We provide sharp stability estimates for the Alexandrov Soap Bubble Theorem in the hyperbolic space. The closeness to a single sphere is quantified in terms of the dimension, the measure of the hypersurface and the radius of the touching ball condition. As consequence, we obtain a new pinching result for hypersurfaces in the hyperbolic space. Our approach is based on the method of moving planes. In this context we carefully review the method and we provide the first quantitative study in the hyperbolic space.

Quantitative stability for hypersurfaces with almost constant mean curvature in the hyperbolic space / G. Ciraolo, L. Vezzoni. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - 69:4(2020), pp. 1105-1153. [10.1512/iumj.2020.69.7952]

Quantitative stability for hypersurfaces with almost constant mean curvature in the hyperbolic space

G. Ciraolo;
2020

Abstract

We provide sharp stability estimates for the Alexandrov Soap Bubble Theorem in the hyperbolic space. The closeness to a single sphere is quantified in terms of the dimension, the measure of the hypersurface and the radius of the touching ball condition. As consequence, we obtain a new pinching result for hypersurfaces in the hyperbolic space. Our approach is based on the method of moving planes. In this context we carefully review the method and we provide the first quantitative study in the hyperbolic space.
Alexandrov soap bubble theorem; Hyperbolic geometry; Mean curvature; Method of moving planes; Pinching; Stability
Settore MAT/05 - Analisi Matematica
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Ciraolo_Vezzoni_hyperbolic_REVISED.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 506.56 kB
Formato Adobe PDF
506.56 kB Adobe PDF Visualizza/Apri
7952.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 489.4 kB
Formato Adobe PDF
489.4 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/761264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact