Supplementing brain cholesterol is emerging as a potential treatment for Huntington’s disease (HD), a genetic neurodegenerative disorder characterized, among other abnormalities, by inefficient brain cholesterol biosynthesis. However, delivering cholesterol to the brain is challenging due to the bloodbrain barrier (BBB), which prevents it from reaching the striatum, especially, with therapeutically relevant doses. Here we describe the distribution, kinetics, release, and safety of novel hybrid polymeric nanoparticles made of PLGA and cholesterol which were modified with an heptapeptide (g7) for BBB transit (hybrid-g7-NPs-chol). We show that these NPs rapidly reach the brain and target neural cells. Moreover, deuterium-labeled cholesterol from hybrid-g7-NPs-chol is released in a controlled manner within the brain and accumulates over time, while being rapidly removed from peripheral tissues and plasma. We confirm that systemic and repeated injections of the new hybrid-g7-NPs-chol enhanced endogenous cholesterol biosynthesis, prevented cognitive decline, and ameliorated motor defects in HD animals, without any inflammatory reaction. In summary, this study provides insights about the benefits and safety of cholesterol delivery through advanced brain-permeable nanoparticles for HD treatment.

Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington disease / G. Birolini, M. Valenza, I. Ottonelli, A. Passoni, M. Favagrossa, J. T Duskey, M. Bombaci, M. Angela Vandelli, L. Colombo, R. Bagnati, C. Caccia, V. Leoni, F. Taroni, F. Forni, B. Ruozi, M. Salmona, G. Tosi, E. Cattaneo. - (2020 Nov 24). [10.1101/2020.11.24.395525]

Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington disease

G. Birolini
Primo
;
M. Valenza;E. Cattaneo
2020

Abstract

Supplementing brain cholesterol is emerging as a potential treatment for Huntington’s disease (HD), a genetic neurodegenerative disorder characterized, among other abnormalities, by inefficient brain cholesterol biosynthesis. However, delivering cholesterol to the brain is challenging due to the bloodbrain barrier (BBB), which prevents it from reaching the striatum, especially, with therapeutically relevant doses. Here we describe the distribution, kinetics, release, and safety of novel hybrid polymeric nanoparticles made of PLGA and cholesterol which were modified with an heptapeptide (g7) for BBB transit (hybrid-g7-NPs-chol). We show that these NPs rapidly reach the brain and target neural cells. Moreover, deuterium-labeled cholesterol from hybrid-g7-NPs-chol is released in a controlled manner within the brain and accumulates over time, while being rapidly removed from peripheral tissues and plasma. We confirm that systemic and repeated injections of the new hybrid-g7-NPs-chol enhanced endogenous cholesterol biosynthesis, prevented cognitive decline, and ameliorated motor defects in HD animals, without any inflammatory reaction. In summary, this study provides insights about the benefits and safety of cholesterol delivery through advanced brain-permeable nanoparticles for HD treatment.
Huntington; cholesterol; nanoparticles; blood-brain barrier
Settore BIO/14 - Farmacologia
24-nov-2020
https://www.biorxiv.org/content/10.1101/2020.11.24.395525v1
File in questo prodotto:
File Dimensione Formato  
2020.11.24.395525v1.full.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 12.59 MB
Formato Adobe PDF
12.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/793159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact