odd- (o) number parity

Ω |Ψe(o)
k 〉 = Ωk |Ψe(o)

k 〉 , (8)

where

|Ψe(o)〉 =

∞∑

n=0

c2n(2n+1)|ψ2n(2n+1)〉 (9)

is a superposition of states |ψl〉 that are eigenstates of N
with eigenvalue l. Rather than the ground state of H,
Gorkov SCGF formalism targets the state |Ψ0〉 minimiz-
ing

Ω0 = min
|Ψ0〉
{〈Ψ0|Ω|Ψ0〉} (10)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (11)

where N denotes the number of particles for the system
under consideration. While the exact |Ψ0〉 associated
with a finite system is indeed an eigenstate of N , it is
not enforced to do so in the thermodynamic limit or when
being approximated. In such cases, it is only constrained
to carry the particle number N on average.

For a typical superfluid system approaching the ther-
modynamic limit, the ground state energies of Eq. (1)
associated with N particles, H|ψN0 〉 = EN0 |ψN0 〉, will dif-
fer from each other only by multiples of the chemical
potential

EN±2n
0 ≈ EN0 ± 2nµ± n∆εP , for n = 1, 2, 3 . . . ,

(12)

since µ is substantially independent of N at large particle
number and, likewise, the average cost for the possible
creation of Cooper pairs, ∆εP , will be the same every
time two particles are added. Eqs. (10) and (11) natu-
rally allow to interpret state |Ψ0〉 as the fermionic part
of a ground-state wave function in equilibrium with a
reservoir of Cooper pairs. Hence, defining Gorkov prop-
agators with respect to |Ψ0〉 directly provides a theory
for superconductivity and superfluidity. For finite-size
systems, such as atomic nuclei or molecules, Eq. (12)
may hold only in a very approximate way. Because both
Hamiltonians H and Ω preserve particle number, the re-
quirements (10) and (11) will force |Ψ0〉 to be the true
ground state |ψN0 〉, with an exact number of particles.

The breaking of particle-number symmetry arises nat-
urally, in most cases, whenever approximations have to
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be made, typically in computing the self-energy. This is
true for both Dyson and Gorkov formulations of Green’s
function theory since they equally rely on an open Fock
space, where mixing of particle number as in Eq. (9) is
fully allowed. In fact both, formulations can be seen
as just one theory where in the first case the reference
state preserves the symmetries of the Hamiltonian from
the start, whereas in the second case one begins with
a symmetry-broken reference but with the advantage of
a better radius of convergence for the perturbative ex-
pansion. Clearly, whenever the approximate treatment
approaches the exact solution, the exact particle number
shall be restored.

For Gorkov theory, the symmetry breaking is more
substantial because it is imposed into the formalism form
the start through ΩU . Hence, one may wish to eventually
restore the exact symmetries of the Hamiltonian. Several
works for the standard, Dyson, theory have investigated
how approximations based on the self-consistency prin-
ciple can guarantee the conservation of particle number
and other symmetries associated to H [42–46]. Two ob-
vious questions of present interest are whether a truly
self-consistency computation could have implications on
particle-number conservation also for Gorkov and, oth-
erwise, understanding to which extent going from the
ADC(2) to the ADC(3) truncation level can do so to a
good enough accuracy. Alternatively, one will need to
seek formulations for exact symmetry restoration at the
final stage of each computation, in a similar way to what
has recently been done within the frame of MBPT and
CC formalisms [12–15].

The crucial feature of the Gorkov SCGF formulation
is that the unperturbed Hamiltonian ΩU breaks particle
number explicitly. Open-shell systems are characterised
by partially filled orbitals at the level of mean filed theory.
This causes degeneracies between the energies of particle
and hole states which are sufficient to invalidate any per-
turbation expansion (or even partial resummations of it)
if not dealt with in advance, as it is the case of the Dyson
SCGF formulation. In this context, a superposition of
states of the type (9) provides a better approximation to
the ground state wave function. Following this consid-
eration, we exploit an auxiliary interaction U to break
particle number symmetry explicitly:

U =
∑

αβ

[
uαβ c

†
αcβ +

1

2
uan.αβ c

†
αc
†
β +

1

2
(uan.αβ )∗ cαcβ

]
,

(13)

where uαβ = u∗βα and uan.αβ = −uan.βα without loss of gen-
erality.

Following the above considerations we formulate
Gorkov SCGF theory with respect to the ground state
of Ω as defined by Eqs. (10) and (11). Since |Ψ0〉 breaks
particle number symmetry, it is possible to define four
Gorkov propagators,

G11
αβ(t− t′) ≡ − i〈Ψ0| T [cα(t)c†β(t′)] |Ψ0〉 , (14a)

G12
αβ(t− t′) ≡ − i〈Ψ0| T [cα(t)c̄β(t′)] |Ψ0〉 , (14b)

G21
αβ(t− t′) ≡ − i〈Ψ0| T [c̄†α(t)c†β(t′)] |Ψ0〉 , (14c)

G22
αβ(t− t′) ≡ − i〈Ψ0| T [c̄†α(t)c̄β(t′)] |Ψ0〉 , (14d)

where T [· · · ] denotes the usual time ordering operator
and the superscripts ‘1’ (‘2’) are the Nambu indices re-
ferring to creation and annihilation of normal (anoma-
lous) single-particle excitations. In Eqs. (14), creation
and annihilation operators depend on time3 according to
the Heisenberg picture with respect to Ω

c(†)α (t) = eiΩt c(†)α e−iΩt . (15)

It is useful to collect the four propagators in a 2×2 matrix
according to their Nambu indices and whose elements are
tensors in the single-particle basis indices

Gαβ(t− t′) ≡



G11
αβ(t− t′) G12

αβ(t− t′)

G21
αβ(t− t′) G22

αβ(t− t′)


 . (16)

Rather that the time representation, the frequency rep-
resentation is presently used and is obtained via Fourier
transformation

Gαβ(ω) =

∫ ∞

−∞
eiωτ Gαβ(τ) dτ . (17)

Exploiting the completeness of Eq. (8), the spectral rep-
resentation of the propagators can be obtained as

G11
αβ(ω) =

∑

k

{
Ukα Ukβ ∗

ω − ωk + iη
+

V̄kα∗ V̄kβ
ω + ωk − iη

}
, (18a)

G12
αβ(ω) =

∑

k

{
Ukα Vkβ∗

ω − ωk + iη
+

V̄kα∗ Ūkβ
ω + ωk − iη

}
, (18b)

G21
αβ(ω) =

∑

k

{
Vkα Ukβ ∗

ω − ωk + iη
+

Ūkα∗ V̄kβ
ω + ωk − iη

}
, (18c)

G22
αβ(ω) =

∑

k

{
Vkα Vkβ∗

ω − ωk + iη
+
Ūkα∗ Ūkβ

ω + ωk − iη

}
, (18d)

where the spectroscopic amplitudes for the addition and
removal of a particle are defined as

Ukα ≡ 〈Ψ0|cα|Ψk〉 , (19a)

Vkα ≡ 〈Ψ0|c̄†α|Ψk〉 , (19b)

so that

Ūkα ≡ 〈Ψ0|c̄α|Ψk〉 = ηαUkα̃ , (20a)

V̄kα ≡ 〈Ψ0|c†α|Ψk〉 = −ηαVkα̃ . (20b)

3 We use natural units with dimensionless ~=1 throughout this
work.
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The index k in Eqs. (18) labels all possible excitations
from Eq. (8), which combine both the Landau and Bo-
goliubov meanings of quasiparticle. The respective poles
are given by

ωk ≡ Ωk − Ω0 . (21)

Whenever the targeted ground state |Ψe
0〉 belongs to a

system carrying an even particle number, the complete-
ness set {|Ψo

k〉} runs over odd particle numbers states
only. And vice versa for an odd-N ground state. While
the ADC(n) equations derived in Secs. III A and III B are
general and apply to both cases indistinctly, App. A dis-
cusses their j-coupling reduction for J = 0 ground states,
i.e. for even-N systems.

Once the spectral representation (18) is known, it is
possible to extract normal and anomalous one-body den-
sity matrices according to

ραβ ≡ 〈Ψ0|c†βcα|Ψ0〉

=
1

π

∫ 0

−∞
ImG11

αβ(ω) dω

=
∑

k

V̄kα∗ V̄kβ , (22a)

ρ̃αβ ≡ 〈Ψ0|c̄βcα|Ψ0〉

=
1

π

∫ 0

−∞
ImG12

αβ(ω) dω

=
∑

k

V̄kα∗ Ūkβ . (22b)

The expectation value of any one-body operator O is
given by

〈Ψ0|O|Ψ0〉 =
∑

αβ

oαβρβα , (23)

whereas the Migdal-Galitski-Koltun energy sum rule de-
livering the ground-state energy

Ω0 =
1

2π

∫ 0

−∞
[tαβ − µδαβ + ωδαβ ] ImG11

βα(ω) dω (24)

is exact for a Hamiltonian with up to two-particle inter-
actions.

B. Gorkov equations

The perturbative expansion of Gorkov propagators is
devised following the standard approach of defining an
unperturbed propagator, G(0)(t − t′), according to def-
initions (14) and (15) but with Ω replaced by the one-
body grand potential ΩU . After Fourier transform to
frequency domain, one finds

G(0)(ω) = [ωI−ΩU ]−1 , (25)

where model space and Nambu indices are implicit and
the matrix inversion is performed with respect to both.
One then exploits the interaction picture to devise a per-
turbative expansion of the full propagator of Eq. (16)
that can represented as a series of Feynman diagrams in
powers of the perturbation ΩI [25].

Doing so, the standard Dyson equation for the interact-
ing propagator G(ω) is generalised to the set of coupled
Gorkov equations for the four propagators (18). Using
Nambu’s matrix notation, they read as

Gαβ(ω) = G
(0)
αβ(ω) +

∑

γ δ

G(0)
αγ (ω) Σ?

γδ(ω) Gδβ(ω) ,

(26)

where the four self-energies

Σ?
αβ(ω) ≡




Σ? 11
αβ (ω) Σ? 12

αβ (ω)

Σ? 21
αβ (ω) Σ? 22

αβ (ω)


 (27)

include all possible one-particle irreducible diagrams
stripped of their external legs. The remaining reducible
diagrams are then generated in a non-perturbative
way through the all-orders resummation generated by
Eq. (26). In standard perturbation theory, a given ap-
proximation to Σ?(ω) is a functional of the unperturbed
propagators G(0)(ω) and hence depends directly on the
choice of the reference state associated with ΩU . In
SCGF theory, the series of diagrams to be resummed is
further restricted to skeleton diagrams displaying no self-
energy insertion, provided that all propagator lines are
replaced by the interacting propagator G(ω). Since the
full Dyson-Gorkov series is included in such a propaga-
tor, the SCGF procedure not only reduces the number of
Feynman diagrams that need to be dealt with but it im-
plicitly accounts for higher-order terms that are beyond
the perturbative truncation chosen for the self-energy.
The self-energy becomes a functional of the interacting
propagator, Σ?[G;T, V ] and is no longer affected by the
choice of the unperturbed state. The price to pay for
such improvements is that diagrams expressed in terms
of G(ω) are more demanding to deal with, due to the rich
pole structure of Eqs. (18). Furthermore, Σ?(ω) and the
Gorkov equations (26) have respectively to be computed
and solved repeatedly through an iterative procedure.

The most general structure of the Gorkov self-energy
can be written as

Σ?
αβ(ω) = −U + Σ

(∞)
αβ + Σ̃αβ(ω) , (28)

where the auxiliary potential term U arising from ΩI at
first order is separated from the proper part of the self-
energy. The term Σ(∞) embodies the limit of the proper
self-energy to ω → ±∞ and represents the mean field
experienced by a particle in the correlated medium. It
reduces to the Hartree-Fock-Bogoliubov (HFB) potential
for a self-consistent first-order truncation of Σ?(ω) but
otherwise it includes additional in-medium corrections at
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higher orders. Hence, it is referred to as the correlated
HFB (cHFB) potential.

The components of the dynamic self-energy Σ̃(ω) also
have a spectral representation analogous to Eqs. (18). In
this case, the poles of the Lehmann representation are as-

sociated to intermediate state configurations (ISCs) com-
bining different quasiparticle excitations {|Ψk〉;ωk}. In
order to write the most general form of the dynamic self-
energy, a generic index r is employed to label all possible
ISCs that are eventually made explicit in Sec. III. Thus,
the general form writes

Σ̃11
αβ(ω) =

∑

r r′

{
Cα,r

[
1

ωI− E + iη

]

r,r′
C†r′,β + D̄†α,r

[
1

ωI + ET − iη

]

r,r′
D̄r′,β

}
, (29a)

Σ̃12
αβ(ω) =

∑

r r′

{
Cα,r

[
1

ωI− E + iη

]

r,r′
D∗r′,β + D̄†α,r

[
1

ωI + ET − iη

]

r,r′
C̄Tr′,β

}
, (29b)

Σ̃21
αβ(ω) =

∑

r r′

{
DTα,r

[
1

ωI− E + iη

]

r,r′
C†r′,β + C̄∗α,r

[
1

ωI + ET − iη

]

r,r′
D̄r′,β

}
, (29c)

Σ̃22
αβ(ω) =

∑

r ‘r′

{
DTα,r

[
1

ωI− E + iη

]

r,r′
D∗r′,β + C̄∗α,r

[
1

ωI + ET − iη

]

r,r′
C̄Tr′,β

}
, (29d)

where Er,r′ denotes the elements of an energy matrix as-
sociated with an interaction among ISCs r and r′. Matrix
E is hermitian, so that ET = E∗. The coupling matrices
C and D couple single-particle and ISC spaces, with the
elements of the barred matrices defined as

C̄α,r = ηαCα̃,r , (30a)

D̄r,α = − ηαDr,α̃ . (30b)

By exploiting the spectral representation of G(ω) in
Eq. (26) and extracting each pole ωk separately, Gorkov’s
equations can be transformed into a set of energy-
dependent eigenvalue equations for vectors (Uk,Vk) of
the form

ωk



Ukα

Vkα


 =

∑

β



tαβ − µδαβ + Σ

(∞) 11
αβ + Σ̃11

αβ(ω) Σ
(∞) 12
αβ + Σ̃12

αβ(ω)

Σ
(∞) 21
αβ + Σ̃21

αβ(ω) −tαβ + µδαβ + Σ
(∞) 22
αβ + Σ̃22

αβ(ω)






Ukβ

Vkβ


 . (31)

The eigenvalue problem of Eq. (31) can be further optimised by introducing two new vectors Wk and Z̄k that
belong to ISC space:

Wk
r ≡

∑

r′

[
1

ωI− E

]

r,r′

[∑

α

(
C∗α,r′ Ukα +D∗r′,α Vkα

)
]
, (32a)

Z̄kr ≡
∑

r′

[
1

ωI + ET
]

r,r′

[∑

α

(
D̄r′,α Ukα + C̄α,r′ Vkα

)
]
. (32b)

Note that there will be a pair of such vectors for any quasiparticle solution ωk from Eq. (31). In fact they can be
interpreted as projections of a quasiparticle wave function onto the subspace of ISCs. Definitions (29) and (32) allow
to eventually re-expressed Gorkov’s equations as a single (energy-independent) matrix diagonalization

ωk




Uk

Vk

Wk

Z̄k




=




T − µI + Σ(∞) 11 Σ(∞) 12 C D̄†

Σ(∞) 21 −T + µI + Σ(∞) 22 DT C̄∗

C† D∗ E

D̄ C̄T −ET







Uk

Vk

Wk

Z̄k



, (33)
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with normalisation condition
∑

α

|Ukα|2 +
∑

α

|Vkα|2 +
∑

r

|Wk
r |2 +

∑

r

|Z̄kr |2 = 1 . (34)

Although the Gorkov matrix in Eq. (33) can have large
dimensionality, the latter approach provides the entire
quasiparticle spectrum in one single diagonalization. Of-
ten, this is by far the most efficient way to solve Dyson
or Gorkov equations of many-body Green’s function the-
ory. In practical applications, the computing time can
be highly reduced by performing Krylov subspace pro-
jections without loosing details of the full spectral distri-
bution [23, 26].

III. GORKOV ADC(n)

The algebraic diagrammatic construction method is a
systematic approach to construct accurate approxima-
tions to the self-energy. It is based on two fundamental
requirements.

First, the correct analytic form of the self-energy given
by Eqs. (28) and (29) must be preserved. In particular,
the Lehmann representation is pivotal as it follows from
the causality principle, while the relations between poles
and residues among different Nambu components are dic-
tated by the Gorkov superfluid assumptions. Thus, the
ADC(n) scheme aims at directly formulating approxima-
tions to the energy-independent self-energy Σ(∞), as well
as to the interaction and coupling matrices E , C and D.

Second, given the chosen truncation order n, all Feyn-
man diagrams up to n-th order in the interaction ΩI are
required to be included.

Thus, the general procedure to work out the Gorkov
ADC(n) approximation to the self-energy results from
the following steps

1. Formally expand coupling and interaction matrices
in powers of ΩI and generate the associated expan-
sion of the self-energy starting from Eq. 29,

2. Produce and evaluate algebraically all Feynman
self-energy diagrams up to order n in powers of ΩI ,

3. Extract the algebraic expressions of the perturba-
tive contributions to coupling and interaction ma-
trices up to order n by matching the form obtained
in step 1. onto the explicit expressions of the dia-
grams generated in step 2.

Such a procedure is explicated in Ref. [23] and it has been
applied to the standard SCGF theory up to the ADC(3)
level [39]. The very same steps are followed here to de-
velop the ADC(3) approximation within the generalized
frame of Gorkov SCGF theory. Below, the results ob-
tained in step 3. are directly provided without making
steps 1. and 2. explicit. While step 1. is easily adapted
from Ref. [23], an example of step 2. is outlined in App. C
and results from a direct application of the topological

and algebraic Feynman diagrammatic rules laid out in
Ref. [25].

It is interesting to note that the straight summation of
Feynman diagrams up to n-th order in ΩI–used to match
the perturbative corrections to coupling and interaction
matrices–does not satisfy the spectral representation (29)
in general. The ADC approach corrects this defect by im-
plicitly including additional terms beyond order n. More-
over, it generates all-order resummations of infinite sub-
sets of diagrams, starting with ladders and rings topolo-
gies at orders n ≥ 3. All together, the ADC(n) expansion
scheme provides a sequence of systematically improvable
many-body approximations that is expected to converge
toward the exact resummation of the full diagrammatic
series.

In this work, the ADC(3) truncation scheme with at
most two-particle interactions is investigated within the
Gorkov framework. Since Feynman diagrams of interest
involve poles including at most three lines, the ISC space
at play spans all quasiparticle triplets. Thus, the relevant
collective ISC indices r and r′ denote in the present case

r ≡ (k1, k2, k3) , (35a)

r′ ≡ (k4, k5, k6) . (35b)

The interaction matrix E splits into the energy E(0) of
uncorrelated excitations plus correction terms at first or-
der in ΩI . Contrarily, C and D are interaction matrices
between single quasiparticles and ISCs and do not carry
zeroth-order contributions. Only contributions at first (I)
and second (II) order are needed to build all third-order
self-energy diagrams. Hence, for n ≤ 3, the expansion
reads as

E ≡ E(0) + E(I) , (36a)

C ≡ C(I) +D(II) , (36b)

D ≡ D(I) +D(II) . (36c)

The corresponding barred quantities are obtained from
these amplitudes through Eqs. (30). While the Gorkov
approach can be equivalently formulated without the aid
of the dual basis {|ᾱ〉} (2), our formalism takes explicit
advantage of it to handle time-reversal phases automati-
cally.

Because Gorkov objects with all normal Nambu in-

dices, e.g G11
αβ(ω) or Σ̃11

αβ(ω), are not affected by time-
reversal, they remain unchanged in the two approaches.
Contrarily, the presence of any anomalous index as in
Σ? 12
αβ (ω) or Σ? 22

αβ (ω) implies differences due to the phases

entering Eqs. (3). In the following, results are presented
in terms of the amplitudes U , V̄, C and D̄ entering the
normal self-energy and propagators of the first group.
Thus, the displayed equations can be used unchanged
in a formulation that does not make distinction between
barred and non-barred basis states.
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(a) (b)

(c) (d)

FIG. 1. Energy-independent skeleton diagrams defining the
self-consistent contributions to the static self-energy Σ(∞),
Eqs. (37). Dashed lines represent matrix elements of the two-
particle interaction V , while double lines are correlated prop-
agators from Eqs. (18).

A. First- and second-order diagrams

The Gorkov SCGF expressions for ADC(1) and
ADC(2) provided in Ref. [25] are presently recalled for
completeness.

Only the four self-energy diagrams depicted in Figure 1
contribute at first order. They are depicted in terms of
self-consistent interacting propagators (double lines) and
contribute each to one of the four Nambu components of
Σ(∞). The corresponding algebraic expressions are

Σ
(∞) 11
αβ =

∑

k γ δ

vαγ,βδ V̄kδ ∗V̄kγ =
∑

γ δ

vαγ,βδ ρδγ ≡ Λαβ ,

(37a)

Σ
(∞) 12
αβ =

1

2

∑

k γ δ

vαβ̄,γδ̄ V̄kγ ∗Ūkδ =
1

2

∑

γ δ

vαβ̄,γδ̄ ρ̃γδ ≡ h̃αβ ,

(37b)

Σ
(∞) 21
αβ =

1

2

∑

γ δ

ρ̃∗γδ vγδ̄,βᾱ = h̃∗βα , (37c)

Σ
(∞) 22
αβ = −

∑

γ δ

vβ̄γ,ᾱδ ρδγ = −Σ
(∞),11

β̄ᾱ
= −Λβ̄ᾱ ,

(37d)

where matrices Λ and h̃ denote normal and anomalous
cHFB potentials. Additional first-order diagrams arising
from the −U term in ΩI cancel in the Gorkov Eqs. (31)
or (33), as already discussed above, and do not need to
be considered at any level. Any higher-order contribu-
tion to Σ(∞) relates to a composite, i.e. non-skeleton,
diagram. Thus, Eqs. (37) completely defines the energy-
independent self-energy of Gorkov SCGF theory.

Figure 2 displays all second-order diagrams associated

with Σ̃11(ω) and Σ̃12(ω). The corresponding diagrams for

Σ̃21(ω) and Σ̃22(ω) are analogous. The algebraic deriva-
tion of these diagrams was performed in Ref. [25]. The

(a) (b)

(c) (d)

FIG. 2. Second-order skeleton diagrams contributing to the

normal Σ̃11(ω) (a and b) and anomalous Σ̃21(ω) (c and d)
self-energies. Similar diagrams apply to the remaining Nambu

components, Σ̃12(ω) and Σ̃22(ω).

sum of diagrams 2a and 2b reads as

Σ̃11 2a
αβ (ω) + Σ̃11 2b

αβ (ω) =

∑

k1k2k3

{
Cα,k1k2k3 C∗β,k1k2k3

ω−ωk1−ωk2−ωk3 +iη
+
D̄∗k1k2k3,α D̄k1k2k3,β
ω+ωk1 +ωk2 +ωk3−iη

}
.

(38)

By comparison with Eq. (29a) and exploiting the ex-
pressions derived in Ref. [25], the expressions of the inter-
action and coupling matrices at play in Gorkov ADC(2)
are easily obtained as

C[ADC(2)]
α,r ≡ C(I)

α,r =
1√
6
P123

∑

µνλ

vαλ,µν Uk1µ Uk2ν V̄k3λ , (39a)

D̄[ADC(2)]
r,α ≡ D̄(I)

r,α=
1√
6
P123

∑

µνλ

V̄k1µ V̄k2ν Uk3λ vµν,αλ , (39b)

E [ADC(2)]
r,r′ ≡ δr,r′E(0)

r = diag{ωk1
+ ωk2

+ ωk3
} , (39c)

where the cyclic permutation operator acting on a generic
function of quasiparticle indices k1, k2,. . . reads

Pij` f(ki, kj , k`)

≡ f(ki, kj , k`) + f(kj , k`, ki) + f(k`, ki, kj) . (40)

Before moving to higher-order contributions, it is
worth to make a few qualitative considerations on how
different diagrams combine to yield the correct coupling
matrices C and D and to impose Pauli antisymmetry.
Fig. 3 shows the diagram from Fig. 2a split across the

lines propagating the energy denominator E(0)
r=k1,k2,k3

.
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β

α

=k1 k2 k3

α

β

k1 k2 k3

α

β

k1 k2 k3

FIG. 3. Left: The second-order diagram from Fig. 2a has been separated to highlight the propagation of the ISCs with
r = (k1, k2, k3). Center and right: Performing a cyclic permutation of the intermediate quasiparticle states changes the
topological structure of the diagram and transforms it into the contribution of Fig. 2b.

The upper half of the diagram gives the contribution

∑

µνλ

vαλ,µν Uk1µ Uk2ν V̄k3λ (41)

to matrix C. It is antisymmetric under the exchange
of quasiparticles k1 and k2 by construction, due to the
two-body matrix element of V , but not for other per-
mutations. The second diagram in Fig. 3 illustrates one
of the cyclic permutations needed to achieve complete
antisymmetry: rejoining the propagator lines after such
a transformation delivers nothing but the other second-
order diagram, Fig. 2b. This demonstrates how the sum
of both diagrams does provide Eq. (38) with C and D
satisfying the correct antisymmetry as in Eqs. (39). Sim-
ilar combinations of diagrams also appear in standard
Dyson Green’s function theory. However, these are less
frequent due to topological constraints and to the need
to antisymmetrize the quasiparticles and quasiholes sep-
arately4. In Gorkov theory, the presence of anomalous
propagators permits the exchange of any pair of propaga-
tor lines so that the ISCs corresponding to each interme-
diate energy denominator are forcefully antisymmetrized
with respect to all quasiparticle excitations. The impor-
tant consequence in seeking for proper approximations to
the self-energy is that one always needs to group together
specific sets of Feynman diagrams, related by exchanges
of propagator lines.

Another consideration concerns how the same
residues C and D arise in all Gorkov self-energies and
follow the pattern shown in Eqs. (29). The first column
of Fig. 4 depicts the possible time orientations of dia-
gram 2a, indicating the corresponding coupling matrices
it contributes to. Contributions to matrix C come from
two upward-going lines and a downward-going one ending
into an interaction vertex, which results into the vU2V
product in Eq. (39a). At the entrance of the diagram the

4 To be specific, the first instances of the Dyson expansion in
which different Feynman diagrams have to be grouped to sat-
isfy Pauli antisymmetry are at third order if three-body forces
are present [39]. With just two-body interaction, this happens
only at fourth order in perturbation theory.

ti
m
e

α

α

β

β

DT

C†

D̄

(C̄†)T = C̄∗

˜
Σ21
αβ(ω) :

α

α

β

β

C

C†

D̄

D̄†

˜
Σ11
αβ(ω) :

FIG. 4. Left column: The two time orderings through which

the diagram of Fig. 2a contributes to Σ̃11(ω). The top (bot-
tom) diagram corresponds to the forward-going (backward-
going) propagation. The matrices C and D to which a given
vertex contributes are indicated next to it. Right column:
Analogous time orderings for the corresponding contributions

to Σ̃21(ω) (Fig. 2b). The C (D) topologies that contribute to

the anomalous index of Σ̃21(ω) are highlighted with green (or-
ange) vertices. A comparison between the vertices on the left-
and right-hand sides elucidates the occurrence of the same
couplings C and D across all Eqs. (29).

same structure is found but reverse and complex conju-
gate, leading to a contribution to C†. Analogously, con-
tributions from the backward going diagram have struc-
ture of type vV2U and lead to Eq. (39b). Whenever an
anomalous self-energy is considered, one of the exit or en-
try lines has to be reversed, hence exchanging a V for a U ,
which leads to inverting C with D. This is shown in the
second column of Fig. 4 for the corresponding contribu-

tion to Σ̃21(ω): the top part of the upper-right diagram is
exactly the same as the top part of the lower-left one, but
it will enter as a transposed matrix in the Lehmann rep-
resentation because it is an exit point of the self-energy
in the first case and and entry point in the second. This
property is general because the net number of propaga-
tor (lines) flowing into the interaction vertex is reversed
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(a) (b) (c) (d)

FIG. 5. Third-order skeleton diagrams corresponding to Σ̃11(ω) with a particle-particle (pp) type intermediate interaction.
The contributions to the other Nambu components of the self-energy with pp intermediate interactions originate from four
analogous diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

exactly in the same way both for backward time propa-
gation and for the inversion of a Nambu indices between
normal to anomalous. It is easy to convince oneself that
the same considerations apply to particle-number non-
conserving interactions, as long as these are hermitian.
Moreover, as for the case of quasiparticle antisymmetriza-
tion, the presence of anomalous propagators allows for
any possible topological combination of lines and ensures
that this correspondence is realised also for more com-
plex diagrams, at any order in the Feynman expansion.
Therefore, any portion of Feynman diagram contributing
to a normal (anomalous) forward part of the self-energy
will contribute identically to the backward part of corre-
sponding anomalous (normal) case. It follows that ex-
actly the same matrices C and D must appear in all four
self-energies of Eqs. (29).

The rigorous proof of this property is beyond the scope
of the present work and is not elaborated on further.
However, let us remind that relations (29) naturally stem
out from Nambu covariant theory of Ref. [40]. In this
case both the normal and anomalous contributions are
embedded in a single propagator such that the C and D
couplings are part of a unique coupling matrix. For our
purposes, we have verified by hand that Eqs. (29) are
satisfied by all diagrams discussed in the present work.

B. Third-order skeleton diagrams

Following the above discussion one concludes that it is
sufficient to derive ADC(3) expressions of the coupling
and interaction matrices associated with one particular
Gorkov self-energy. While the diagrams contributing to

Σ̃11(ω) are presently employed, the other self-energies,
Eqs. (29b-29d) were checked to lead to the same results.

There exist 17 possible third-order skeleton diagrams
that must be grouped in three classes on the basis of
their connection through Pauli exchanges of propagator
lines. These are depicted respectively in Figs. 5, 6 and 7.
Each middle vertex in these diagrams acts as a seed for
the all-orders Tamm-Dancoff resummations generated by

ADC(3).
Diagram 5a is the diagram that makes two-particle and

two-hole interact in the ISCs in the usual Dyson-ADC(3)
formalism, respectively for forward and backward time
propagation. Adding diagrams 5b, 5c and 5d guarantees
the antisymmetrization with respect to the third, non in-
teracting quasiparticle. The frequency integrals needed
to work out the algebraic expressions of these diagrams
are discussed in App. C and lead to the same contribu-
tions as in Eqs. (39), plus second-order corrections to
the coupling amplitudes and first-order correction to the
energy matrix.

Let us first define the tensor

tk3k4k1k2
≡
∑

αβγδ

V̄k1α V̄k2β vαβ,γδ Uk3γ Uk4δ
− (ωk1 + ωk2 + ωk3 + ωk4)

(42)

that is closely related to the lowest-order double ampli-
tude in Bogoliubov coupled cluster (BCC) theory [47].
Note that BCC expressions are typically derived perform-
ing first the normal ordering of the Hamiltonian with
respect to the Bogoliubov vacuum and expressing it in
terms of Bogoliubov quasi-particle operators whereas the
original matrix elements of V appear in Eq. (42). In
the special case of a HFB mean field, U and V ampli-
tudes account for the normal ordering and tk3k4k1k2

does in-
deed reduce to the lowest order BCC double amplitude.
Consequently, Eq. (42) extends the concept of BCC am-
plitudes to account for the strength fragmentation of a
dressed propagator. With this tensor at hand, the con-
tributions to the coupling amplitudes resulting from the
diagrams displayed in Fig. 5 read as

C(IIa)
α,r =

1√
6
P123

∑

µ ν λ
k4 k5

vαλ,µν
2

(
V̄k4µ V̄k5ν

)∗
tk1k2k4k5

V̄k3λ , (43a)

C(IIb)
α,r =

1√
6
P123

∑

µ ν λ
k4 k5

vαλ,µν

(
V̄k4ν Uk5λ

)∗
tk1k2k4k5

Uk3µ , (43b)

D̄(IIa)
r,α =

1√
6
P123

∑

µ ν λ
k4 k5

tk4k5k1k2
Uk3λ

(
Uk4µ Uk5ν

)∗ vµν,αλ
2

, (43c)
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(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to Σ̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to
Fig. 5, the contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from
four analogous diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

D̄(IIb)
r,α =

1√
6
P123

∑

µ ν λ
k4 k5

tk4k5k1k2
V̄k3µ

(
Uk4ν V̄k5λ

)∗
vµν,αλ. (43d)

The first-order corrections to the energy matrix differ
according to whether they refer to forward or backward
poles of the self-energy, i.e. to the first or second term
on the right-hand side of Eqs. (29), respectively,

E(Ia)
r,r′ =





1
6P123P456

(
E(pp)
k1k2,k4k5

δk3,k6

)

for forward poles,

1
6P123P456

(
E(hh)
k1k2,k4k5

δk3,k6

)

for backward poles,

(44)

where

E(pp)
k1k2,k4k5

=
∑

αβγδ

(Uk1α Uk2β )∗ vαβ,γδ Uk4γ Uk5δ , (45)

E(hh)
k1k2,k4k5

=
∑

αβγδ

V̄k1α V̄k2β vαβ,γδ (V̄k4γ V̄k5δ )∗. (46)

The corresponding hh (pp) interaction contributions
to the forward-going (backward-going) self-energies arise
from the four diagrams in Fig. 6. They are analogous
to the diagrams of Fig. 5 except for inverting the orien-
tation of all lines entering and leaving the intermediate
interaction vertex. These diagrams lead to the following
corrections to the coupling amplitudes

C(IIc)
α,r =

1√
6
P123

∑

µ ν λ
k4 k5

vαλ,µν
2

(
V̄k4µ V̄k5ν

)∗
tk4k5k1k2

V̄k3λ , (47a)

C(IId)
α,r =

1√
6
P123

∑

µ ν λ
k4 k5

vαλ,µν

(
V̄k4ν Uk5λ

)∗
tk4k5k1k2

Uk3µ , (47b)

D̄(IIc)
r,α =

1√
6
P123

∑

µ ν λ
k4 k5

tk1k2k4k5
Uk3λ

(
Uk4µ Uk5ν

)∗ vµν,αλ
2

, (47c)

D̄(IId)
r,α =

1√
6
P123

∑

µ ν λ
k4 k5

tk1k2k4k5
V̄k3µ

(
Uk4ν V̄k5λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the
energy matrix are

E(Ib)
r,r′ =





1
6P123P456

(
E(hh)
k1k2,k4k5

δk3,k6

)

for forward poles,

1
6P123P456

(
E(pp)
k1k2,k4k5

δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5
and 6 are all computed together on the same footing. The
topological relation between the two classes of diagrams,
i.e. the inversion of lines in the intermediate interaction,
is reflected into the fact that Eqs. (43) and (47) transform

into each other under the exchange tk1k2k4k5
↔ tk4k5k1k2

. Insert-

ing all contributions into Eqs. (29) implies self-energy
terms including mixed products of Eqs. (43) and (47).
These are rightful time orderings arising from fourth-
and higher-order diagrams and therefore not depicted in
Figs. 5, 6 and 7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are dis-
played in Fig. 7. Performing the energy integral and
making the antisymmetrization with respect to all ISC
quasiparticle indices explicit through the use of the op-
erator

Aij` f(ki, kj , k`)

≡ f(ki, kj , k`) + f(kj , k`, ki) + f(k`, ki, kj)

− f(kj , ki, k`)− f(k`, kj , ki)− f(ki, k`, kj) ,
(49)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to Σ̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly
to Figs. 5 and Fig. 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions
originate from nine analogous diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

the nine diagrams of Fig. 7 introduce three additional
terms to each coupling matrix

C(IIe)
α,r =

1√
6
A123

∑

µ ν λ
k7 k8

vαλ,µν

(
V̄k7ν Uk8λ

)∗
Uk1µ tk8k2k7k3

, (50a)

C(IIf)
α,r =

1√
6
A123

∑

µ ν λ
k7 k8

vαλ,µν

(
Uk7λ V̄k8µ

)∗
Uk1ν tk8k2k7k3

, (50b)

C(IIg)
α,r =

1√
6
A123

∑

µ ν λ
k7 k8

vαλ,µν
(
V̄k7µ V̄k8ν

)∗ V̄k1λ tk8k2k7k3
, (50c)

D̄(IIe)
r,α =

1√
6
A123

∑

µ ν λ
k7 k8

V̄k1ν tk2k8k3k7

(
V̄k7λ Uk8µ

)∗
vµν,αλ, (50d)

D̄(IIf)
r,α =

1√
6
A123

∑

µ ν λ
k7 k8

V̄k1µ tk2k8k3k7

(
Uk7ν V̄k8λ

)∗
vµν,αλ, (50e)

D̄(IIg)
r,α =

1√
6
A123

∑

µ ν λ
k7 k8

Uk1λ tk2k8k3k7

(
Uk7µ Uk8ν

)∗
vµν,αλ, (50f)

whereas the particle-hole contribution to the ISC energy
interaction matrix is given by

E(Ic)
r,r′ =

1

6
A123A456

(
δk1,k4 E(ph)

k2k3,k5k6

)
(51)



13

with

E(ph)
k2k3,k5k6

=
∑

αβγδ

(Uk2α V̄k3β )∗ vαδ,βγ Uk5γ V̄k6δ . (52)

C. Non-skeleton contributions

Sections III A and III B exhaust all the diagrams that
enter fully self-consistent computations up to ADC(3).
In this case, the self-energy is purely a functional of
the fully dressed propagator, G(ω), and all above equa-
tions are expressed in terms of its spectroscopic ampli-
tudes and poles, Eqs. (19), (20) and (21). If, instead,
the many-body expansion is based on the unperturbed
reference propagator G(0)(ω) additional composite, i.e.
non-skeleton, diagrams need to be included. Thus, the
present section along with App. B introduce all remain-
ing composite diagrams up to third order.

The unperturbed propagator (25) has a spectral rep-
resentation analogous to Eqs. (18)

G
(0)11
αβ (ω) =

∑

k

{
Uk
α Uk

β
∗

ω − ε(0)
k + iη

+
V̄k
α
∗ V̄k

β

ω + ε
(0)
k − iη

}
,

(53a)

G
(0)12
αβ (ω) =

∑

k

{
Uk
α Vk

β
∗

ω − ε(0)
k + iη

+
V̄k
α
∗ Ūk

β

ω + ε
(0)
k − iη

}
,

(53b)

G
(0)21
αβ (ω) =

∑

k

{
Vk
α Uk

β
∗

ω − ε(0)
k + iη

+
Ūk
α
∗ V̄k

β

ω + ε
(0)
k − iη

}
,

(53c)

G
(0)22
αβ (ω) =

∑

k

{
Vk
α Vk

β
∗

ω − ε(0)
k + iη

+
Ūk
α
∗ Ūk

β

ω + ε
(0)
k − iη

}
,

(53d)

where we used the notation ε
(0)
k , Uk and Vk to stress

that these are not correlated spectroscopic quantities but
unperturbed ones. For the present purpose, these are the
solution of the HFB eigenvalue problem associated with
ΩU

∑

β



tαβ+uαβ−µδαβ uan.

αβ̄

−(uan.ᾱβ )∗ −tβ̄ᾱ−uβ̄ᾱ+µδαβ






Uk
β

Vk
β




= ε
(0)
k




Uk
α

Vk
α


 . (54)

Since the composite diagrams discussed in this section as-
sume a HFB reference state, their contributions to ADC
interactions and amplitudes are expressed in terms of the
unperturbed state generated by Eq. (54).

1. Static self-energy

The composite diagrams contributing to Σ
(∞)
αβ (ω) can

be obtained by expanding Gorkov Eq. (26) up to second
order and by inserting the results into the diagrams of
Fig. 1. The resulting equations for the static self-energies
are rather cumbersome and are detailed in App. B. How-
ever, these are not needed in the vast majority of appli-
cations since their self-consistent counter part, Eqs. (37),
is easier to compute and contains all of them implicitly.

2. Third-order terms

The energy-dependent Σ̃(ω) at second order receives
no contributions from self-energy insertions. Thus, the
only composite diagrams appear at order three and in-
volve the insertion of a static one-body potential to the
known diagrams of Fig. 2. This leads to the ten diagrams
displayed in Fig. 8 for a generic external potential U . In
the following, we provide the contributions from these di-
agrams in terms of the matrix elements of U and the am-
plitudes of Eq. (53), with the understanding that these
need to be substituted with those of V HFB − U intro-
duced by the perturbation ΩI from Eq. (7).

The top two rows in Fig. 8 cover all diagrams contain-
ing self-energies insertions originating from the normal
component of U , i.e. the term associated with matrix
elements uαβ in Eq. (13). They contribute to the cou-
pling matrices C and D through the normal singlet BCC
amplitude

tk1k2 ≡
∑

αβ

V̄k1
α uαβ Uk2

β

− (ωk1 + ωk2)
, (55)

and to the energy matrix through particle and hole in-
teractions

E(p)
k1k2
≡
∑

αβ

(
Uk1
α

)∗
uαβ Uk2

β , (56a)

E(h)
k1k2
≡
∑

αβ

V̄k1
α uαβ

(
V̄k2
β

)∗
. (56b)

All together, this leads to the following ADC(3) contri-
butions to the coupling matrices

C(IIh)
α,r =

1√
6
A123

∑

µ ν λ
k7

vαλ,µν
(
V̄k7
µ

)∗
[tk7k1 − t

k1
k7

] Uk2
ν V̄k3

λ ,

(57a)

C(IIi)
α,r =

1√
6
P123

∑

µ ν λ
k7

vαλ,µν

(
Uk7
λ

)∗
[tk7k1 − t

k1
k7

] Uk2
µ Uk3

ν ,

(57b)

D̄(IIh)
r,α =

1√
6
A123

∑

µ ν
λ k7

(
Uk7
µ

)∗
[tk7k1 − t

k1
k7

] V̄k2
ν Uk3

λ vµν,αλ ,

(57c)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

FIG. 8. Third-order composite (non-skeleton) diagrams contributing to Σ̃11(ω) involving an external one-body potential U
of Eq. (13) as self-energy insertion. Dashed lines represent matrix elements of the two-particle interaction V , single lines are
reference mean-field propagators from Eqs. (53) and dashed lines with a cross denote the one body potential U . Similarly
to Figs. 5-7, all other Nambu components of the self-energy receive contributions from analogous diagrams that are obtained
inverting one or both of the incoming and outgoing lines.

D̄(IIi)
r,α =

1√
6
P123

∑

µ ν
λ k7

(
V̄k7
λ

)∗
[tk7k1 − t

k1
k7

] V̄k2
µ V̄k3

ν vµν,αλ ,

(57d)

and to the corresponding one-body energy interaction
matrices

E(Id)
r,r′ = P(14)(25)(36)

[(
E(p)
k1k4
− E(h)

k4k1

)
δk2k5δk3k6

]
, (58)

where the cyclic permutation operator is intended to act
on pairs of quasiparticle indices.

The remaining two rows of Fig. 8 arise from the anoma-
lous term in Eq. (13). Introducing the anomalous single
BCC amplitude in the two-particle channel

tk1k2 ≡
∑

αβ

(
uan.αβ

)∗
Uk1
α Uk2

β

−2 (ωk1 + ωk2)
, (59a)

and in the two-hole channel

tk1k2 ≡
∑

αβ

V̄k1
α V̄k2

β uan.αβ

−2 (ωk1 + ωk2)
, (59b)

the anomalous one-body energy interaction matrix reads
as

E(an)
k1k2
≡
∑

αβ

1

2

(
Uk1
α

)∗
uan.αβ V̄k2

β (60)

and acts by mixing the addition and removal components
of a single quasiparticle. With these definitions at hand,
the remaining non-skeleton ADC(3) contributions are

C(IIj)
α,r =

1√
6
A123

∑

µ ν λ
k7

vαλ,µν
(
V̄k7
µ

)∗
[tk7k1−tk7k1 ] Uk2

ν V̄k3
λ ,

(61a)
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C(IIk)
α,r =

1√
6
P123

∑

µ ν λ
k7

vαλ,µν

(
Uk7
λ

)∗
[tk7k1−tk7k1 ] Uk2

µ Uk3
ν ,

(61b)

D̄(IIj)
r,α =

1√
6
A123

∑

µ ν
λ k7

(
Uk7
µ

)∗
[tk7k1−tk7k1 ] V̄k2

ν Uk3
λ vµν,αλ ,

(61c)

D̄(IIk)
r,α =

1√
6
P123

∑

µ ν
λ k7

(
V̄k7
λ

)∗
[tk7k1−tk7k1 ] V̄k2

µ V̄k3
ν vµν,αλ ,

(61d)

and

E(Ie)
r,r′ = P(14)(25)(36)

[(
E(an)
k1k4

+ E(an) ∗
k4k1

)
δk2k5δk3k6

]
. (62)

IV. OPTIMISED REFERENCE STATES AND
APPROXIMATIONS TO SELF-CONSISTENCY

The SCGF approach is based on using the dressed
propagator G(ω), Eq. (18), as the reference state upon
which the self-energy is expanded. It generalises the un-
perturbed propagator G(0)(ω) to include full many-body
correlations in the one-body Green’s function. In this
framework, only skeleton diagrams must be accounted for
and the contributions discussed in Secs. III A and III B
define the complete Gorkov-ADC(3) approach. Since
G(ω) is itself obtained by solving Gorkov equations, in
practice one needs to compute the self-energy and diag-
onalize Eq. (33) iteratively until convergence.

Our experience from applications to nuclear struc-
ture is that the most important self-consistency effects
arise from the cHFB terms, i.e. Eqs. (37) [48]. These
are rather straightforward to compute and require very
modest computational resources, even for fully dressed
propagators. On the other hand, the self-consistent

computation of Σ̃(ω) becomes quickly prohibitive. If
NBs = dim({α}) denotes the dimension of the single-
particle basis, an unperturbed reference state G(0)(ω)
implies a dimension ≈2N3

Bs for the Gorkov eigenvalue
problem (33) that generates half as many poles for G(ω).
At each subsequent self-consistency iteration the dimen-
sion of the ISC space grows as dim({r})≈(NBs)

3n , with
n being the number of iterations. Therefore, it is manda-
tory to devise proper approximations of the dressed prop-
agator, Gred(ω), that limit the growth in the number
of poles. Typical approaches proposed in the literature
aim at a low-dimensional representation of the propaga-
tor either by binning of the spectral function in energy
and momentum or by projecting it onto Krylov sub-
spaces [26, 44, 49–51]. The second approach is highly
preferable, if not mandatory, when working with discrete
Lehmann representations such as Eqs. (18) and (29). In
the context of Dyson SCGF, we introduced two workable
techniques that follow the latter strategy and further rely

on the conservation of the lowest moments of the spec-
tral function [37, 52, 53]. In the following, these ideas are
generalized to the case of Gorkov propagators.

In general, both the one-body spectral function and the
dressed propagator (18) are uniquely defined by the set
of quasiparticle poles, ωk, and spectroscopic amplitudes
(Uk,Vk). Given the number D of independent poles (k =
1, . . . D), we aim at replacing these objects with a smaller
set

ωk ,

(
Uk
Vk
)

−→ ω′i ,

(
U′i

V′i

)
(63)

where i = 1, . . . d and d � D. The p-th moment of the
spectral distribution is defined in Nambu space as

S
(p)
αβ ≡

∑

k

(ωk)p



Ūkα∗

V̄kα∗


(Ūkβ V̄kβ

)
(64)

and similarly for ω′i and (U′i,V′i). The new set of
poles and amplitudes is determined by imposing that it
preserves all matrix elements of the first 2n moments,
p = 0, 1, . . . 2n − 1, for a given positive integer n. It is
easy to verify that this condition is met by choosing

ω′i = ei , (65a)



Ū′iα
∗

V̄′iα
∗


 =

n∑

p=1

[S(p−1)Z
(p)
i ]α , (65b)

where ei and (Z
(1)
i ,Z

(2)
i , . . .Z

(n)
i ) are the solutions of the

eigenvalue problem




S(1) S(2) · · · S(n)

S(2) S(3) · · · S(n+1)

...
...

. . .
...

S(n) S(n+1) · · · S(2n−1)







Z
(1)
i

Z
(2)
i
...

Z
(n)
i




= ei




S(0) S(1) · · · S(n−1)

S(1) S(2) · · · S(n)

...
...

. . .
...

S(n−1) S(n) · · · S(2n−2)







Z
(1)
i

Z
(2)
i
...

Z
(n)
i



, (66)

with the sums over single-particle basis indices being

implicit for simplicity. Note that each component Z
(p)
i

is a vector both in the single-particle basis and in
Nambu space, so that the number of new amplitudes is
d = 2nNBs. For very large values of n the spectral dis-
tribution will be approximated with a growing number
of poles and the original poles and amplitudes, ωk and
(Ūk, V̄k), will eventually be recovered exactly. However,
the most important physical information is already pre-
served even for the simplest case, i.e. n=1. For example,



16

the lowest spectral moment is

S
(0)
αβ =



mαβ ρ̃∗βα

ρ̃αβ ραβ


 (67)

where the matrix

mαβ ≡ S(0),11
αβ =

∑

k

Ūkα∗ Ūkβ = 〈Ψ0|c̄β c̄†α|Ψ0〉 , (68)

is related to the density matrix through mαβ+ρβ̄ᾱ = δαβ
and informs on the distribution of unoccupied single-
particle states [54]. Hence, preserving Eq. (67) will au-
tomatically preserve the pairing gaps, the density matrix
and all one-body observables, including the average par-
ticle number (11) and the point-particle density distribu-
tions. Likewise, the Koltun energy sum rule (24) can be
expressed in terms of the p = 0, 1 moments

Ω0 =
1

2

∑

αβ

[
(tαβ − µδαβ)S

(0),22
βα − δαβS(1),22

βα

]
, (69)

and the effective single-particle energies, obtained diag-

onalizing hcent.
αβ ≡ µ δαβ + S

(1),11

β̄ᾱ
− S

(1),22
αβ , remain un-

changed [55].
In spite of its efficiency, the effective dressed single-

particle propagator for n=1 has already a number of
poles, d = 2NBs, that is doubled with respect to the
standard mean-field reference. This implies an eightfold
increase in the dimension of the corresponding Gorkov
eigenvalue problem (33). The self-consistent approach
based on conserving moments (64) is therefore viable only
for sufficiently small model spaces.

A better approximation would consist in maintaining
the same number of poles as G(0)(ω) while not giving up
the ability of conserving key quantities from the previous
scheme. For this purpose let us compute moments of the
spectral functions with respect to the poles of G(ω) and
sum over both forward- and backward-going excitations
from Eq. (18)

Q
(p)
αβ =

∑

k

{ −1

(ωk)p

(
Ukα
Vkα

)(
Ukβ ∗,Vkβ∗

)

+
1

(ωk)p

(
V̄kα∗
Ūkα∗

)(
V̄kβ , Ūkβ

)}
. (70)

Note that Q
(p=1)
αβ = Gαβ(ω = 0). The set of ampli-

tudes (63) preserving the moments (70) is obtained fol-
lowing Eqs. (66) and (65b) with S(p) replaced by Q(p) but
choosing ω′i = 1/ei. Equation (70) leads to the general
structure

Q
(p)
αβ =




Q
(p),11
αβ Q

(p),12
αβ

(
Q

(p),12
βα

)∗
(−)p

(
Q

(p),11

β̄ᾱ

)∗


 , (71)

which is analogous the HFB eigenmatrix (37). Insert-
ing it into Eq. (66), it can be shown that solutions come

in pairs with eigenvalues of opposite sign (1/ei,−1/ei)
and consequently the approximated spectra distribution
only has d = nNBs independent poles. As for the case
of the direct spectral function, Eq. (64), imposing the
preservation of the first 2n moments Q(p) lead to an ap-
proximation to the spectral distribution that approaches
the complete set of D quasiparticles as n increases. How-
ever, the greatest advantage is for n = 1 since it defines
an approximation to G(ω) (the self-consistent propaga-
tor) that has the same number of poles of the standard
reference mean-field G(0)(ω).

The most relevant difference between moments (64)
and (70) is that the orthonormality of eigenvectors (34)

implies that Q
(0)
αβ = Iδαβ is the identity matrix. Hence,

the lowest moments Q(0) non longer preserves the exact
(normal and anomalous) reduced density matrices. On
the other hand, the eigenvalue equation (66) for n = 1
becomes

Q(1)Zi = eiZi , (72)

where Z
(1)
i

T = (U′i,V′i) according of Eq. (65b). In addi-

tion, relations (71) for Q(1) imply that this is a HFB-like
problem. Therefore, the poles ω′i and (U′i,V′i) are both
a workable approximation of the self-consistent propaga-
tor G(ω) and the solution of an unperturbed mean-field

Hamiltonian Ω
(OpRS)
U , which we dub optimized reference

state (OpRS) Hamiltonian.
To correctly define the external potential U (OpRS) that

generates the new reference state one has to remember
that the eigenvalues ei are associated with moments of

inverse poles, 1/ωk, through Eq. (70). Thus, Ω
(OpRS)
U is

identified with the inverse matrix of Q(1)




Ω
(OpRS)11
U αβ Ω

(OpRS)12
U αβ

Ω
(OpRS)21
U αβ Ω

(OpRS)22
U αβ


 ≡

[
Q

(1)
αβ

]−1

=
∑

i




U′iα V̄′iα
∗

V′iα Ū′iα
∗






1
ei

− 1
ei






U′iβ
∗ V′iβ

∗

V̄′iβ Ū′iβ


 ,

(73)

where the sum runs over all positive eigenvalues (ei > 0)
of Eq. (72). Comparing the matrix elements of Eq. (73)
with the left-hand side of Eq. (54) defines the poten-
tial U (OpRS).

Equation (73) has been systematically used to define
an optimized reference state for SCGF computations in
nuclear structure [5]. Although the physical quantities in
Eqs. (67), (68) and (69) are no longer preserved exactly,
it is our experience that the Koltun sum rule and den-
sity distributions are still closely reproduced even with
such OpRS and even for strongly correlated systems such
as atomic nuclei. Thus, this has become our method of
choice to implement self-consistency. In doing so, it is
crucial to define Q(p) in terms of the inverse quasiparti-
cle energies because the conservation of lowest moments
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constrains more efficiently the extremes of the eigen spec-
trum rather than its central part. By employing powers
of 1/ωk in Eq. (70) one ensures that greater weight is
given to preserve the structure of the self-consistent prop-
agator G(ω) near the Fermi surface.

In spite of being a somewhat poorer approximation
than the one generated by Eqs. (64), the OpRS has the
great advantage to be associated with an external mean-
field potential ΩU and propagator. Hence, the approxi-
mation made in replacing the true self-consistent prop-
agator G(ω) with G(OpRS)(ω) can always be corrected
systematically by computing the non-skeleton diagrams
of Sec. III C for U ≡ ΣHFB − U (OpRS).

V. IMPLEMENTATION OF THE ADC(n)
TRUNCATION HIERARCHY

Having derived all diagramamatic contributions up to
third order, it useful to briefly summarize the specific
terms that enter the various truncation levels of the
ADC(n) method. At each order n, the Gorkov prop-
agator (18) is obtained by diagonalizing Eq. (33), with
the eigenvectors normalised according to Eq. (34) and the
chemical potential tuned to reproduce the correct num-
ber of particles on average (see Eq. (11) and Ref. [26]).
The matrix elements of the Gorkov eigenvalue problem
are given as follows:

1. ADC(1). Only the cHFB sector of the
Gorkov matrix contributes at first or-
der, while all couplings to ISCs vanish:
C[ADC(1)] = D̄[ADC(1)] = E [ADC(1)] = 0. One
computes the matrix elements of Σ(∞) from
Eqs. (37) and adds the one-body interaction
T shifted by the chemical potential µ. In this
case, a self-consistent computation reduces to the
standard HFB problem.

2. ADC(2). The cHFB sector remains the same as
for ADC(1). The coupling matrices C[ADC(2)] and
D̄[ADC(2)] and energy denominator E [ADC(2)] are
given by Eqs. (39). Since all Feynman diagrams up
to second order are of skeleton type, the ADC(2) is
uniquely defined by these equations.

3. Self-consistent ADC(3). For a self-consistent com-
putation the reference Gorkov propagator is re-
placed by a dressed one, which includes the frag-
mentation of single-particle strength. In this case
only skeleton diagrams must be included. The
ADC(3) equations remain unchanged in the cHFB
sector but the couplings to ISCs receive additional
terms from Eqs. (43) through (51). Specifically:

C[ADC(3)−SC]
α,r = C[ADC(2)]

α,r + C(IIa)
α,r + C(IIb)

α,r + C(IIc)
α,r

+ C(IId)
α,r + C(IIe)

α,r + C(IIf)
α,r + C(IIg)

α,r , (74a)

D̄[ADC(3)−SC]
r,α = D̄[ADC(2)]

r,α + D̄(IIa)
r,α + D̄(IIb)

r,α + D̄(IIc)
r,α

+D̄(IId)
r,α +D̄(IIe)

r,α +D̄(IIf)
r,α + D̄(IIg)

r,α , (74b)

E [ADC(3)−SC]
r,r′ = E [ADC(2)]

r,r′ + E(Ia)
r,r′ + E(Ib)

r,r′ + E(Ic)
r,r′ . (74c)

4. Full ADC(3). Whenever a mean-field propagator is
used to define the reference state for the Feynman-
Gorkov expansion, composite diagrams must also
be included. The first non-skeleton terms appear at
third order and therefore contribute from ADC(3)
onward. These are detailed in Eqs. (57), (58), (61)
and (62) and lead to the final Gorkov-ADC(3)
equations:

C[ADC(3)−Full]
α,r = C[ADC(3)−SC]

α,r + C(IIh)
α,r + C(IIi)

α,r

+ C(IIj)
α,r + C(IIk)

α,r , (75a)

D̄[ADC(3)−Full]
r,α = D̄[ADC(3)−SC]

r,α + D̄(IIh)
r,α + D̄(IIi)

r,α

+D̄(IIj)
r,α +D̄(IIk)

r,α , (75b)

E [ADC(3)−Full]
r,r′ = E [ADC(3)−SC]

r,r′ + E(Id)
r,r′ + E(Ie)

r,r′ . (75c)

Note that the latter corrections have to be
computed for the residual one-body interaction
U ≡ ΣHFB − U (MF ), where ΣHFB is the HFB po-
tential and U (MF ) is the mean field that defines the
reference state. Therefore, corrections (75) vanish
for the special case of an HFB reference state.

It should be noted that for each of the above truncations
the cHFB sector in Eq. (33) needs to be evaluated at least
at the corresponding order in perturbation theory. In
practical applications it is sufficient to exploit Eqs. (37),
which are complete to all orders if expressed in terms of
the fragmented amplitudes U and V. This leads to a first
level of self-consistency, referred to as ‘sc0’, where only
the cHFB part of the eigenmatrix (33) is updated iter-
atively [26]. Complete self-consistency requires iterating
also the coupling amplitudes and interactions, C, D, and
E : these are computed from the spectroscopic amplitudes
and poles of the dressed propagator, whenever possible,
or otherwise resorting to the corresponding OpRS dis-
cussed in Sec. IV.

The same working equations for the case of a spherical
system in angular momentum coupling scheme are de-
rived in App. A, with the final eigenvalue problem given
by Eqs. (A37) and (A38). The J-coupled contributions
corresponding to the above truncation schemes are col-
lected in Secs. A 1, A 2 a, A 2 b and A 2 c, respectively.
Extensive details about the numerical implementation of
Gorkov-ADC(n) can be found in Ref. [26].

VI. CONCLUSIONS

The major outcome of the present work is the full de-
velopment of the Gorkov method at the ADC(3) trun-
cation level for which all algebraic details necessary to
perform a numerical implementation are provided.
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The full set of working equations for a two-body Hamil-
tonian has been presented in Sec. III for a general single-
particle basis set and are summarised for the different
ADC(n) truncations in Sec. V. This allows for the largest
possible range of applications to a variety of systems.
Our results could be easily adapted to complex geome-
tries as in molecules or specified to cylindrical and de-
formed bases (which will be highly relevant to deformed
nuclei). The particular case of spherical symmetry can
be exploited for simple atoms and semi-magic nuclear
isotopes and is presently derived in full in App. A. This
development is expected to open the way to new advances
in ab initio nuclear structure studies.

In spite of the large number of Gorkov diagrams that
needs to be considered to build the ADC(3) approxima-
tion, i.e. 17 skeleton plus 20 composite ones at third
order, most contributions can be gathered together in
a handful of final terms. Combining Goldstone (time-
ordered) contributions across different diagrams leads to
important simplifications [56], i.e. it is not only to sim-
plify the working equations but also to satisfy Pauli an-
tisymmetrization. Further simplifications of our results
from Sec. III could be achieved by identifying specific
terms with unperturbed Bogoliubov coupled cluster am-
plitudes [47]. The close relation between SCGF and cou-
pled cluster methods was already observed at the level
of the standard (particle number conserving) formula-
tions [57, 58]. The ADC(3) many-body truncation is
normally expected to be equivalent to triple corrections
in CC [59, 60]. Furthermore, the identification of BCC
amplitudes pointed out in Sec. III can be the basis for fur-
ther improvements of the ADC(3) scheme, as discussed
in Ref. [23].

In the effort to clarify all possible aspects of a fu-
ture implementation of the method, the systematic pro-
cedures to handle self-consistency were discussed. In par-
ticular, the necessary approximations in applying SCGF
to the energy-dependent self-energy can be rationalized
as a process of learning an optimal reference state that
encodes the most important features of many-body cor-
relations. The proposed OpRS approach provides a way
to maintain a faithful implementation, i.e. to correct
systematically for the approximation itself, up to order
ADC(3) by simply adding the composite diagrams cor-
rections.

The numerical implementation of ADC(3) is noto-
riously more difficult than ADC(2) and implies much
higher needs for computational resources. Although it
is not clear a priori how large model spaces can be
reached, the present-day availability of massively par-
allel computing resources provides a significant advan-
tage with respect to our early applications at the ADC(2)
level [61, 62].

With the right formalism in place and the hierarchy of
approximations ADC(1) (i.e., HFB), ADC(2), ADC(3),
it will be possible to better assess the limits and merits
of the Gorkov approach. In particular, the implications
of symmetry breaking can be addressed in a more sys-

tematic way.
The formalism set out in this work does not consider

the implication of three-body forces, which are a cru-
cial component of the nuclear Hamiltonian. This is not
a major hindrance for ab initio nuclear physics because
the vast majority of state-of-the-art applications find it
sufficient to include three-nucleon forces as effective two-
body interactions. The details of the full ADC(n) Gorkov
formalism based on two- and three-body forces, includ-
ing anomalous and interaction-irreducible contributions,
will be the subject of a future work.
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Appendix A: Coupling of angular momenta

The Gorkov-ADC(3) equations derived in Sec. III are
generally applicable to any many-fermion system, given
an orthonormal one-body basis {|α〉} and its dual de-
fined in Eq. (2). However, this form rarely represents the
optimal choice for practical implementations. In most
cases, computational requirements can be drastically re-
duced by adopting an appropriate basis and exploiting
the symmetries of the problem under consideration. We
now discuss the particular case of a rotationally invariant
Hamiltonian and (spherical) ground state with total an-
gular momentum J = 0. This class of systems includes a
number of atoms and ions in Quantum Chemistry and the
vast majority of semi-magic isotopes in Nuclear Physics.

Most ab initio implementations in nuclear physics ex-
ploit spherical single-particle basis states with an isospin
spinor Xq(τ) plus a spherical spherical harmonic Y`(r̂)
and spin X 1

2
(σ) coupled to angular momentum j and its

z-axis projection m:

φα(~r, σ, τ) = fnα`αjαqα(r)
[
Y`α(r̂)⊗X 1

2
(σ)
]jα
mα
Xqα(τ) ,

(A1)

where ~r, σ and τ are the spatial, spin and isospin coor-
dinates and the most general radial function fa(r) may
depend on all quantum numbers except mα due to ro-
tational symmetry. Here, qα stands for any quantum
number (or set of numbers) that is needed to label differ-
ent distinguishable particles. Typically, it is not needed
for a single-fermion system such as the electron gas while
it is customary to use the nucleon charge to distinguish
among protons and neutrons in atomic nuclei. However,
the latter representation is inefficient for our purposes
since the Gorkov formulation conserves only particle-
number parity but not the total number of particles.
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Hence, the total charge is also not conserved. A more
general and practical choice is a vector of quantum num-
bers encoding the particle-number parity of all types of
particles in the systems. For example, in the case of
Eq. (A1), qα will be a ‘one-hot’ vector with all zeros
except for the element that identifies the given parti-
cle, which is set to 1. In the following this represen-
tation of qα will be used, always implicitly intended as
a vector in {0, 1}Nf , with Nf the number of different
fermion species. For spin 1

2 , the combination of spatial
parity πα and jα uniquely defines the orbital angular mo-
mentum `α. Thus, it is convenient to label our basis
in terms of πα and the particle-number parities qα as
these have corresponding good quantum numbers for the
many-body states of Eq. (8). To summarize, the collec-
tive index α denotes the set of quantum numbers

α ≡ (nα, πα, jα, qα,mα) = (a,mα) , (A2a)

where we introduce a latin letter index,

a ≡ (nα, πα, jα, qα) , (A2b)

to group the quantum numbers that are not contracted
in the coupling of angular momenta.

The dual basis {|ᾱ〉} can be made explicit by identi-
fying the antiunitary transformation T with the time-
reversal operator. Applying it to state (A1) gives

T φa,mα(~r, σ, τ) = (−1)`α+jα−mα φa,−mα(~r, σ, τ) , (A3)

from where one identifies the conjugate quantum number
of α to be α̃ = (a,−mα). Since the parity πα = (−1)`α

only introduces a global real phase, we define the antiu-
nitary transformation simply as ηα ≡ (−1)jα+mα . It can
be shown that

c†α = c†a,mα , (A4a)

c̄α = ηα cα̃ = (−1)jα+mα ca,−mα , (A4b)

are the mα-th components of irreducible tensor operators
of rank jα.

We use a similar notation to Eq. (A2) for Gorkov quasi-

particle indices k and define the subset k̃ of rotationally
invariant quantum numbers such that5

k = (nk, πk, jk, qk,mk) ≡ (k̃,mk) . (A5)

Quantities nk, πk, jk and mk denote the principal quan-
tum number, parity, total angular momentum and its
projection of the many-body states in Eq. (8). Similarly,

qk ≡ |〈Ψk|N |Ψk〉 −N| mod 2 (A6)

5 The ˜ notation used here is unrelated to the definition of quan-
tum number of the dual basis, Eq. (2). This should not cause
confusion since the Gorkov quasiparticle and ISC indices, k and
r, do not posses a dual basis. Moreover, the distinction between
direct and dual single-particle bases disappear from the angu-
lar momentum coupled equations discussed in the rest of this
Appendix.

is the difference between the particle-number parities of
|Ψk〉 and |Ψ0〉. Eq. (A6) is intended element-wise for all
types of distinguishable fermions. The ISC indices (35)
will require coupling to total angular momentum Jr and
projection Mr. In this case we choose the convention of
coupling the first two indices to the intermediate angular
momentum J12, as detailed in Sec. A 2, and define the

general index r = (r̃,Mr) with r̃ ≡ [(k̃1, k̃2, J12, k̃3), Jr].
Let us now take the assumption that the target ground

state |Ψ0〉 is spherical with good angular momentum
and parity Jπ = 0+. Considering the definition of the
spectroscopic amplitudes (19) and applying the Wigner-
Eckart theorem with the tensor operators (A4), one finds

Ukα = 〈Ψ0|cα|Ψk〉
= ηα̃〈Ψ0|c̄α̃|Ψk〉
= (−1)jα−mαC00

jkmk jα−mα〈Ψ0||c̄a||Ψk〉

= δjα,jkδmα,mk
〈Ψ0||c̄a||Ψk〉

ĵα

≡ δ(πjq)

a,k̃
δmα,mk U k̃a , (A7a)

Vkα = 〈Ψ0|c̄†α|Ψk〉
= ηα〈Ψ0|c†α̃|Ψk〉

= δjα,jkδmα,mk
〈Ψ0||c†a||Ψk〉

ĵα
(−1)2jα

≡ δ(πjq)

a,k̃
δmα,mk V k̃a , (A7b)

where the notation ĵ ≡ √2j + 1 is used and Cj3m3

j1m1 j2m2

denotes the usual Clebsh-Gordan coefficient. Applying
transformations (20) yields

Ūkα = ηαUkα̃ = δ
(πjq)

a,k̃
δmα,−mk (−1)jα+mα U k̃a , (A7c)

V̄kα = − ηαVkα̃ = δ
(πjq)

a,k̃
δmα,−mk (−1)jα−mα V k̃a . (A7d)

In Eqs. (A7), we have applied the conservation of
particle-number parity and of parity in coordinate space
and have introduced a compact notation for multiple
Kronecker δs on the conserved symmetries:

δ
(πjq)

a,k̃
≡ δπα,πk δjα,jk δqα,qk , (A8)

where, again, δqαqk is element-wise on the vectors qα and
qk. Note that Eq. (A8) does not imply an equality on the

principal quantum numbers, thus δk̃1,k̃2 = δnk1 ,nk2 δ
(πjq)

k̃1,k̃2
.

Equations (A7) show that all spectroscopic amplitudes,
barred and non barred, amount down to the same two

reduced quantities U k̃a and V k̃a plus some phase factor.
The Hamiltonian (1) is also independent of the third

component of total angular momentum due to rotational
symmetry. The most general one-body operator that we
encounter is given by Eq. (13) and breaks particle number
symmetry. Its matrix elements can then factored as

uαβ = δ
(πjq)
a,b δmα,mβ uab , (A9a)
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uan.αβ = δ
(πjq)
a,b δmα,−mβ (−1)jβ−mβ ũab , (A9b)

where the δ(πjq)s reflect the fact that conservation of
spatial parity and of odd or even particle number is
still assumed. For the two-body interaction V we adopt
the usual angular momentum coupling convention for its
properly normalised matrix elements,

vJab,gd =
1√

1 + δa,b

1√
1 + δg,d

×
∑

mαmβ
mγmδ

CJMjαmα jβmβ vαβ,γδ CJMjγmγ jδmδ .

(A10)

Moreover, the ADC(3) contributions discussed in
Sec. A 2 b are conveniently expressed in terms of the
particle-hole coupling, which is related to Eq. (A10)
through the Pandya transformation:

v
(ph) J
ab−1,gd−1 =

∑

J2

(−1)jβ+jγ+J2(2J2 + 1)

{
jα jβ J

jγ jδ J2

}

×
√

1 + δa,d v
J2
ad,bg

√
1 + δb,g . (A11)

1. First-order self-energy

From the definitions (A7) one can easily derive the
angular momentum form of the reduced density matrices:

ραβ = δ
(πjq)
a,b δmα,mβ

∑

k̃

δ
(πjq)

a,k̃
(V k̃a )∗ V k̃b

= δ
(πjq)
a,b δmα,mβ ρab , (A12)

and

ρ̃αβ = δ
(πjq)
a,b δmα,mβ (−1)2jα

∑

k̃

δ
(πjq)

a,k̃
(V k̃a )∗ U k̃b

= δ
(πjq)
a,b δmα,mβ ρ̃ab , (A13)

Inserting the latter into Eqs. (37) leads to the following
expression for the energy-independent terms of the self-
energy

Σ
(∞) 11
αβ = δ

(πjq)
a,b δmα,mβ

∑

g d J

δ
(πjq)
g,d

2J + 1

2jα + 1

√
1 + δa,gv

J
ag,bd

√
1 + δb,d ρdg ≡ δ(πjq)

a,b δmα,mβΛab , (A14a)

Σ
(∞) 12
αβ = δ

(πjq)
a,b δmα,mβ

(−1)2jα

2

∑

g d

δ
(πjq)
g,d (−1)2jγ

ĵγ

ĵα

√
1 + δa,bv

J=0
ab,gd

√
1 + δg,d ρ̃gd ≡ δ(πjq)

a,b δmα,mβ h̃ab , (A14b)

Σ
(∞) 21
αβ = δ

(πjq)
a,b δmα,mβ (h̃ba)∗ , (A14c)

Σ
(∞) 22
αβ = − δ(πjq)

a,b δmα,mβΛba = −δ(πjq)
a,b δmα,mβ (Λab)

∗ . (A14d)

2. Dynamic self-energy

The dynamic part of the self-energy involves the ampli-
tudes Cα,r and Dr,α that couple single-particle states to
the ISCs defined by Eqs. (35). Their contributions have
been presented in Eqs. (39) and Secs. III B and III C 2
at different level of many-body truncation and are fully
antisymmetric with respect to the Gorkov indices in r.
However, it is convenient to decompose each term (gener-
ally indicated by the symbol “·” in the following) through
cyclic permutations of partially antysimmetrized ampli-
tudes

C(·)
α,r =

1√
3
P123M(·)

α,k1k2k3
, (A15a)

D(·)
r,α =

1√
3
P123N (·)

k1k2k3,α
, (A15b)

where Mα,k1k2k3 = −Mα,k2k1k3 and Nk1k2k3,α =
−Nk2k1k3,α are antisymmetric with respect to the ex-
change of the first two indices in r = (k1, k2, k3). With
this choice, it is efficient to first couple Gorkov quasiparti-
cles k1 and k2 to an intermediate angular momentum J12

and then adding k3 to obtain the total angular momen-
tum of the ISC, with quantum numbers Jr and Mr. We
adopt this convention and define the angular-momentum
coupled amplitudes through the relations
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∑

mk1mk2
mk3

Mα,r CJ12M12
jk1mk1 jk2mk2

CJrMr

J12M12 jk3mk3
≡ δ(πjq)

a,r̃ δmα,Mr

√
1 + δk̃1,k̃2

2
Ma,r̃ , (A16a)

∑

mk1mk2
mk3

Nr,α CJ12M12
jk1mk1 jk2mk2

CJrMr

J12M12 jk3mk3
≡ δ(πjq)

a,r̃ δmα,Mr

√
1 + δk̃1,k̃2

2
Nr̃,a , (A16b)

while the barred quantities follow through the equivalent of Eqs. (30) for M̄ and N̄ :

∑

mk1mk2
mk3

M̄α,r CJ12M12
jk1mk1 jk2mk2

CJrMr

J12M12 jk3mk3
= δ

(πjq)
a,r̃ δmα,−Mr

(−1)jα+mα

√
1 + δk̃1,k̃2

2
Ma,r̃ , (A16c)

∑

mk1mk2
mk3

N̄r,α CJ12M12
jk1mk1 jk2mk2

CJrMr

J12M12 jk3mk3
= δ

(πjq)
a,r̃ δmα,−Mr

(−1)jα−mα

√
1 + δk̃1,k̃2

2
Nr̃,a . (A16d)

Eqs. (A16) apply to each separate contribution of the ADC(n) expansion, as well as the corresponding fully anti-
symmetrised amplitudes Cα,r and Dr,α. Note that the collective Kronecker δs entering the above equations involve
the total angular momentum Jr, parity πr ≡ πk1πk2πk3 and particle-number parities qr ≡ |qk1 + qk2 + qk3 | mod 2
(element-wise for all types of particles) of the ISC r but do not impose charge conservation. As we see below, some
Mα,r and Nr,α amplitudes may have more stringent selection rules on qr that arise from charge conservation in the
two-body interaction but these are reshuffled by the permutations in Eqs. (A15), so that only the conservation of even
and odd particle-number applies to the final Cα,r and Dr,α.

The angular-momentum coupled form of the cyclic permutation operator is given by

∑

mk1mk2
mk3

∑

mk4mk5
mk6

CJ12M12
jk1mk1 jk2mk2

CJrMr

J12M12 jk3mk3
Pr,r′ CJ45M45

jk4mk4 jk5mk5
C
Jr′Mr′
J45M45 jk6mk6

=

[
δk̃1,k̃4 δk̃2,k̃5 δk̃3,k̃6 δJ12,J45 + δk̃3,k̃4 δk̃1,k̃5 δk̃2,k̃6(−1)jk1+jk2+2jk3+J12 Ĵ12Ĵ45

{
jk2 jk1 J12

jk3 Jr J45

}

+ δk̃2,k̃4 δk̃3,k̃5 δk̃1,k̃6(−1)2jk1+jk2+jk3+J45 Ĵ12Ĵ45

{
jk1 jk2 J12

jk3 Jr J45

}]
δJrJr′ δMrMr′

≡ δ(πjq)
r̃,r̃′ δMr,Mr′

√
1 + δk̃1,k̃2

2
Pr̃,r̃′

√
1 + δk̃4,k̃5

2
(A17)

in terms of Wigner 6-j coefficients.
For the first-order corrections to the energy denominators, a similar combination of cyclic permutations is employed

E(I·)
r,r′ ≡

1

3
P123 F (I·)

k1k2k3,k4k5k6
P456 , (A18)

whereas the angular-momentum coupling for the partially antisymmetrized energy is defined as follows

∑

mk1mk2
mk3

∑

mk4mk5
mk6

CJ12M12
jk1mk1 jk2mk2

CJrMr

J12M12 jk3mk3
Fr,r′ CJ45M45

jk4mk4 jk5mk5
C
Jr′Mr′
J45M45 jk6mk6

≡ δ(πjq)
r̃,r̃′ δMr,Mr′

√
1 + δk̃1,k̃2

2
Fr̃,r̃′

√
1 + δk̃4,k̃5

2
. (A19)

It is convenient to factor out the terms
√

(1 + δk̃1,k̃2)/2 from definitions (A16) through (A19) because these cancel

out when restricting the sums over r̃ to ISCs ordered in the first two indices, k̃1 . k̃2 (see Sec. (A 3) below).



22

a. ADC(2) amplitudes

The ADC(2) version of the M and N amplitudes is given by Eqs. (39). Following definitions (A16a) and (A16b),
one has

M(I)
a,r̃ = ∆(jk1 , jk2 , J12)∆(J12, jk3 , Jr) (−1)jα+jk3−J12

Ĵ12

ĵα

×
∑

m.v
l

√
1 + δa,l v

J12
al,mv

U k̃1m δ
(πjq)

m,k̃1
U k̃2v δ

(πjq)

v,k̃2
− (−1)jk1+jk2−J12U k̃1v δ

(πjq)

v,k̃1
U k̃2m δ

(πjq)

m,k̃2√
1 + δm,v

√
1 + δk̃1,k̃2

V k̃3l δ
(πjq)

l,k̃3
(A20)

and

N (I)
r̃,a = ∆(jk1 , jk2 , J12)∆(J12, jk3 , Jr) (−1)jα−jk3−J12

Ĵ12

ĵα

×
∑

m.v
l

V k̃1m δ
(πjq)

m,k̃1
V k̃2v δ

(πjq)

v,k̃2
− (−1)jk1+jk2−J12V k̃1v δ

(πjq)

v,k̃1
V k̃2m δ

(πjq)

m,k̃2√
1 + δk̃1,k̃2

√
1 + δm,v

vJ12mv,al

√
1 + δa,l U k̃3l δ

(πjq)

l,k̃3
, (A21)

where

∆(j1, j2, j3) =

{
1 if |j1 − j2| 6 j3 6 j1 + j2 ,
0 otherwise

(A22)

is the triangular condition. The sums over single-particle states m and v have been restricted to ordered m . v by

exploiting the antisymmetry of vJ12mv,al. Here and in the rest of the this Appendix, we interpret the inequality m . v

as m 6 v if (−1)jµ+jν−J12 = −1 is statisfied and as m < v otherwise.
The energy denominator for three freely propagating quasiparticles, Eq. (39c), is diagonal in the ISCs indices and

does not need to be antisymmetrized. Hence, we follow a different convention than Eq. (A19) and define

∑

mk1mk2
mk3

∑

mk4mk5
mk6

CJ12M12
jk1mk1 jk2mk2

CJrMr

J12M12 jk3mk3
E(0)
r,r′ C

J45M45
jk4mk4 jk5mk5

C
Jr′Mr′
J45M45 jk6mk6

= δk̃1,k̃4 δk̃2,k̃5 δk̃3,k̃6 δJ12,J45 δJr,Jr′ δMr,Mr′

(
ωk̃1 + ωk̃2 + ωk̃3

)

≡ δ(πjq)
r̃,r̃′ δMr,Mr′ E

(0)
r̃,r̃′ . (A23)

b. Self-consistent ADC(3) amplitudes

ADC(3) contributions require summation on the un-
perturbed doublet amplitudes (42). Here, an angular-
momentum coupling convention similar to the one used
for two-body interactions is adopted and the rotationally-
invariant matrix elements is defined as

tk̃1 k̃2 J
k̃3 k̃4

≡
∑

mk1 mk2
mk3 mk4

CJMjk1mk1 jk2mk2
tk1k2k3k4

CJ −Mjk3mk3 jk4mk4
(−1)J−M

= ∆(jk1 , jk2 , J)∆(jk3 , jk4 , J)

×
∑

a b g d

V k̃3a δ
(πjq)

a,k̃3
V k̃4b δ

(πjq)

b,k̃4
vJab,gd U k̃1g δ

(πjq)

g,k̃1
U k̃2d δ

(πjq)

d,k̃2

−(ωk̃1 + ωk̃2 + ωk̃3 + ωk̃4)
,

(A24)

where the upper (lower) indices are coupled together as
they correspond to direct interactions among pairs of
Gorkov quasiparticles. Whenever the quasiparticles are
coupled through a two-body interaction in the particle-
hole channel, it becomes more efficient to first perform a
Pandya transformation similar to Eq. (A11). In particu-
lar, we choose the convention

t
k̃1 k̃3 (ph)J

k̃2 k̃4
=
∑

J2

(−1)jk2−jk4+J2(2J2 + 1)

×
{
jk3 jk4 J

jk2 jk1 J2

}
tk̃1 k̃3 J2
k̃2 k̃4

. (A25)

Given the above definitions, we are in the position to
state the angular momentum coupled form for the skele-
ton ADC(3) diagrams. Contributions from Eqs. (43)
and (47) can be conveniently gathered as the only dif-
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ference among them is in the inversion of the upper and
lower indices in tk1k2k3k4

. After introducing a common factor
for normalization and angular-momentum conditions,

K(r̃) =
∆(jk1 , jk2 , J12)∆(J12, jk3 , Jr)√

1 + δk̃1,k̃2

, (A26)

the Ma,r̃ amplitudes read as

M(IIa+c)
a,r̃ = (−1)jα+jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

√
1 + δa,l v

J12
al,mv

√
1 + δm,v

× 1

2

(
V k̃7m δ

(πjq)

m,k̃7
V k̃8v δ

(πjq)

v,k̃8

)∗ [
tk̃1 k̃2 J12
k̃7 k̃8

+ (−1)2J12 tk̃7 k̃8 J12
k̃1 k̃2

]
V k̃3l δ

(πjq)

l,k̃3
, (A27a)

M(IIb+d)
a,r̃ = (−1)jα+jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

(−1)2jk3+2jk8 v
(ph) J12
am−1,vl−1

×
(
V k̃7v δ

(πjq)

v,k̃7
U k̃8l δ

(πjq)

l,k̃8

)∗ [
tk̃1 k̃2 J12
k̃7 k̃8

+ (−1)2J12 tk̃7 k̃8 J12
k̃1 k̃2

]
U k̃3m δ

(πjq)

m,k̃3
. (A27b)

The particle-hole interactions from diagrams of Fig. 7 and Eqs. (50a),(50b) and (50c) are

M(IIe′)
a,r̃ = (−1)jα+jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

(−1)2jk3+2jk8 v
(ph) J12
am−1,vl−1

×
(
V k̃7v δ

(πjq)

v,k̃7
U k̃8l δ

(πjq)

l,k̃8

)∗ [
(−1)jk1+jk2−jk7−jk8 t

k̃8 k̃1 (ph)J12

k̃7 k̃2
+ t

k̃7 k̃2 (ph)J12

k̃8 k̃1

]
U k̃3m δ

(πjq)

m,k̃3
, (A27c)

M(IIf′)
a,r̃ = (−1)jα+jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

(−1)1+2jk3+2jk7 v
(ph) J12
av−1,ml−1

×
(
U k̃7l δ

(πjq)

l,k̃7
V k̃8m δ

(πjq)

m,k̃8

)∗ [
(−1)jk1+jk2−J12 t

k̃8 k̃1 (ph)J12

k̃7 k̃2
+ (−1)jk7+jk8−J12 t

k̃7 k̃2 (ph)J12

k̃8 k̃1

]
U k̃3v δ

(πjq)

v,k̃3
,

(A27d)

M(IIg)
a,r̃ = (−1)jα+jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

√
1 + δa,l v

J12
al,mv

√
1 + δm,v

×
(
V k̃7m δ

(πjq)

m,k̃7
V k̃8v δ

(πjq)

v,k̃8

)∗ [
(−1)jk1+jk2−jk7−jk8 t

k̃8 k̃1 (ph)J12

k̃7 k̃2
+ t

k̃7 k̃2 (ph)J12

k̃8 k̃1

]
V k̃3l δ

(πjq)

l,k̃3
. (A27e)

where we used the primed superscripts (e′ and f ′) to indicate that Eqs. (A27c) and (A27d) are actually linear
combinations of (50a) and (50b).

Similarly, Eqs. (43c)-(43d) and (47c)-(47d) for the Nr̃,a amplitudes give

N (IIa+c)
r̃,a = (−1)jα−jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

1

2

[
tk̃7 k̃8 J12
k̃1 k̃2

+ (−1)2J12 tk̃1 k̃2 J12
k̃7 k̃8

]

×
(
U k̃7m δ

(πjq)

m,k̃7
U k̃8v δ

(πjq)

v,k̃8

)∗
U k̃3l δ

(πjq)

l,k̃3

√
1 + δm,v v

J12
mv,al

√
1 + δa,l , (A28a)

N (IIb+d)
r̃,a = (−1)jα−jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

[
tk̃7 k̃8 J12
k̃1 k̃2

+ (−1)2J12 tk̃1 k̃2 J12
k̃7 k̃8

]

×
(
U k̃7v δ

(πjq)

v,k̃7
V k̃8l δ

(πjq)

l,k̃8

)∗
V k̃3m δ

(πjq)

m,k̃3
v

(ph) J12
vl−1,am−1 , (A28b)

while the coupling of particle-hole interactions from the diagrams of Fig. 7 and Eqs. (50d),(50e) and (50f) are

N (IIe′)
r̃,a = (−1)jα−jk3−J12 K(r̃)

Ĵ12

ĵα
(−1)

∑

mv l

∑

k̃7 k̃8

[
(−1)jk1+jk2−J12 t

k̃2 k̃7 (ph)J12

k̃1 k̃8
+ (−1)jk7+jk8−J12 t

k̃1 k̃8 (ph)J12

k̃2 k̃7

]
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×
(
V k̃7l δ

(πjq)

l,k̃7
U k̃8m δ

(πjq)

m,k̃8

)∗
V k̃3v δ

(πjq)

v,k̃3
v

(ph) J12
ml−1,av−1 , (A28c)

N (IIf′)
r̃,a = (−1)jα−jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

[
(−1)jk1+jk2−jk7−jk8 t

k̃2 k̃7 (ph)J12

k̃1 k̃8
+ t

k̃1 k̃8 (ph)J12

k̃2 k̃7

]

×
(
U k̃7v δ

(πjq)

v,k̃7
V k̃8l δ

(πjq)

l,k̃8

)∗
v

(ph) J12
vl−1,am−1V k̃3m δ

(πjq)

m,k̃3
, (A28d)

N (IIg)
r̃,a = (−1)jα−jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

∑

k̃7 k̃8

[
(−1)jk1+jk2−jk7−jk8 t

k̃2 k̃7 (ph)J12

k̃1 k̃8
+ t

k̃1 k̃8 (ph)J12

k̃2 k̃7

]

×
(
U k̃7m δ

(πjq)

m,k̃7
U k̃8v δ

(πjq)

v,k̃8

)∗ √
1 + δm,v v

J12
mv,al

√
1 + δa,l U k̃3l δ

(πjq)

l,k̃3
. (A28e)

Finally, energy denominators for the skeleton ADC(3) self-energy are given by

F (Ipp)
r̃,r̃′ = K(r̃)K(r̃ ′) δk̃3,k̃6 δJ12,J45

∑

a b g d

(
U k̃1a U k̃2b

)∗ √
1 + δa,b v

J12
ab,gd

√
1 + δg,d U k̃4g U k̃5d , (A29a)

F (Ihh)
r̃,r̃′ = K(r̃)K(r̃ ′) δk̃3,k̃6 δJ12,J45

∑

a b g d

V k̃1a V k̃2b
√

1 + δa,b v
J12
ab,gd

√
1 + δg,d

(
V k̃4g V k̃5d

)∗
, (A29b)

F (Iph)
r̃,r̃′ = K(r̃)K(r̃ ′) δk̃3,k̃6 δJ12,J45


∑

αβγδ

(U k̃1a V k̃2b )∗ v
(ph) J12
ab−1,gd−1 U k̃4g V k̃5d

− (−1)jk1+jk2−J12
∑

αβγδ

(U k̃2a V k̃1b )∗ v
(ph) J12
ab−1,gd−1 U k̃4g V k̃5d

− (−1)jk4+jk5−J12
∑

αβγδ

(U k̃1a V k̃2b )∗ v
(ph) J12
ab−1,gd−1 U k̃5g V k̃4d

+ (−1)jk1+jk2−jk4−jk5
∑

αβγδ

(U k̃2a V k̃1b )∗ v
(ph) J12
ab−1,gd−1 U k̃5g V k̃4d


 . (A29c)

c. Non-skeleton diagrams

Using Eqs. (A9), the normal and anomalous singlet
BCC amplitudes, Eqs. (55) and (59), can be re-expressed
as follows

tk1k2 = δ
(πjq)

k̃1,k̃2
δmk1,−mk2

∑

a b

δ
(πjq)

k̃1,a
Vk̃1
a (−1)jk1+mk1uabU

k̃2
b

−(ε
(0)

k̃1
+ ε

(0)

k̃2
)

δ
(πjq)
a,b

≡ δ(πjq)

k̃1,k̃2
δmk1,−mk2 (−1)jk1+mk1 tk̃1

k̃2
(A30)

and

tk1 k2 = δ
(πjq)

k̃1,k̃2
δmk1,−mk2

∑

a b

(ũab)
∗ Uk̃1

a Uk̃2
b (−1)jk2−mk2 δ

(πjq)

b,k̃2

−2(ε
(0)

k̃1
+ ε

(0)

k̃2
)

δ
(πjq)
a,b

≡ δ(πjq)

k̃1,k̃2
δmk1,−mk2 (−1)jk1+mk1 tk̃1 k̃2 , (A31)

tk1 k2 = δ
(πjq)

k̃1,k̃2
δmk1,−mk2

∑

a b

δ
(πjq)

k̃1,a
Vk̃1
a Vk̃2

b (−1)jk1+mk1 ũab

−2(ε
(0)

k̃1
+ ε

(0)

k̃2
)

δ
(πjq)
a,b

≡ δ(πjq)

k̃1,k̃2
δmk1,−mk2 (−1)jk1+mk1 tk̃1 k̃2 . (A32)

One can now write down the composite Mr̃,a ampli-
tudes at second order

M(IIh+i)
a,r̃ = (−1)jα+jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

√
1 + δa,l v

J12
al,mv

√
1 + δm,v

×



δ

(πjq)

m,k̃1

∑

k̃7

(Vk̃7
m )∗δ

(πjq)

k̃1,k̃7

[
tk̃7
k̃1
− (−1)2jk1 tk̃1

k̃7

]
Uk̃2
v δ

(πjq)

v,k̃2
Vk̃3
l δ

(πjq)

l,k̃3
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+ Uk̃1
m δ

(πjq)

m,k̃1
δ

(πjq)

v,k̃2

∑

k̃7

(Vk̃7
v )∗δ

(πjq)

k̃2,k̃7

[
tk̃7
k̃2
− (−1)2jk2 tk̃2

k̃7

]
Vk̃3
l δ

(πjq)

l,k̃3

+ Uk̃1
m δ

(πjq)

m,k̃1
Uk̃2
v δ

(πjq)

v,k̃2
δ

(πjq)

l,k̃3

∑

k̃7

(Uk̃7
l )∗δ

(πjq)

k̃3,k̃7

[
(−1)2jk3 tk̃7

k̃3
− tk̃3

k̃7

]


 , (A33a)

M(IIj+k)
a,r̃ = (−1)jα+jk3−J12 K(r̃)

Ĵ12

ĵα

∑

mv l

√
1 + δa,l v

J12
al,mv

√
1 + δm,v

×



δ

(πjq)

m,k̃1

∑

k̃7

(Vk̃7
m )∗δ

(πjq)

k̃1,k̃7

[
tk̃7 k̃1 − tk̃7 k̃1

]
Uk̃2
v δ

(πjq)

v,k̃2
Vk̃3
l δ

(πjq)

l,k̃3

+ Uk̃1
m δ

(πjq)

m,k̃1
δ

(πjq)

v,k̃2

∑

k̃7

(Vk̃7
v )∗δ

(πjq)

k̃2,k̃7

[
tk̃7 k̃2 − tk̃7 k̃2

]
Vk̃3
l δ

(πjq)

l,k̃3

+ Uk̃1
m δ

(πjq)

m,k̃1
Uk̃2
v δ

(πjq)

v,k̃2
δ

(πjq)

l,k̃3

∑

k̃7

(−1)2jk3 (Uk̃7
l )∗δ

(πjq)

k̃3,k̃7

[
tk̃7 k̃3 − tk̃7 k̃3

]


 , (A33b)

as well as the corresponding Nr̃,a amplitudes

N (IIh+i)
r̃,a = (−1)jα−jk3−J12 K(r̃)

Ĵ12

ĵα

×
∑

mv l



δ

(πjq)

m,k̃1

∑

k̃7

(Uk̃7
m )∗δ

(πjq)

k̃1,k̃7

[
(−1)2jk1 tk̃7

k̃1
− tk̃1

k̃7

]
Vk̃2
v δ

(πjq)

v,k̃2
Uk̃3
l δ

(πjq)

l,k̃3

+ Vk̃1
m δ

(πjq)

m,k̃1
δ

(πjq)

v,k̃2

∑

k̃7

(Uk̃7
v )∗δ

(πjq)

k̃2,k̃7

[
(−1)2jk2 tk̃7

k̃2
− tk̃2

k̃7

]
Uk̃3
l δ

(πjq)

l,k̃3

+ Vk̃1
m δ

(πjq)

m,k̃1
Vk̃2
v δ

(πjq)

v,k̃2
δ

(πjq)

l,k̃3

∑

k̃7

(Vk̃7
l )∗δ

(πjq)

k̃3,k̃7

[
tk̃7
k̃3
− (−1)2jk3 tk̃3

k̃7

]



√

1 + δm,v v
J12
mv,al

√
1 + δa,l ,

(A34a)

N (IIj+k)
r̃,a = (−1)jα−jk3−J12 K(r̃)

Ĵ12

ĵα

×
∑

mv l



δ

(πjq)

m,k̃1

∑

k̃7

(−1)2jk1 (Uk̃7
m )∗δ

(πjq)

k̃1,k̃7

[
tk̃7 k̃1 − tk̃7 k̃1

]
Vk̃2
v δ

(πjq)

v,k̃2
Uk̃3
l δ

(πjq)

l,k̃3

+ Vk̃1
m δ

(πjq)

m,k̃1
δ

(πjq)

v,k̃2

∑

k̃7

(−1)2jk2 (Uk̃7
v )∗δ

(πjq)

k̃2,k̃7

[
tk̃7 k̃2 − tk̃7 k̃2

]
Uk̃3
l δ

(πjq)

l,k̃3

+ Vk̃1
m δ

(πjq)

m,k̃1
Vk̃2
v δ

(πjq)

v,k̃2
δ

(πjq)

l,k̃3

∑

k̃7

(Vk̃7
l )∗δ

(πjq)

k̃3,k̃7

[
tk̃7 k̃3 − tk̃7 k̃3

]



√

1 + δm,v v
J12
mv,al

√
1 + δa,l . (A34b)

The energy denominators for the composite self-energy at third order read as

F (Id)
r̃,r̃′ = K(r̃)K(r̃ ′)

(
δk̃1,k̃4 δk̃2,k̃5 − (−1)jk1+jk2−J12δk̃2,k̃4 δk̃1,k̃5

)
δJ12,J45

× δ(πjq)

k̃3,k̃6

∑

a b

δ
(πjq)

a,k̃3
δ

(πjq)

b,k̃3

[(
Uk̃3
a

)∗
uab Uk̃6

b + Vk̃6
a uab

(
Vk̃3
b

)∗]
, (A35a)

F (Ie)
r̃,r̃′ = K(r̃)K(r̃ ′)

(
δk̃1,k̃4 δk̃2,k̃5 − (−1)jk1+jk2−J12δk̃2,k̃4 δk̃1,k̃5

)
δJ12,J45

× δ(πjq)

k̃3,k̃6

1

2

∑

a b

δ
(πjq)

a,k̃3
δ

(πjq)

b,k̃3

[(
Uk̃3
a

)∗
ũabV

k̃6
b + Uk̃6

a

(
ũabV

k̃3
b

)∗]
. (A35b)
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3. J-coupled Gorkov eigenvalue problem

The angular momentum coupling conventions just de-
scribed allow to decouple the Gorkov equations (33) into
several independent eigenvalue problems, one for each
set (π, J, q) of the parity, total angular momentum, and

particle number parity of the many-body state |Ψe(o)
k 〉.

Moreover, we use antisymmetry to limit the sums over
the ISCs to ordered combinations of the first two indices.

For example,

∑

r̃

. . . ≡
∑

k̃1.k̃2, J12, k̃3

. . . , (A36)

where the configurations with k̃1 = k̃2 are included
only when (−1)jk1+jk2−J12 = −1 and the sum on the
right hand side runs implicitly over quantum numbers
that satisfy the constraint (πr, Jr, qr) = (π, J, q). With

this choice, the
√

(1 + δk̃1k̃2)/2 terms from Eqs. (A16)

through (A19) drop out. The Gorkov Eqs. (33) for chan-
nel (πk, Jk, qk) become

ωk




U k̃a

V k̃a

W k̃
r̃

Z k̃r̃




=




tab − µδab + Λab h̃ab Ca,r̃′ D∗r̃′,a

(h̃ba)∗ −tab + µδab − (Λab)
∗ Dr̃′,a (−1)2JrC∗a,r̃′

C∗b,r̃ D∗r̃,b Er̃,r̃′

Dr̃,b (−1)2JrCb,r̃ −Er̃′,r̃







U k̃b

V k̃b

W k̃
r̃′

Z k̃r̃′




, (A37)

with implicit sums over repeated indices nβ and r̃′. The
matrix elements of the coupling amplitudes are

Ca,r̃ =
1√
3

∑

r̃′

Ma,r̃′ Pr̃′,r̃ , (A38a)

Dr̃,a =
1√
3

∑

r̃′

Pr̃,r̃′ Nr̃′,a , (A38b)

and the energy denominators

Er̃,r̃′ = E(0)
r̃,r̃′ +

1

3

∑

r̃2 r̃3

Pr̃,r̃2F
(I)
r̃2,r̃3
Pr̃3,r̃′ . (A39)

The ISC components of the eigenvectors (A37), W k̃
r̃ and

Z k̃r̃ , correspond to the angular-momentum coupling of
Eqs. (32), respectively following the conventions (A16a)
and (A16d). The normalization condition becomes

∑

a

|U k̃a |2 +
∑

a

|V k̃a |2 +
∑

r̃

|W k̃
r̃ |2 +

∑

r̃

|Z k̃r̃ |2 = 1 ,

(A40)

with the sums over r̃ as specified by Eq. (A36).
Finally, the GMK sum rule for total energy is given by

E0 = Ω0 + µ〈N〉 =
∑

(πk,jk,qk)

2jk + 1

2

×
∑

nk
a,b

δ
(πjq)

b,k̃
δ

(πjq)

a,k̃

[
tab + (µ− ωk̃)δab

]
V k̃b ∗ V k̃a .

(A41)

Appendix B: Static self-energy up to third order

The complete static self-energy is given by the dia-
grams of Fig. 1 and Eqs. (37) and its computation re-
quires the knowledge of the exact (dressed) propaga-
tors (18). In some cases it can be useful to access the
separate contributions at each order in perturbation the-
ory. The first-order terms are simply given by Eqs. (37)
but with the spectroscopic amplitudes replaced by the
HFB wave functions from Eq. (54). These terms read as

Σ
(I) 11
αβ = − Σ

(∞) 22(I)

β̄ᾱ
=
∑

k γ δ

vαγ,βδ V̄k
δ
∗V̄k

γ , (B1a)

Σ
(I) 12
αβ =

(
Σ

(I) 21
βα

)∗
=

1

2

∑

k γ δ

vαβ̄,γδ V̄k
γ
∗Uk

δ . (B1b)

In order to extract the specific contributions at second
and third orders, the dressed propagator must be ex-
panded according to Eqs. (26). The first-order contribu-
tion is simply

G
(1)
αβ(ω) =

∑

γ δ

G(0)
αγ (ω) Σ

(∞)I
γδ G

(0)
δβ (ω) , (B2)

where the sums over Nambu indices is implicit in the ma-
trix algebra. The second-order self-energy is obtained by
inserting Eq. (B2) into the frequency integrals for Σ(∞)

as

Σ
(∞,2) 11
αβ =

∑

γ δ

∫

C↑

dω

2πi
vαγ,βδ G

(1)11
δγ (ω)
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=
∑

γ δ
k1 k2

vαγ,βδ
Uk1
δ Q

fb
k1 k2

V̄k2
γ +

(
Uk1
γ Q

fb
k1k2

V̄k2
δ

)∗

−(ε
(0)
k1

+ ε
(0)
k2

) + iη
,

(B3a)

Σ
(∞,2) 12
αβ =

1

2

∑

γ δ

∫

C↑

dω

2πi
vαβ̄,γδ̄ G

(1)12
γδ (ω)

=
∑

γ δ
k1 k2

vαβ̄,γδ
2

Uk1
γ Q

fb
k1 k2

Uk2
δ +

(
V̄k1
δ Q

fb
k1k2

V̄k2
γ

)∗

−(ε
(0)
k1

+ ε
(0)
k2

) + iη
,

(B3b)

where C ↑ is a counterclockwise path along the real axis
and including the whole positive imaginary plane and

Qfb
k1k2

is defined below in Eq. (B7b).

For the second-order expansion of the propagator two
different terms arise, one from iterating two static first-
order self-energies

G
(2a)
αβ (ω) =

∑

γ δ µ ν

G(0)
αγ (ω) Σ

(∞)I
γδ G

(0)
δµ (ω) Σ(∞)I

µν G
(0)
νβ (ω) ,

(B4)

and the other including a single second-order self-energy

G
(2b)
αβ (ω) =

∑

γ δ

G(0)
αγ (ω) Σ̃

(ADC2)
γδ (ω) G

(0)
δβ (ω) . (B5)

Both Eqs. (B4) and (B5) imply similar frequency integrals combining three poles. After performing such integrals,
one obtains

Σ
(∞,3a) 11
αβ =

∑

γ δ

∫
dω

2πi
vαγ,βδ G

(2a)11
δγ (ω)

=
∑

k1 k2 k3
γ δ

vαγ,βδ
1

[−(ε
(0)
k1

+ ε
(0)
k2

) + iη][−(ε
(0)
k1

+ ε
(0)
k3

) + iη]

{
Uk2
δ Q

fb
k2k1 (Uk3

γ Q
fb
k3k1)

∗ − (V̄k2
δ Q

fb
k1k2)

∗ V̄k3
γ Q

fb
k1k3

+(V̄k1
δ Q

fb
k2k1)

∗ (Uk3
γ Q

ff
k3k2)

∗ + Uk1
δ Q

fb
k1k2 V̄k3

γ Q
ff
k3k2 + Uk2

δ Q
ff
k2k3 V̄k1

γ Q
fb
k3k1 + (V̄k2

δ Q
ff
k2k3)

∗ (Uk1
γ Q

fb
k1k3)

∗
}
,

(B6a)

Σ
(∞,3a) 12
αβ =

1

2

∑

γ δ

∫
dω

2πi
vαβ̄,γδ̄ G

(2a)12
γδ (ω)

=
∑

k1 k2 k3
γ δ

vαβ̄,γδ
2

1

[−(ε
(0)
k1

+ ε
(0)
k2

) + iη][−(ε
(0)
k1

+ ε
(0)
k3

) + iη]

{
Uk2
γ Q

fb
k2k1 (V̄k3

δ Q
fb
k3k1)

∗ − (V̄k2
γ Q

fb
k1k2)

∗ Uk3
δ Q

fb
k1k3

+(V̄k1
γ Q

fb
k2k1)

∗ (V̄k3
δ Q

ff
k3k2)

∗ + Uk1
γ Q

fb
k1k2 Uk3

δ Q
ff
k3k2 + Uk2

γ Q
ff
k2k3 Uk1

δ Q
fb
k3k1 + (V̄k2

γ Q
ff
k2k3)

∗ (V̄k1
δ Q

fb
k1k3)

∗
}
,

(B6b)

and

Σ
(∞,3b) 11
αβ =

∑

γ δ

∫
dω

2πi
vαγ,βδ G

(2b)11
δγ (ω)

=
∑

γ δ
r k4 k5

vαγ,βδ
Uk4
δ R

fb
k4r

(Rfb
k5r

Uk5
γ )∗ − (V̄k4

δ R
fb
k4r

)∗ Rfb
k5r

V̄k5
γ

[−(ε
(0)
k1

+ ε
(0)
k2

+ ε
(0)
k3

+ ε
(0)
k4

) + iη] [−(ε
(0)
k1

+ ε
(0)
k2

+ ε
(0)
k3

+ ε
(0)
k5

) + iη]

+
∑

γ δ
r k4 k5

vαγ,βδ
Uk5
δ R

ff
k5r

Rfb
k4r

V̄k4
γ −Uk4

δ R
fb
k4r

Rff
k5r

V̄k5
γ + (V̄k4

δ R
fb
k4r

Rff
k5r

Uk5
γ )∗ − (V̄k5

δ R
ff
k5r

Rfb
k4r

Uk4
γ )∗

[−(ε
(0)
k1

+ ε
(0)
k2

+ ε
(0)
k3

+ ε
(0)
k4

) + iη] [−(ε
(0)
k4

+ ε
(0)
k5

) + iη]
,

(B6c)

Σ
(∞,3b) 12
αβ =

1

2

∑

γ δ

∫
dω

2πi
vαβ̄,γδ̄ G

(2b)12
γδ (ω)

=
∑

γ δ
r k4 k5

vαβ̄,γδ
2

Uk4
γ R

fb
k4r

(Rfb
k5r

V̄k5
δ )∗ − (V̄k4

γ R
fb
k4r

)∗ Rfb
k5r

Uk5
δ

[−(ε
(0)
k1

+ ε
(0)
k2

+ ε
(0)
k3

+ ε
(0)
k4

) + iη] [−(ε
(0)
k1

+ ε
(0)
k2

+ ε
(0)
k3

+ ε
(0)
k5

) + iη]
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+
∑

γ δ
r k4 k5

vαβ̄,γδ
2

Uk5
γ R

ff
k5r

Rfb
k4r

Uk4
δ −Uk4

γ R
fb
k4r

Rff
k5r

Uk5
δ + (V̄k4

γ R
fb
k4r

Rff
k5r

V̄k5
δ )∗ − (V̄k5

γ R
ff
k5r

Rfb
k4r

V̄k4
δ )∗

[−(ε
(0)
k1

+ ε
(0)
k2

+ ε
(0)
k3

+ ε
(0)
k4

) + iη] [−(ε
(0)
k4

+ ε
(0)
k5

) + iη]
.

(B6d)

In Eqs. (B3) and (B6) the following tensors of rank two and four in the quasiparticle indices have been employed

Qff
k1 k2 ≡

∑

αβ

[
(Uk1

α )∗Σ
(I)11
αβ Uk2

β − V̄k2
α Σ

(I)11
αβ (V̄k1

β )∗ + (Uk1
α )∗Σ

(I)12
αβ Vk2

β + Uk2
α (Σ

(I)12
αβ Vk1

β )∗
]
, (B7a)

Qfb
k1 k2 ≡

∑

αβ

[
(Uk1

α )∗Σ
(I)11
αβ (V̄k2

β )∗ − Uk2
α Σ

(I)11
αβ (V̄k1

β )∗ + (Uk1
α )∗ Σ

(I)12
αβ (Ūk2

β )∗ + (V̄k2
α Σ

(I)12
αβ Vk1

β )∗
]
, (B7b)

and

Rff
k r ≡

∑

α

[
C(I)
α,r (Uk

α)∗ + D̄(I)
r,α (V̄k

α)∗
]
, (B8a)

Rfb
k r ≡

∑

α

[
(D̄(I)

r,α Uk
α)∗ + (C(I)

α,r V̄k
α)∗
]
, (B8b)

where C(I) aned D̄(I) are the first-order coupling amplitudes defined in Eqs. (39) and the index r encapsulate three
quasiparticle excitations as defined in Eq. (35).

Appendix C: Frequency integrals

The ADC coupling amplitudes and denominators dis-
cussed in Sec. III are obtained by direct comparison to
the analytic expression of all relevant diagrams [23]. The
Feynman rules for computing diagrams have been in-
troduced in Ref. [25], where the full calculation of all
ADC(2) diagrams has also been discussed in detail. The

case of third-order diagrams is essentially analogous, in-
volving more complicated frequency integral. However,
one must also pay attention in grouping together classes
of different diagrams in such a way that important sym-
metries are preserved, and in particular permutations
signs imposed by the Pauli principle. This last section
outlines the computation for the third-order diagrams of
Fig. 5 as an example.

Let us start with the computations of diagram 5a contributing to Σ̃11(ω). By applying the Feynman rules from
Ref. [25], we have

Σ̃
11 (Fig.5a)
αβ (ω) =

1

4

∫
dω1

2πi

d ω2

2πi

d ω3

2πi
vαλ,µν G

11
µµ′(ω2)G11

νν′(ω + ω1 − ω2) vµ′ν′,γ′δ′

×G11
γ′γ(ω3)G11

δ′δ(ω + ω1 − ω3) vγδ,βλ′ G
11
λ′λ(ω1) , (C1)

where we use the convention that repeated indices are summed over. The fist step is to substitute the spectral
representation (18) of the propagators and apply Cauchy’s theorem to perform integrals over ω2 and ω3

Σ̃
11 (Fig.5a)
αβ (ω) =

1

4

∑

k1k2k3
k4k5

∫
dω1

2πi
vαλ,µν

{
Uk1µ Uk2ν (Uk1µ′ Uk2ν′ )∗

ω + ω1 − (ωk1 + ωk2) + iη
+

(V̄k1µ V̄k2ν )∗ V̄k1µ′ V̄k2ν′
ω + ω1 + (ωk1 + ωk2)− iη

}
vµ′ν′,γ′δ′

×
{

Uk4γ′ Uk5δ′ (Uk4γ Uk5δ )∗

ω + ω1 − (ωk4 + ωk5) + iη
+

(V̄k4γ′ V̄k5δ′ )∗ V̄k4γ V̄k5δ
ω + ω1 + (ωk4 + ωk5)− iη

}
vγδ,βλ′

×
{
Uk3λ′ Uk3λ ∗

ω1 − ωk3 + iη
+

V̄k3λ′ ∗ V̄k3λ
ω1 + ωk3 − iη

}
. (C2)

The final integral yields six (time ordered) Goldstone contributions. We consider only the three forward going ones

Σ̃
11 (Fig.5a)
αβ (ω) =

vαλ,µν (V̄k1µ V̄k2ν )∗ V̄k1µ′ V̄k2ν′ vµ′ν′,γ′δ′
−(ωk1 + ωk2 + ωk4 + ωk5) + iη

1

2

Uk4γ′ Uk5δ′ V̄k3λ (Uk4γ Uk5δ V̄k3λ′ )∗
ω − (ωk4 + ωk5 + ωk3) + iη

1

2
vγδ,βλ′
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+ vαλ,µν
Uk1µ Uk2ν V̄k3λ (Uk1µ′ Uk2ν′ V̄k3λ′ )∗
ω − (ωk1 + ωk2 + ωk3) + iη

1

2

vµ′ν′,γ′δ′ (V̄k4γ′ V̄k5δ′ )∗ V̄k4γ V̄k5δ vγδ,βλ′

−(ωk1 + ωk2 + ωk4 + ωk5) + iη

1

2

+ vαλ,µν
1

2

Uk1µ Uk2ν V̄k3λ (Uk1µ′ Uk2ν′ )∗
ω − (ωk1 + ωk2 + ωk3) + iη

vµ′ν′,γ′δ′
Uk4γ′ Uk5δ′ (Uk4γ Uk5δ V̄k3λ′ )∗

ω − (ωk4 + ωk5 + ωk3) + iη

1

2
vγδ,βλ′ + . . .

= J (2a)
α,k4k5k3

1

ω − E(0)
k4k5k3

+ iη
(Mβ,k4k5k3)∗ +Mα,k1k2k3

1

ω − E(0)
k1k2k3

+ iη
(J (2a)

β,k1k2k3
)∗

+Mα,k1k2k3

1

ω − E(0)
k1k2k3

+ iη

1

2
E(pp)
k1k2,k4k5

1

ω − E(0)
k4k5k3

+ iη
(Mβ,k4k5k3)∗ + . . . , (C3)

where we have defined

Mα,k1k2k3 ≡
1√
2
vαλ,µν Uk1µ Uk2ν V̄k3λ , (C4)

J (2a)
α,k4k5k3

≡ vαλ,µν
1√
8

(V̄k1µ V̄k2ν )∗ V̄k1µ′ V̄k2ν′ vµ′ν′,γ′δ′ Uk4γ′ Uk5δ′ V̄k3λ
−(ωk1 + ωk2 + ωk4 + ωk5) + iη

=
1√
2

vαλ,µν
2

(V̄k1µ V̄k2ν )∗ tk4k5k1k2
V̄k3λ , (C5)

and E(0) and E(pp) are given by Eqs. (39c) and (45).
Matrices M and J define the coupling amplitudes between single-particle states and ISCs. However, the sole

diagram of Fig. 5a is not sufficient to guarantee the correct antisymmetrization among quasiparticles. Part of the
missing terms are introduced by the third diagram in Fig. 5

Σ̃
11 (Fig. 5c)
αβ (ω) =

−1

2

∫
dω1

2πi

d ω2

2πi

d ω3

2πi
vαλ,µν G

11
µµ′(ω2)G11

νν′(ω + ω1 − ω2) vµ′ν′,γ′δ′

×G11
γ′γ(ω3)G12

δ′λ′(ω + ω1 − ω3) vγδ̄,βλ̄′ G
21
δλ(ω1)

= − 2J (2a)
α,k4k5k3

1

ω − E(0)
k4k5k3

+ iη
(Mβ,k4k3k5)∗ +Mα,k1k2k3

1

ω − E(0)
k1k2k3

+ iη
(J (2b)

β,k1k2k3
)∗

−Mα,k1k4k3

1

ω − E(0)
k1k2k3

+ iη
E(pp)
k1k2,k4k5

1

ω − E(0)
k4k5k3

+ iη
(Mβ,k4k3k5)∗ + . . . , (C6)

with

J (2b)
α,k1k2k3

≡ 1√
2
vαλ,µν

(
V̄k4ν Uk5λ

)∗
tk1k2k4k5

Uk3µ . (C7)

The first terms on the right hand side in Eqs. (C3) and (C6) become fully antisymmetrized once they are summed

together. By using the antisymmetry of Mα,k1k2k3 and J (2a)
α,k1k2k3

with respect to the exchange of their first two

quasiparticle indices and the independence of E(0)
k1k2k3

under any permutation, one finds

J (2a)
α,k4k5k3

(Mα,k4k5k3 − 2Mα,k4k3k5)∗ = J (2a)
α,k4k5k3

(Mα,k4k5k3 +Mα,k3k4k5)∗ − J (2a)
α,k5k4k3

(−Mα,k4k3k5)∗

= J (2a)
α,k4k5k3

(Mα,k4k5k3 +Mα,k3k4k5 +Mα,k5k3k4)∗

= J (2a)
α,k4k5k3

(
√

3 C(I)
α,k4k5k3

)∗

=
1√
3

[J (2a)
α,k4k5k3

+ J (2a)
α,k5k3k4

+ J (2a)
α,k3k4k5

] (C(I)
α,k4k5k3

)∗

= C(IIa)
α,k4k5k3

(C(I)
α,k4k5k3

)∗ , (C8)

where Eq. (A15) was also used. Similarly, diagrams 5b and 5d provide the missing contributions needed to antisym-
metrize the second term of Eqs. (C3) and (C6), respectively. The full antisymmetrization of the terms with double
denominators requires all four diagrams of Fig. 5. When all contributions are added together, one obtains

Σ̃
11 (Fig. 5a+b+c+d)
αβ (ω) = [C(IIa)

α,k1k2k3
+ C(IIb)

α,k1k2k3
]

1

ω − E(0)
k1k2k3

+ iη
(C(I)
β,k1k2k3

)∗
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+ C(I)
α,k1k2k3

1

ω − E(0)
k1k2k3

+ iη
[C(IIa)
β,k1k2k3

+ C(IIb)
β,k1k2k3

]∗

+ C(I)
α,k1k2k3

1

ω − E(0)
k1k2k3

+ iη

1

2
[E(pp)
k1k2,k4k5

δk3k6 + E(pp)
k3k1,k6k4

δk2k5 + E(pp)
k2k3,k5k6

δk1k4 ]

× 1

ω − E(0)
k4k5k3

+ iη
(C(I)
β,k4k5k3

)∗ + . . . . (C9)

The perturbative expansion of Σ̃11(ω) is obtained by
substituting Eqs. (36) into Eq. (29a) and then expanding
the inverse matrices with respect to the E(I) appearing in
the denominators. By comparing the third-order terms of
this expansion to Eq. (C9), one identifies the amplitudes
and denominators of Eqs. (43a), (43b) and (44).

The above example clarifies how a proper approxima-
tion to the self-energy may require to gather contribu-
tions of specific time ordering across different Feynman
diagrams. The ADC(n) framework ensures that all Feyn-
man diagrams are included in full up to order n, while
all other terms beyond this (including non-perturbative
resummations) appear for selected time ordering and do
not necessarily constitute full Feynman amplitudes. We
note that there exist mixed approximations in the lit-

erature (that is, intermediate among different ADC(n)
orders) that can be obtained by suppressing some of the
Goldstone distributions. For example, third-order correc-
tions due to C(II) are known to be important to repro-
duce correct separation energies of dominant quasiparti-
cle peaks, both in atomic nuclei and molecules. This was
the basis of the outer-valence Green’s function (OVGF)
method, one of the earliest approximations used by quan-
tum chemists for ionisation potentials and affinities [63].
Conversely, the two-particle–one-hole Tamm-Dancoff ap-
proximation extends ADC(2) by including the E(I) con-
tributions to the energy denominators but neglects the
remaining ADC(3) contributions [64, 65]. In each of these
cases, one needs to add consistently selected time order-
ings from different diagrams.
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C 74, 054317 (2006).
[46] A. Rios, Front. in Phys. 8, 387 (2020).
[47] A. Signoracci, T. Duguet, G. Hagen, and G. R. Jansen,

Phys. Rev. C 91, 064320 (2015).
[48] C. Barbieri, Journal of Physics: Conference Series 529,

012005 (2014).
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