Stabilization of slopes subject to landslide by measures with low impact, such as those of bioengineering, is a topic of interest. The use of scarcely studied alpine pioneer plants could contribute to innovation in soil bioengineering and restoration ecology but to use them, knowledge of the ex situ germinability of their seeds is fundamental. This research analysed the germinability of seeds of nine alpine pioneer species (Papaver aurantiacum, Rumex scutatus, Tofieldia calyculata, Pulsatilla alpina, Silene glareosa, Adenostyles alpina, Dryas octopetala, Laserpitium peucedanoides and Laserpitium krapfii) treated with water, gibberellic acid (GA3) and/or calcium carbonate at room temperature. The seeds had different responses to the treatments: Laserpitium peucedanoides, L. krapfii and Silene glareosa showed difficulty in germinating (germination < 2.5%), while Dryas octopetala had good germination (39–61%) regardless of treatment. GA3 significantly increased the seed germination rate of Papaver aurantiacum, Pulsatilla alpina, Rumex scutatus and Tofieldia calyculata, while the addition of calcium carbonate made the seeds of Rumex scutatus and Tofieldia calyculata germinate more quickly. Results are discussed focusing on the perspectives of using alpine pioneer species in future soil bioengineering work for slopes stabilization and restoration, and on the actions that stakeholders should take to make this happen.

Alpine pioneer plants in soil bioengineering for slope stabilization and restoration : results of a preliminary analysis of seed germination and future perspectives / L. Giupponi, V. Leoni. - In: SUSTAINABILITY. - ISSN 2071-1050. - 12(2020 Sep 03), pp. 7190.1-7190.15. [10.3390/su12177190]

Alpine pioneer plants in soil bioengineering for slope stabilization and restoration : results of a preliminary analysis of seed germination and future perspectives

L. Giupponi
Primo
;
V. Leoni
Secondo
2020-09-03

Abstract

Stabilization of slopes subject to landslide by measures with low impact, such as those of bioengineering, is a topic of interest. The use of scarcely studied alpine pioneer plants could contribute to innovation in soil bioengineering and restoration ecology but to use them, knowledge of the ex situ germinability of their seeds is fundamental. This research analysed the germinability of seeds of nine alpine pioneer species (Papaver aurantiacum, Rumex scutatus, Tofieldia calyculata, Pulsatilla alpina, Silene glareosa, Adenostyles alpina, Dryas octopetala, Laserpitium peucedanoides and Laserpitium krapfii) treated with water, gibberellic acid (GA3) and/or calcium carbonate at room temperature. The seeds had different responses to the treatments: Laserpitium peucedanoides, L. krapfii and Silene glareosa showed difficulty in germinating (germination < 2.5%), while Dryas octopetala had good germination (39–61%) regardless of treatment. GA3 significantly increased the seed germination rate of Papaver aurantiacum, Pulsatilla alpina, Rumex scutatus and Tofieldia calyculata, while the addition of calcium carbonate made the seeds of Rumex scutatus and Tofieldia calyculata germinate more quickly. Results are discussed focusing on the perspectives of using alpine pioneer species in future soil bioengineering work for slopes stabilization and restoration, and on the actions that stakeholders should take to make this happen.
alpine species; ecological restoration; limestone screes; native seeds; plant diversity; sustainability
Settore BIO/03 - Botanica Ambientale e Applicata
Article (author)
File in questo prodotto:
File Dimensione Formato  
sustainability-12-07190.pdf

accesso aperto

Descrizione: PDF Articolo pubblicato
Tipologia: Publisher's version/PDF
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/761812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact