The short-chain fatty acid butyrate, produced by the gut microbiota, acts as a potent histone deacetylase (HDAC) inhibitor. We assessed possible ameliorative effects of butyrate, relative to other HDAC inhibitors, in in vitro and in vivo models of Rubinstein–Taybi syndrome (RSTS), a severe neurodevelopmental disorder caused by variants in the genes encoding the histone acetyltransferases CBP and p300. In RSTS cell lines, butyrate led to the patient-specific rescue of acetylation defects at subtoxic concentrations. Remarkably, we observed that the commensal gut microbiota composition in a cohort of RSTS patients is significantly depleted in butyrate-producing bacteria compared to healthy siblings. We demonstrate that the effects of butyrate and the differences in microbiota composition are conserved in a Drosophila melanogaster mutant for CBP, enabling future dissection of the gut–host interactions in an in vivo RSTS model. This study sheds light on microbiota composition in a chromatinopathy, paving the way for novel therapeutic interventions.

Insights into the role of the microbiota and of short-chain fatty acids in Rubinstein–Taybi syndrome / E. Di Fede, E. Ottaviano, P. Grazioli, C. Ceccarani, A. Galeone, C. Parodi, E.A. Colombo, G. Bassanini, G. Fazio, M. Severgnini, D. Milani, E. Verduci, T. Vaccari, V. Massa, E. Borghi, C. Gervasini. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 22:7(2021 Mar 31), pp. 3621.1-3621.16. [10.3390/ijms22073621]

Insights into the role of the microbiota and of short-chain fatty acids in Rubinstein–Taybi syndrome

Di Fede E.;Ottaviano E.;Grazioli P.;Ceccarani C.;Galeone A.;Parodi C.;Colombo E. A.;Bassanini G.;Milani D.;Verduci E.;Vaccari T.;Massa V.;Borghi E.;Gervasini C.
2021-03-31

Abstract

The short-chain fatty acid butyrate, produced by the gut microbiota, acts as a potent histone deacetylase (HDAC) inhibitor. We assessed possible ameliorative effects of butyrate, relative to other HDAC inhibitors, in in vitro and in vivo models of Rubinstein–Taybi syndrome (RSTS), a severe neurodevelopmental disorder caused by variants in the genes encoding the histone acetyltransferases CBP and p300. In RSTS cell lines, butyrate led to the patient-specific rescue of acetylation defects at subtoxic concentrations. Remarkably, we observed that the commensal gut microbiota composition in a cohort of RSTS patients is significantly depleted in butyrate-producing bacteria compared to healthy siblings. We demonstrate that the effects of butyrate and the differences in microbiota composition are conserved in a Drosophila melanogaster mutant for CBP, enabling future dissection of the gut–host interactions in an in vivo RSTS model. This study sheds light on microbiota composition in a chromatinopathy, paving the way for novel therapeutic interventions.
butyrate; HDACi; histones; microbiota; Rubinstein–Taybi syndrome
Settore MED/03 - Genetica Medica
Settore MED/07 - Microbiologia e Microbiologia Clinica
Settore BIO/13 - Biologia Applicata
Role of OligoSaccharyl Transferase enzymes in developmental signaling and congenital disorders of glycosylation (OSTers) - Borsista Dott. Antonio GALEONE
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Article (author)
File in questo prodotto:
File Dimensione Formato  
Di Fede, Ottaviano et al. 2021.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/832943
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact