The objective of this study was to improve the overall performance of a glassy carbon electrode (GCE) for the detection of 2,6-diaminotoluene (TDA), a possibly carcinogenic primary aromatic amines (PAAs) that poses a serious risk for the consumer’ health because they can transfer from multilayer food packages including adhesives based on aromatic polyurethane (PU) systems, to the food. The modification of the electrode surface was made by means of multi-walled carbon nanotubes (MWCNTs) and mesoporous carbon nanoparticles (MCNs). The MWCNTs-MCNs/GCE allowed achieving the best performance in terms of sensitivity, as revealed by cyclic voltammetry – CV, with an oxidation peak of 20.95 μA over 0.079 μA of the bare GCE. The pH of the medium influenced the oxidation of 2,6-TDA, with highest sensitivity at pH ∼7. Amperometry experiments led to an estimated detection limit of 0.129 μM, and three linear ranges were obtained for 2,6-TDA: 0.53–11.37 μM, 11.37–229.36 μM, and 229.36–2326.60 μM. Chronoamperometry experiments combined with Cottrell's theory allowed estimating a diffusion coefficient of 2,6-TDA of 1.34 × 10−4 cm2s−1. The number of electrons (n∼1) involved in the catalytic oxidation of 2,6-TDA was determined according to the Laviron's theory. Real sample tests demonstrated that the modification of the sensor using nanoparticls allowed to obtain a highly sensitive and selective sensor, which can possibly used as an alternative analytical device for the rapid, easy, and reliable determination of 2,6-TDA.

Development of a nano-modified glassy carbon electrode for the determination of 2,6-diaminotoluene (TDA) / D. Buyuktas, M. Ghaani, C. Rovera, R.T. Olsson, F. Korel, S. Farris. - In: FOOD PACKAGING AND SHELF LIFE. - ISSN 2214-2894. - 29(2021 Sep), pp. 100714.1-100714.7. [10.1016/j.fpsl.2021.100714]

Development of a nano-modified glassy carbon electrode for the determination of 2,6-diaminotoluene (TDA)

M. Ghaani
Secondo
;
S. Farris
Ultimo
2021

Abstract

The objective of this study was to improve the overall performance of a glassy carbon electrode (GCE) for the detection of 2,6-diaminotoluene (TDA), a possibly carcinogenic primary aromatic amines (PAAs) that poses a serious risk for the consumer’ health because they can transfer from multilayer food packages including adhesives based on aromatic polyurethane (PU) systems, to the food. The modification of the electrode surface was made by means of multi-walled carbon nanotubes (MWCNTs) and mesoporous carbon nanoparticles (MCNs). The MWCNTs-MCNs/GCE allowed achieving the best performance in terms of sensitivity, as revealed by cyclic voltammetry – CV, with an oxidation peak of 20.95 μA over 0.079 μA of the bare GCE. The pH of the medium influenced the oxidation of 2,6-TDA, with highest sensitivity at pH ∼7. Amperometry experiments led to an estimated detection limit of 0.129 μM, and three linear ranges were obtained for 2,6-TDA: 0.53–11.37 μM, 11.37–229.36 μM, and 229.36–2326.60 μM. Chronoamperometry experiments combined with Cottrell's theory allowed estimating a diffusion coefficient of 2,6-TDA of 1.34 × 10−4 cm2s−1. The number of electrons (n∼1) involved in the catalytic oxidation of 2,6-TDA was determined according to the Laviron's theory. Real sample tests demonstrated that the modification of the sensor using nanoparticls allowed to obtain a highly sensitive and selective sensor, which can possibly used as an alternative analytical device for the rapid, easy, and reliable determination of 2,6-TDA.
Electrochemical sensor; Food packaging; Mesoporous carbon nanoparticles; Migration; Multi-walled carbon nanotube; Primary aromatic amines;
Settore AGR/15 - Scienze e Tecnologie Alimentari
set-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Pre-print.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 927.72 kB
Formato Adobe PDF
927.72 kB Adobe PDF Visualizza/Apri
1-s2.0-S221428942100082X-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/859065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact