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ABSTRACT. We provide sharp stability estimates for the Alexan-
drov Soap Bubble Theorem in the hyperbolic space. The close-
ness to a single sphere is quantified in terms of the dimension,
the measure of the hypersurface and the radius of the touching
ball condition. As consequence, we obtain a new pinching result
for hypersurfaces in the hyperbolic space.

Our approach is based on the method of moving planes. In
this context we carefully review the method and we provide the
first quantitative study in the hyperbolic space.
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1. INTRODUCTION

In this paper we study compact embedded hypersurfaces in the hyperbolic space in
relation to the mean curvature. The subject has been largely studied in literature
(see, e.g., [5, 8, 10, 17–22, 25, 28, 29, 31–36] and the references therein).

Our starting point is the celebrated Alexandrov’s theorem in the hyperbolic
context.

Alexandrov’s Theorem. A connected closed C2-regular hypersurface S embedded
in the hyperbolic space has constant mean curvature if and only if it is a sphere.

The theorem was proved by Alexandrov in [2] by using the method of moving
planes and extends to the Euclidean space and the hemisphere [2–4]. The method
uses maximum principles and consists in proving that the surface is symmetric in
any direction. Then, the assertion follows by the following characterization of the
sphere: a compact embedded hypersurface S in the hyperbolic space with center
of mass O is a sphere if and only if, for every directionω, there exists a hyperbolic
hyperplane πω of symmetry of S orthogonal toω at O (see Lemma 2.2).

In this paper, we study the method of moving planes in the hyperbolic space
from a quantitative point of view, and we obtain sharp stability estimates for
Alexandrov’s theorem. We consider a C2-regular, connected, closed hypersurface
S embedded in the hyperbolic space. Since S is closed and embedded, there exists
a bounded domain Ω such that S = ∂Ω. We say that S (or equivalently Ω) satisfies
a uniform touching ball condition of radius ρ if, for any point p ∈ S, there exist
two balls B−ρ and B+ρ of radius ρ, with B−ρ contained in Ω and B+ρ outside Ω, which
are tangent to S at p. Our main result is the following.

Theorem 1.1. Let S be a C2-regular, connected, closed hypersurface embedded
in the n-dimensional hyperbolic space satisfying a uniform touching ball condition of
radius ρ. There exist constants ε,C > 0 such that if the mean curvature H of S satisfies

osc(H) ≤ ε,

then there are two concentric balls Br and BR such that

S ⊂ B̄R \ Br ,

and

R − r ≤ C osc(H).(1.1)

The constants ε and C depend only on n, upper bounds on ρ−1, and the area of S.
In Theorem 1.1, osc(H) is the oscillation of H, that is,

osc(H) :=max
M
H −min

M
H.

Note that the assumption osc(H) ≤ ε is equivalent to requiring that H be close
to a constant in C0-norm. We comment that the quantitative bound in (1.1) is
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sharp in the sense that no function of osc(H) converging to zero more than linearly
can appear on the righthand side of (1.1), as can be seen by explicit calculations
considering a small perturbation of the sphere. We prefer to state Theorem 1.1 by
assuming that S is connected, but the theorem still holds if we just assume that Ω
is connected (and the proof remains the same).

Theorem 1.1 has some remarkable consequences that we give in the following
corollary.

Corollary 1.2. Let ρ0, A0 > 0 and n ∈ N be fixed. There exists ε > 0,
depending on n, ρ0, and A0, such that if S is a connected closed C2 hypersurface
embedded in the hyperbolic space having area bounded by A0, satisfying a touching
ball condition of radius ρ ≥ ρ0, and whose mean curvature H satisfies

osc(H) < ε,

then S is diffeomorphic to a sphere.
Moreover, S is C1,α-close to a sphere, that is, there exists a C1,α-map Ψ : ∂Br → R

such that
F(x) = expx(Ψ(x)Nx)

defines a C1,α-diffeomorphism F : ∂Br → S and

(1.2) ‖Ψ‖C1,α(∂Br ) ≤ C osc(H),

for some 0 < α < 1 and where C depends only on n, ρ, and A0.

Hence, the lower bound on ρ prevents any bubbling phenomenon, and Corol-
lary 1.2 quantifies the proximity of S from a single bubble in a C1 fashion.

As far as we know, our results are the first quantitative studies for almost con-
stant mean curvature hypersurfaces in the hyperbolic space. We mention that, in
the Euclidean space, almost constant mean curvature hypersurfaces have been re-
cently studied in [9, 11, 12, 15, 26, 30]. In particular, Theorem 1.1 generalizes the
results we obtained in [15] to the hyperbolic space. However, the generalization
is not trivial. Indeed, even if a qualitative study of a problem via the method of
moving planes in the hyperbolic space does not significantly differ from the Eu-
clidean context, the quantitative study presents several technical differences which
need to be tackled.

Now we describe the proof of Theorem 1.1. Here, we work in the half-space
model

Hn = {p = (p1, . . . , pn) ∈ Rn | pn > 0}

equipped with the usual metric

gp =
1

p2
n

n∑

k=1

dpk ⊗ dpk.
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Our approach consists in a quantitative study of the method of the moving
planes (for the analogue approach in the Euclidean context see [1, 11, 13–15]).
Our first crucial result is to prove approximate symmetry in one direction. Indeed,
we fix a directionω and we perform the moving plane method along the direction
ω until we get a critical hyperplane πω (see Subsection 2.1 for a description of
the method in the hyperbolic context). Possibly after applying an isometry we
may assume πω to be the vertical hyperplane π = {p1 = 0}. Hence, π intersects
S, and the reflection of the righthand cap of S about π is contained in Ω and is
tangent to S. More precisely, let S+ = S∩{p1 ≥ 0} and S− = S∩{p1 ≤ 0}; then,
the reflection of S+ about π is contained in Ω and is tangent to S− at a point p0

(internally or at the boundary). If A is a set, we denote by Aπ its reflection about
π , and we use the following notation:

Σ̂ is the connected component of S− containing p0

and

Σ is the connected component of Sπ+ containing p0.

Furthermore, we denote by N the inward normal vector field on Σ. The inward
normal vector field on Σ̂ is still denoted by N, since no confusion arises. We prove
the following theorem on the approximate symmetry in one direction.

Theorem 1.3. There exists ε > 0 such that if

osc(H) ≤ ε,

then for any p ∈ Σ there exists p̂ ∈ Σ̂ such that

d(p, p̂)+ |Np − τpp̂ (Np̂)|p ≤ C osc(H).

Here, the constants ε and C depend only on n, ρ, and the area of S. In particular, ε
and C do not depend on the directionω.

Moreover, Ω is contained in a neighborhood of radius C osc(H) of Σ ∪ Σπ , that
is,

d(p,Σ∪ Σπ) ≤ C osc(H), for every p ∈ Ω.
In this last statement, τqp : Rn → Rn denotes the parallel transport along the

unique geodesic path in Hn connecting p to q. We prove Theorem 1.3 by using
quantitative tools for PDEs (like Harnack’s inequality and quantitative versions
of Carleson estimates and Hopf Lemma), as well as quantitative results for the
parallel transport and graphs in the hyperbolic space.

In order to prove Theorem 1.1, we first define an approximate center of sym-
metry O by applying the moving planes procedure in n orthogonal directions.
The argument here is not trivial, since n “orthogonal hyperplanes” do not neces-
sarily intersect, and Theorem 1.3 come into play. Then, Theorem 1.3 is also used
to prove that every critical hyperplane in the moving planes procedure is close to
O, and we finally prove estimates (1.1) by exploiting Theorem 1.3 again.
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2. PRELIMINARIES

We recall some basic facts about the geometry of hypersurfaces in Riemannian
manifolds. Let (M,g) be an n-dimensional Riemannian manifold with Levi-
Civita connection ∇, and i : S ֓ M be an embedded orientable hypersurface of
class C2. Fix a unitary normal vector fieldN on S. We recall that the shape operator
of S at a point p ∈ S is defined as

Wp(v) = −(∇vÑp)⊥ ∈ TpS

for v ∈ TpS, where Ñ is an arbitrary extension of N in a neighborhood of p and
the superscript “⊥” denotes the orthogonal projection onto TpS. Wp is always
symmetric with respect to g and the principal curvatures {κ1(p), . . . , κn−1(p)}
of S at p are by definition eigenvalues of Wp. We recall that the lowest and the
maximal principal curvature at p can be, respectively, obtained as the minimum
and maximum of the map κp : TpS \ {0} → R defined as

κp(v) := − 1
|v|2gp(Wp(v), v) = −

1
|v|2gp(∇v Ñp, v).

Alternatively, κp(v) can be defined by fixing a smooth curve α : (−ε, ε) → S
satisfying

α(0) = p, α̇(0) = v,

since in terms of α we can write

κp(v) =
1
|v|2gp(Np,Dtα̇(0)),

where Dt denotes the covariant derivative on (M,g). The main curvature of S at
p is then defined as

H(p) = κ1(p)+ · · · + κn−1(p)

n− 1
.

From now on we focus on the hyperbolic space. Given a model of the hyper-
bolic space, we denote the hyperbolic metric by g, the hyperbolic distance by d,
the hyperbolic norm at a point p by | · |p, and the ball of center p and radius
r by Br (p). The Euclidean inner product in Rn will be denoted by “·” and the
Euclidean norm by | · |. The hyperbolic measure of a set A will be denoted by
|A|g .

We mainly work in the half-space model Hn. In this model, hyperbolic balls
and Euclidean balls coincide, but hyperbolic and Euclidean centers and the hy-
perbolic and Euclidean radii differ. Specifically, the Euclidean radius rE of Br (p)
is

rE = pn sinh r ,
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where p = (p1, . . . , pn) are the coordinates of p in Rn.
The Euclidean hyperplane {pn = 0} ⊂ Rn will be denoted by π∞ and the

origin of π∞ by O. Moreover, {e1, . . . , en} is the canonical basis of Rn.
Given a point p ∈ Hn, we denote by p̄ its projection onto π∞ and by Br (x)

the (Euclidean) ball of π∞ centered at x ∈ π∞ and having radius r . We omit
to write the center of balls of π∞ when they are centered at the origin, that is,
Br (O) = Br .

Now we consider a closed C2 hypersurface S embedded in Hn. Given a point
p in S we denote by TpS its tangent space at p and by Np the inward hyperbolic
normal vector at p. Note that, according to our notation,

νp := 1
pn
Np

is the Euclidean inward normal vector. We further denote by dS the distance on
S induced by the hyperbolic metric. Given a point z0 ∈ S, we denote by Br (z0)
the set of points on S with intrinsic distance from z0 less than r , that is,

Br (z0) = {z ∈ S | dS(z, z0) < r}.

We are going to prove several quantitative estimates by locally writing the hy-
persurface S as a Euclidean graph. Since this procedure is not invariant by isome-
tries, we need to specify a “preferred” configuration in order to obtain uniform
estimates. More precisely, such configuration is when p = en ∈ S and TpS = π∞;
then, close to p, S is locally the Euclidean graph of a C2-function v : Br → R,
and we denote by Ur (p) the graph of v. If p in S is an arbitrary point, then
there exists an orientation-preserving isometry ϕ of Hn such that ϕ(p) = en
and Tϕ(p)ϕ(S) = π∞. Hence, around ϕ(p), ϕ(S) is the graph of a C2-map
v : Br → R, and we define Ur (p) as the preimage via ϕ of the graph of v. The
definition of Ur (p) is well posed.

Lemma 2.1. The definition of Ur(p) does not depend on the choice of ϕ.

Proof. First, let Ur(p) be defined via an orientation-preserving isometry
ϕ : Hn → Hn such that

(2.1) ϕ(p) = en, ϕ∗|p(TpS) = π∞,

and let ψ : Hn → Hn be another orientation-preserving isometry satisfying (2.1).
Then, f = ψ ◦ϕ−1 is an orientation-preserving isometry of Hn satisfying

f (en) = en, f|∗(π∞) = π∞,

and so it is a rotation about the en-axis. Therefore, ψ(Ur(p)) is the graph of a
C2-map defined on a ball in π∞ about the origin, and the claim follows. ❐
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We denote by H the hyperbolic mean curvature of S. Note that H is related
to the Euclidean mean curvature HE by

H(p) = (νp + pHE(p)) · en.

For instance, if S is the hyperbolic ball Br (p) oriented by the inward normal, we
have

H ≡ 1
tanh r

, HE(p) =
1

pn sinh r
.

If S is locally the graph of a smooth function v : Br → R, where Br is a ball
about the origin in π∞, and p = (x,v(x)) ∈ S, then H at p takes the following
expression:

(2.2) H(p) = v(x)
n− 1

div

(
∇v(x)√

1+ |∇v(x)|2

)
+ 1√

1+ |∇v(x)|2 .

In the last expression, div and∇ are the Euclidean divergence and gradient in π∞,
respectively. Moreover, we have

νp =
(−∇v(x),1)√
|∇v(x)|2 + 1

.

Since S is compact and embedded, then it is the boundary of a bounded
domain Ω in Hn. Given p in S, we say that S satisfies a touching ball condition of
radius ρ at p if there exist two hyperbolic balls of radius ρ tangent to S at p, one
contained in Ω and one contained in the complement of Ω. Since S is compact,
we have that S satisfies a uniform touching ball condition of radius ρ for some ρ,
that is, it satisfies a touching ball condition of radius ρ at any point (see [16]).

2.1. Alexandrov’s theorem and the method of moving planes in the hy-
perbolic space. In this paper, by hyperplane in the hyperbolic space we mean a
totally geodesic hypersurface. In the half-space model Hn, hyperplanes are either
Euclidean half-spheres centered at a point in π∞ or vertical planes orthogonal to
π∞, while in the ball model the hyperbolic hyperplanes are Euclidean spherical
caps or planes orthogonal to the boundary of Bn. Here, we recall that the ball
model consists of Bn = {p ∈ Rn : |p| = 1} equipped with the Riemannian
metric

gp =
4

(1− |p|2)2
n∑

k=1

dpk ⊗ dpk.

If Ω is a bounded open set in the hyperbolic space, its center of mass is defined
as the minimum point O of the map

P(p) = 1
2|Ω|g

∫

Ω
d(p,a)2 da.
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In view of [24], P is a convex function and the center of mass in unique. Further-
more, the gradient of P takes the expression

(2.3) ∇P(p) = − 1
|Ω|g

∫

Ω
exp−1

p (a)da.

Lemma 2.2. Let Ω be a bounded open set in the hyperbolic space. Then, every
hyperplane of symmetry of Ω contains the center of mass O of Ω.

Proof. Even if the result is well known we give a proof for reader’s convenience.
We prove the statement in the ball model Bn. Without loss of generality, we may
assume that the center of massO ofΩ is the origin of Bn. Assume by contradiction
there exists a hyperplane π of symmetry for Ω not containing O. Hence, π is a
spherical cap which (up to a rotation) we may assume to be orthogonal to the
line (p1,0, . . . ,0) and lying in the half-space p1 > 0. Let π1 = {p1 = 0} be the
vertical hyperplane orthogonal to e1. Since π1 and π are disjoint, they subdivide
Ω in three subsets Ω1, Ω2, Ω3, with |Ω2|g > 0 (see Figure 2.1). Since Ω is

B2

Ω

O

Ω1

Ω2

Ω3

π1 π

FIGURE 2.1.

symmetric about π , we have that |Ω1|g + |Ω2|g = |Ω3|g . Moreover, since

exp−1
O (p) = 2(tanh−1 |p|) p|p| , for every p ∈ Bn,

formula (2.3) implies

∫

Ω∩{p1>0}
(tanh−1 |p|) p1

|p| dp = −
∫

Ω∩{p1<0}
(tanh−1 |p|) p1

|p| dp,
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so that |Ω1|g = |Ω2|g + |Ω3|g, which gives a contradiction. ❐

Proposition 2.3. Let S = ∂Ω be a C2-regular, connected, closed hypersurface em-
bedded in the n-dimensional hyperbolic space, where Ω is a bounded domain. Assume
that for every direction ω ∈ Rn there exists a hyperplane of symmetry of S orthogonal
toω at the center of mass O of Ω. Then, S is a hyperbolic sphere about O.

Proof. We prove the statement in the ball model Bn, assuming that O is the
origin of Bn. In this case, the assumptions in the statement imply that S is sym-
metric about every Euclidean hyperplane passing through the origin. Thus, S is a
Euclidean ball about O (see, e.g., [23, Lemma 2.2, Chapter VII]), and the claim
follows. ❐

Now, we give a description of the method of the moving planes inHn, declar-
ing some notation we will use here and in Sections 6 and 7. The method consists
in moving hyperbolic hyperplanes along a geodesic orthogonal to a fixed direction.
Let ω be a fixed direction, and let γω : (−∞,∞) → Hn be the maximal geodesic
satisfying γ(0) = en, γ̇(0) = ω. For any s ∈ R we denote by πω,s the totally
geodesic hyperplane passing through γω(s) and orthogonal to γ̇ω(s).

The description of the method can be simplified by assumingω = en (by us-
ing an isometry it is always possible to describe the method only for this direction).
In this case, the hyperplane πen,s consists of a half-sphere

πen,s = {p ∈ Hn : |p| = e
s}.

For s large enough, S ⊂ {|p| < es}. We decrease the value of s until πen,s
is tangent to S. Then, we continue to decrease s until the reflection Sπen,s of
Sen,s := S ∩ {|p| ≥ es} about πen,s is contained in Ω, and we denote by πen the
hyperplane obtained at the limit configuration.

More precisely, for a general directionω we define

mω = inf{s ∈ R | Sπω,s ⊂ Ω},

and refer to πω := πω,mω and Sω := Sπω,mω
as to the critical hyperplane and

maximal cap of S along the direction ω. Analogously, Ωω is addressed as the
maximal cap of Ω in the direction ω. Note that by construction, the reflection
Sπω of Sω is tangent to S at a point p0, and there are two possible configurations
given by p0 6∈ πω and p0 ∈ πω.

Proof of Alexandrov’s theorem. The proof is obtained by using the method of
the moving planes described above and showing that, for every direction ω, we
have that S is symmetric about πω. Once a direction ω is fixed, we may assume
by using a suitable isometry that πω is the vertical hyperplane πω = {x1 = 0}
and ω = e1. We parametrize S and Sπω in a neighborhood of p0 in Tp0S (which
clearly coincides with Tp0S

π
ω) as graphs of two functions v and u, respectively. If

p0 ∉ πω the functions v and u are defined on a ball Br (case (i)); otherwise, they
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are defined in a half-ball Br ∩{x1 ≤ 0} and v = u on Br ∩{p1 = 0} (case (ii)). In
both cases the two functions v and u satisfy (2.2), and the difference w = u− v
is nonnegative and satisfies an elliptic equation Lw = 0, with w(0) = 0 in case
(i) and w = 0 on Br ∩ {p1 = 0} in case (ii). The strong maximum principle in
case (i) and Hopf ’s lemma in case (ii) yield w ≡ 0. This implies there exist two
connected components of S− and Sπω such that the set of tangency points between
them is both closed and open. Since S is connected we also have that Sπω = S−,
that is, S is symmetric about πω. The conclusion follows from Lemma 2.2 and
Proposition 2.3. ❐

Remark 2.4. We mention that Alexandrov’s theorem still holds by assuming
that Ω is connected, and the proof given above can be easily modified accordingly.

Remark 2.5. In the defintion of the method of the moving planes one can
replace en with an arbitrary point p ∈ Hn by replacing conditions γω(0) = en
and γ̇ω(0) =ω with γω(0) = p and γ̇ω(0) =ω, respectively.

Remark 2.6. The method of the moving planes described in this section dif-
fers from the method of moving planes described in [27], where the hyperplanes
move along a horocycle instead of a geodesic. We comment that if one is interested
in a qualitative result (such as Alexandrov’s theorem), then the two methods are
equivalent; instead, the method we adopt here is more suitable for a quantitative
analysis of the problem.

3. LOCAL QUANTITATIVE ESTIMATES

In this section, we establish some local quantitative results that we need to prove
Theorem 1.1. We will need to switch Euclidean and hyperbolic distances, and we
need a preliminary lemma which quantifies their relation close to en. We recall
that the hyperbolic distance d in the half-space model of Hn is given in terms of
the Euclidean distance by the following formula:

d(p, q) = arccosh

(
1+ |p − q|

2

2pnqn

)
.

In particular,

d(en, ten) = | log t|, for any t ∈ (0,∞).

Lemma 3.1. Let R > 0 be fixed, and let q in BR(en). Then, there exist c =
c(R) > 0 and C = C(R) > 0 such that

(3.1) c|q − en| ≤ d(q, en) ≤ C|q − en|.

Proof. Since e−R ≤ qn ≤ eR, then

1+ e
−R

2
|q − en|2 ≤ 1+ |q − en|

2

2qn
≤ 1+ e

R

2
|q − en|2,
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and, since |q − en| ≤ eR − 1, then

1+ |q − en|
2

2qn
≤ A,

where A = A(R). Let φ(t) = arccosh(t), t ∈ [1,+∞). Since 1 ≤ t ≤ A then,
keeping in mind that φ′(t) = (t2 − 1)−1/2, we have

1√
A+ 1

1√
t − 1

≤ φ′(t) ≤ 1√
t − 1

,

and hence
1

2
√
A+ 1

√
t − 1 ≤ φ(t) ≤ 1

2

√
t − 1 t ∈ [1, A].

By letting

t = 1+ |q − en|
2

2qn
,

and from
e−R/2√

2
|q − en| ≤

√
t − 1 ≤ e

−R/2
√

2
|q − en|,

we conclude. ❐

3.1. Quantitative estimates for parallel transport. In this subsection, we
prove quantitative estimates involving the parallel transport which will be useful
in the proof of Theorem 1.3.

We recall that the parallel transport along a smooth curve α : [t0, t1] → Hn is
the linear map τ : Rn → Rn given by

τ(v) = X(t1),

where X : [t0, t1]→ Hn is the solution to the linear ODE





Ẋk +
n∑

i,j=1

Xjα̇iΓkij(α) = 0, k = 1, . . . , n,

Xk(t0) = vk, k = 1, . . . , n,

and Γ kij are the Christoffel symbols in Hn. Here, we recall that the Γ kij are all
vanishing if either the three indexes i, j, k are distinct or one of them is different
from n, while in the remaining cases they are given by

Γ iin = −
1
xn
, Γnii =

1
xn
, Γ ini = −

1
xn
, Γnnn = −

1
xn
.
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We adopt the following notation: given q and p in Hn, we denote by

τ
p
q : Rn → R

n

the parallel transport along the unique geodesic path connecting q to p. Note that
if q and p belong to the same vertical line (that is, if q̄ = p̄ in our notation), then

τ
p
q (v) =

pn
qn
v.

For the case q̄ ≠ p̄, we consider the following lemma where for simplicity we
assume p = en.

Lemma 3.2. Let q ∈ Hn be such that q ∈ 〈en−1, en〉, and let v ∈ Rn. Assume
qn−1 ≠ 0; then,

τenq (v) =
1
qn
(v1, . . . , vn−2, ṽn−1, ṽn),

where
(
ṽn−1

ṽn

)
= 1

1+ a2

(
a(a− qn−1)+ qn a− qn−1 − aqn
cqn − a+ qn−1 a(a− qn−1)+ qn

)(
vn−1

vn

)

and

a = |q|
2 − 1

2qn−1
.

Proof. Let α : [t0, t1]→ Hn be defined as

α(t) = (R cos(t)+ a)en−1 + R sin(t)en,

where

a = |q|2 − 1
2qn−1

, R =
√

1+ a2

and
α(t0) = q, α(t1) = en.

Then, α, up to being parametrized, is a geodesic path connecting q to en. The
parallel transport equation along α yields

(τenq (v))k = vk, k = 1, . . . , n− 2,

while
(τenq (v))n−1 = Xn−1(t1), (τenq (v))n = Xn(t1),
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where the pair (Xn−1, Xn) solves

(
Ẋn−1

Ẋn

)
=
(

cotan t −1
1 cotan t

)(
Xn−1

Xn

)
,

(
Xn−1(t0)

Xn(t0)

)
=
(
vn−1

vn

)
.

Therefore,

(
Xn−1(t)

Xn(t)

)
= A(t)A(t0)−1

(
vn−1

vn

)
, A(t) :=

(
cos t sin t − sin2 t

sin2 t cos t sin t

)
,

and the claim follows. ❐

The following two propositions give some quantitative estimates involving the
map τpq .

Proposition 3.3. Let p and q in Hn, and letω be the global vector field ωz =
zne1. Then,

|ωp − τpq (ωq)|p ≤ Cd(p, q),

where C depends on an upper bound on the distance between p and q.

Proof. Note that in the simple case where p and q belong to the same vertical
line, the claim is trivial since |ωp − τpq (ωq)|p = 0. We focus on the other case.
Let f : Hn → Hn be

f (z) = 1
pn
R(z − p̄)

where R is a rotation around the en-axis such that

R(q − p̄) ∈ 〈en−1, en〉.

In this way, we have

f (p) = en, f (q) ∈ 〈en−1, en〉, f|∗z(ωz) = f (z)nv for all z ∈ Hn,

where v = R(e1). We set f (q) = q̂ and we write q̂ = q̂n−1en−1 + q̂nen. Now,
q̂n−1 ≠ 0 and we can apply Lemma 3.2, obtaining

τenq̂ (q̂nv) =
(
v1, . . . , vn−2,

1
1+ a2

(a(a− q̂n−1)+ q̂n)vn−1,

1
1+ a2

(aq̂n − a+ q̂n−1)vn−1

)
,

where

a = |q̂|
2 − 1

2q̂n−1
.
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Furthermore, a direct computation gives

|v − τenq̂ (q̂nv)| =
|vn−1|√
1+ a2

|q̂ − en|.

Since |v| = 1, keeping in mind Lemma 3.1, we have

|ωp − τpq (ωq)|p = |v − τenq̂ (q̂nv)| =
|vn−1|√
1+ a2

|q̂ − en|

≤ 1
c
d(en, q̂) =

1
c
d(p, q),

where c is a small constant depending on d(en, q̂) = d(p, q). Hence, the claim
follows. ❐

Proposition 3.4. Let q, q̂, and z in Hn and R > 0 be such that

q, q̂ ∈ BR(z).

Let v,w ∈ Rn be such that
|v|q = |w|q̂ = 1.

Then,

|τzq(v)− τzq̂ (w)|z ≤ C(d(z, q)+ d(z, q̂)+ d(q, q̂)+ |v − τqq̂ (w)|q),

where C is a constant depending only on R.

Proof. We first consider the case where the three points q, q̂, z belong to the
same geodesic path. In this case, we may assume that z = en and that q and q̂
belong to the en axis, that is,

q = qnen and q̂ = q̂nen.

Under these assumptions, we have

|τzq (v)− τzq̂(w)|z =
∣∣∣∣∣

1
qn
v − 1

q̂n
w

∣∣∣∣∣ = |v − τ
q
q̂ (w)|q

and the claim is trivial. Next, we focus on the case where the three points do not
belong to the same geodesic path. Up to applying an isometry, we may assume:
z = en, q, and q̂ belong to the same vertical line and z, q, q̂ belong to the plane
〈en−1, en〉. Note that qn−1 = q̂n−1 ≠ 0. In the next computation we denote by
‖ · ‖ the norm of linear operators Rn → Rn with respect to the Euclidean norm.
Note that

‖τzq‖ =
1
qn
, ‖τzq̂‖ =

1
q̂n
, |v − τqq̂ (w)|q =

∣∣∣∣∣
1
qn
v − 1

q̂n
w

∣∣∣∣∣ .
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Taking into account that |v| = qn and |w| = q̂n, we have

|τzq (v)− τzq̂(w)|z

≤
∣∣∣∣∣1− 1

qn

∣∣∣∣∣ |τ
z
q (v)| +

∣∣∣∣∣τ
z
q

(
1
qn
v − 1

q̂n
w

)∣∣∣∣∣

+ 1
q̂n
|τzq (w)− τzq̂ (w)| +

∣∣∣∣∣
1
q̂n

− 1

∣∣∣∣∣ |τ
z
q̂(w)|

≤ |qn − 1| ‖τzq‖ + ‖τzq‖
∣∣∣∣∣

1
qn
v − 1

q̂n
w

∣∣∣∣∣+ ‖τ
z
q − τzq̂‖ + |q̂n − 1| ‖τzq̂‖

= 1
qn
(|qn − 1| + |v − τqq̂ (w)|q +

|q̂n − 1|
q̂n

+ ‖τzq − τzq̂‖.

From Lemma 3.2, we have that ‖τzq − τzq̂‖ ≤ Cd(q, q̂), where C is a constant
depending only on R, and from Lemma 3.1 we conclude. ❐

3.2. Local quantitative estimates for hypersurfaces. In this subsection we
prove some quantitative estimates for hypersurfaces in the hyperbolic space.

Throughout this subsection, S denotes a C2-regular closed hypersurface em-
bedded inHn satisfying a uniform touching ball condition of radius ρ. We notice
that the hyperbolic ball of radius ρ centred at q = (q̄, qn) of radius ρ is the
Euclidean ball of radius qn sinh(ρ) centred at (q̄, qn coshρ).

Furthermore, we set

ρ0 = e−ρ sinhρ,(3.2)

ρ1 = (1− ρ0)ρ0.(3.3)

Notice that ρ0 is the Euclidean radius of a hyperbolic ball of radius ρ with center
at (0, . . . ,0, e−ρ). Therefore, if en belongs to S, then S satisfies an Euclidean
touching ball condition of radius ρ0 at en.

Note that, since S satisfies a uniform touching ball condition of radius ρ,
every geodesic ball Br (p) of radius r ≤ ρ0 in S is such that

(3.4) |Br (p)| ≥ crn−1,

where c depends only on n. The inequality can be easily proved assuming p = en
and TpS = π∞ and then applying Lemma 3.1.

Lemma 3.5. Assume en ∈ S and TenS = π∞. Then, S can be locally written
around en as the graph of a C2-function v : Bρ1 ⊂ π∞ → R, satisfying

(3.5) v(O) = 1, |v(x)− 1| ≤ ρ1 −
√
ρ2

1 − |x|2, |∇v(x)| ≤ |x|√
ρ2

1 − |x|2

for every x ∈ Bρ1 .
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Proof. Since S satisfies a touching ball condition of radius ρ, we have that any
point q ∈ S∩(Bρ0×(1−ρ0,1+ρ0)) satisfies a Euclidean touching ball condition
of radius ρ1. The claim then follows from [15, Lemma 2.1]. ❐

Note: according to the terminology introduced in the first part of Section 2,
the graph of the map v in the statement above is denoted by Uρ1(en).

Proposition 3.6. There is δ0=δ0(ρ) such that if p,q ∈ S with dS(p, q) ≤ δ0,
then

(3.6)
gp(Np, τ

p
q (Nq)) ≥

√
1−C2dS(p, q)2,

|Np − τpq (Nq)|p ≤ CdS(p, q),

where C is a constant depending only on ρ.

Proof. We will choose δ0 = min(r2,1/C) (see below for the definition of r2

and C).
Possibly after applying an isometry, we can assume that p = en and q = ten.

We notice that any point in S which is far from en less than ρ satisfies a Euclidean
touching ball condition of radius r1, where r1 depends only on ρ. Moreover,
from Lemma 3.1, there exists 0 < r2 = r2(ρ) such that if d(en, q) ≤ r2, then
|en − q| ≤ r1/2; this implies that, since

d(p, q) ≤ dS(p, q) ≤ r2,

we have
|1− t| = |p − q| ≤ r1

2
.

Now we can apply the Euclidean estimates in [15, Lemma 2.1] to p and q (with
r1 in place of ρ), and we obtain

νp · νq ≥
√√√

1− |p − q|
2

r 2
1

.

Since d(p, q) ≤ ρ, from (3.1) we have that |p − q| ≤ C1d(p, q) ≤ C1dS(p, q)
for some constant C1 = C1(ρ), and hence

νp · νq ≥
√

1−C2dS(p, q)2,(3.7)

where C = C1/r1 and provided that dS(p, q) < 1/C. Since

Np = νp, νq =
1
t
Nq = τpq (Nq),

inequality (3.7) can be written as

gp(Np, τ
p
q (Nq)) ≥

√
1−C2dS(p, q)2,
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which is the first inequality in (3.6). The second inequality in (3.6) follows by a
direct computation. ❐

Lemma 3.7. For any 0 < α < 1
2 min(1, ρ−1

1 ), there exists a universal constant
C such that if q ∈ Uαρ1(p), then

dS(p, q) ≤ αCρ1(3.8)

and

d(p, q) ≤ dS(p, q) ≤ C cosh(ρ1)d(p, q).(3.9)

Proof. Possibly after applying an isometry, we can assume that p = en and
νp = en. Lemma 3.5 implies that S is the graph of a C2 function v : Bρ1 → R.
Let q = (x,v(x)) with |x| < ρ1 (so that q ∈ Uρ1(p)), and consider the curve
γ : [0,1]→Uρ1(p) joining p with q, defined by γ(t) = (tx,v(tx)). Then,

γ̇(t) = (x,∇v(tx) · x).

The Cauchy-Schwartz inequality implies

|γ̇(t)| ≤ |x|
√

1+ |∇v(tx)|2.

Therefore, inequality (3.5) in Lemma 3.5 implies

|γ̇(t)| ≤ ρ1|x|√
ρ2

1 − t2|x|2
≤ |x|√

1− α2
≤ 2√

3
|x|,

for 0 ≤ |x| ≤ αρ1. Since

dS(p, q) ≤
∫ 1

0

|γ̇(t)|
v(tx)

dt,

and from (3.5), we obtain that

dS(p, q) ≤ C|x|

for some universal constant C, which implies (3.8). Since

|x| ≤ |p − q|,

a careful analysis of the constant appearing in (3.1) gives (3.9). ❐

Lemma 3.8. Assume p = ten ∈ S, for some t ∈ [1,∞), and assume νp is such
that

νp · en > 0, |νp − en| ≤ ε,
for some 0 ≤ ε < 1. Then, in a neighborhood of p, there exists a C2-function
v : Br → R, with r = ρ1

√
1− ε2, such that p = (0, v(0)) and S is locally the graph

of v.
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Proof. Notice that if dS(p, q) ≤ log(1−ρ0), then qn ≥ 1−ρ0 and q satisfies
a Euclidean touching ball condition of radius ρ1. The claim then follows from the
Euclidean case (see [15, Lemma 3.4]). ❐

4. CURVATURES OF PROJECTED SURFACES

In order to perform a quantitative study of the method of the moving planes, we
need to handle the following situation: given a hypersurface U of class C2 in Hn,
we consider its intersection U ′ with a hyperbolic hyperplane π . If π intersects U
transversally, U ′ = U ∩ π is a hypersurface of class C2 of π , and we consider its
Euclidean orthogonal projection U ′′ onto π∞ (see Figure 4.1 for an example in
H3). The next propositions allow us to control the Euclidean principal curvature

FIGURE 4.1. This figure provides an example of the statement
of Proposition 4.1. According to the notation of Proposition 4.1,
here U is the paraboloid in H3 parametrized by χ(u,v) =
(v cos(u), 1

2 − v sin(u), v2 + 1
2), and π is the half-sphere about

the origin of radius one.

of U ′′ in terms of the hyperbolic principal curvature of U .

Proposition 4.1. Let U be a C2-regular embedded hypersurface in Hn oriented
by a unitary normal vector field N. Let κj , j = 1, . . . , n− 1, be the principal curva-
tures of U ordered increasingly, π be a hyperplane in Hn intersecting U transversally,
and U ′ = U ∩π . Then, U ′ is an orientable hypersurface of class C2 embedded in π
and, once a unitary normal vector filed N′ on U ′ in π is fixed, its principal curvatures
κ′i satisfy

(4.1)
1

gq(Nq, N
′
q)
κ1(q) ≤ κ′i(q) ≤

1
gq(Nq, N

′
q)
κn−1(q)
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for every q ∈ U ′ and i = 1, . . . , n − 2. Furthermore, once a unitary normal vector
fieldω on π is fixed, we have

(4.2)
1√

1− gq(ωq, Nq)2
κ1(q) ≤ κ′i(q) ≤

1√
1− gq(ωq, Nq)2

κn−1(q),

for every q ∈ U ′ and a suitable choice of N′.

Proof. Up to applying an isometry, we may assume that π is the vertical hy-
perplane {p1 = 0}.

First, observe that U ′ is of class C2 by the implicit function theorem, and is
orientable since

N′q = (−1)n
∗(∗(νq ∧ ∂x1)∧ ∂x1)

| ∗ (∗(νq ∧ ∂x1)∧ ∂x1)|q
defines a unitary normal vector field on U ′, where νq = (1/qn)Nq is the Euclidean
normal vector filed on U and ∗ is the Euclidean Hodge star operator in Rn.

In order to prove (4.1): fix q ∈ U ′ and consider a vector v ∈ TqU ′ satisfying
|v|q = 1. Set

κq(v) = gq(∇vÑ, v),

where Ñ is an arbitrary extension of N in a neighborhood of q and ∇ is the Levi-
Civita connection of g. Since Nq is orthogonal to TqU ′, it belongs to the plane
generated by ∂x1 and N′q, and we can write

N = a∂x1 + bN′, where b = g(N,N′).

Let ã, b̃, and Ñ′ be arbitrary extensions of a, b, and N′ in the whole Hn. There-
fore,

Ñ = ã ∂x1 + b̃Ñ′

is an extension of N. We have

κq(v) = gq(∇v Ñ, v) = gq(∇v(ã ∂x1 + b̃Ñ′), v)
= v(ã)gq(∂x1 , v)+ v(b̃)gq(N′q, v)

+ a(q)gq(∇v ∂x1 , v)+ b(q)gq(∇v Ñ′, v)
= a(q)gq(∇v ∂x1 , v)+ b(q)gq(∇v Ñ′, v).

Since π is a totally geodesic submanifold, gq(∇v ∂x1 , v) = 0, and therefore

κq(v) = gq(Nq, N′q)gq(∇vÑ′, v),

which implies (4.1).
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Now, we prove (4.2). Let ν′q = (1/qn)N′q. Then, ν′ is a Euclidean unitary
normal vector field on U ′, and a standard computation yields

νq · ν′q = 1− (νq · e1)
2

(see, e.g., [15, Section 2.3]). Therefore, ifωq = qne1, then

gq(Nq, N
′
q) = νq · ν′q = 1− (νq · e1)

2 = 1− gq(Nq,ωq)2,

and (4.2) follows. ❐

Note that in the statement of Proposition 4.1, the κ′i are the curvatures of U ′

once it is considered a hypersurface of π and not when it is seen as hypersurface
of U . A bound on the principal curvatures of U ′ as hypersurface in U is given by
the following proposition.

Proposition 4.2. Under the same assumptions of Proposition 4.1, the principal
curvatures κ̌′i of U ′ seen as a hypersurface of U satisfy

|κ̌′i(q)| ≤
|gq(ωq, Nq)|√

1− gq(ωq, Nq)2
max{|κ1(q)|, |κn−1(q)|},

whereω is a normal unitary vector field to π .

Proof. We prove the statement, assuming π to be the vertical hyperplane
{p1 = 0} and ωp = pne1, for p ∈ π . Let q ∈ U ′, v ∈ TqU ′ such that |v|q = 1,
and let α : (−δ,δ) → S be a unitary speed curve satisfying α(0) = q, α̇(0) = v.
Fix a unitary normal vector field Ñ′ of U ′ in U near q. We may complete v with
an orthonormal basis {v,v2, . . . , vn−2} of TqU ′ such that

Ň′q = ∗q(Nq ∧ v ∧ v2 ∧ · · · ∧ vn−2),

where ∗q is the Hodge star operator at q inHn with respect to g and the standard
orientation. Set

κ̌′q(v) = gq(∗q(Ňq ∧ v ∧ v2 ∧ · · · ∧ vn−2),Dtα̇|t=0),

where Dt is the covariant derivative in Hn. Since Dtα̇|t=0 ∈ π , we have

κ̌′q(v) = gq(Nq,ωq)gq(∗q(ωq ∧ v ∧ v2 ∧ · · · ∧ vn−2),Dtα̇|t=0).

Now, ∗q(ωq ∧ v ∧ v2 ∧ · · · ∧ vn−2) is a normal vector to TqU ′ in π , and so

κ̌′q(v) = gq(Nq,ωq)gq(∇v Ñ, v),
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where Ñ is an arbitrary extension of N in a neighborhood of q. Proposition 4.1
then implies

|κ̌′q(v)| ≤
|gq(Nq,ωq)|√

1− gq(ωq, Nq)2
max{|κ1(q)|, |κn−1(q)|},

as required. ❐

Before giving the last result of this section, we recall the following notation
introduced in the first part of the paper: given a point q ∈ Hn, we denote by q̄ its
orthogonal projection onto π∞, that is,

q = (q̄, qn).

Proposition 4.3. Let π be a non-vertical hyperplane in Hn, and U ′ be a C2

regular hypersurface of π oriented by a unitary normal vector field N′ in π . Denote
by κ′i , for i = 1, . . . , n − 2, the principal curvatures of U ′. Then, the Euclidean
orthogonal projection U ′′ of U ′ onto π∞ is a C2-regular hypersurface of π∞ with a
canonical orientation. Moreover, for any q ∈ U ′ we have

(4.3) |κ′′i (q̄)| ≤
1
R

(
(ν′q · en)2 +

q2
n

R2

)−3/2

(max{|κ′1(q)|, |κ′n−2(q)|} + 3),

for every i = 1, . . . , n−2, where {κ′′i } are the principal curvatures of U ′′ with respect
to the Euclidean metric and R is the Euclidean radius of π and ν′q = (1/qn)N′q.

Proof. By our assumptions, π is a half-sphere of radius R with center in π∞.
By considering a suitable isometry, we may assume that π has center at the origin
of π∞. If X is a local positive oriented parametrisation of U ′, then we have that
X̄ = X − (X · en)en is a local parametrisation of U ′′, and we can orient U ′′ with

(4.4) ν′′ ◦ X̄ := vers(∗(X̄1 ∧ X̄2 ∧ · · · ∧ X̄n−2 ∧ en)),

where X̄k is the kth derivative of X̄ with respect to the coordinates of its domain,
and ∗ is the Hodge “star” operator in Rn with respect to the Euclidean metric
and the standard orientation. Therefore, U ′′ is a C2-regular hypersurface of π∞
oriented by the map ν′′.

Now, we prove inequalities (4.3). We fix a point q = (q̄, qn) ∈ U ′ and let
v̄ ∈ Tq̄U ′ be nonzero. Let β : (−δ,δ) → U ′′ be an arbitrary regular curve con-
tained in U ′′ such that

β(0) = q̄, β̇(0) = v̄.

Then,

κ′′q̄ (v̄) =
1
|v̄|2 ν

′′
q̄ · β̈(0)
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is the normal curvature of U ′′ at (q̄, v̄), viewed as hypersurface of π∞ with the
Euclidean metric. We can write

κ′′q̄ (v̄) =
1
|v̄|2 ν

′′
q̄ · α̈(0)

where α = (β,αn) is a regular curve in U ′ projecting onto β. From

X̄k = Xk − (Xk · en)en,

and the definition of ν′′ (4.4), we have

κ′′q̄ (v̄) =
(∗(X1(q)∧ · · · ∧Xn−2(q)∧ en)) · α̈(0)
|β̇|2 |X1(α)∧ · · · ∧ Xn−2(α)∧ en|

.

We may assume that {X1(q), . . . , Xn−2(q)} is an orthonormal basis of TqU ′ with
respect to the Euclidean metric. Therefore, {X1(q), . . . , Xn−2(q), ν′q, q/R} is a
Euclidean orthonormal basis of Rn, and we can split Rn in

Rn = TqU ′′ ⊕ 〈ν′q〉 ⊕ 〈q/R〉.

Then, en splits accordingly into

en = e′n + e′′n + e′′′n , and

therefore,

∗ (X1(q)∧ · · · ∧ Xn−2(q)∧ en) · α̈(0)
= ∗(X1(q)∧ · · · ∧Xn−2(q)∧ e′′′n ) · α̈(0),

that is,

∗ (X1(q)∧ · · · ∧ Xn−2(q)∧ en) · α̈(0) =

= qn
R
∗
(
X1(q)∧ · · · ∧ Xn−2(q)∧

q

R

)
· α̈(0).

Since

ν′q = ∗
(
X1(q)∧ · · · ∧Xn−2(q)∧

q

R

)
,

we obtain

κ′′q̄ (v̄) =
qn

R|β̇(0)|2
ν′q · α̈(0)

|X1(q)∧ · · · ∧Xn−2(q)∧ en|
.

We may assume that α is parametrized by arc length with respect to the hyperbolic
metric, that is,

|α̇|2 = α2
n,
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and so

|β̇|2 = α2
n − α̇2

n,

which implies

κ′′q̄ (v̄) =
qn

r(q2
n − v2

n)

ν′q · α̈(0)
|X1(q)∧ · · · ∧ Xn−2(q)∧ en|

.

Finally,

X1(q)∧ · · · ∧Xn−1(q)∧ en+1 = X1(q)∧ · · · ∧Xn−1(q)∧ e′′n+1

+ X1(q)∧ · · · ∧Xn−1(q)∧ e′′′n+1,

and

X1(q)∧ · · · ∧Xn−2(q)∧ e′′n = (ν′q · en)X1(q)∧ · · · ∧Xn−2(q)∧ ν′q,

X1(q)∧ · · · ∧Xn−2(q)∧ e′′′n = qn
R
X1(q)∧ · · · ∧ Xn−2(q)∧

q

R
.

Hence,

|X1(q)∧ · · · ∧Xn−2(q)∧ en| =
(
(ν′q · en)2 +

q2
n

R2

)1/2

.

Now, we set
κ′q(v) = gq(N′q,Dtα̇|t=0),

where Dt is the covariant derivative in π . We have

Dtα̇ = α̈+
n∑

i,j,k=1

Γ kij(α)α̇iα̇jek

= α̈+
n∑

i=1

(
− 2
αn
α̇iα̇n

)
ei +

1
αn

( n∑

i=1

α̇2
i − α̇2

n

)
en

and

Dtα̇|t=0 = α̈(0)− 2
vn
qn
v + 1

qn
(q2
n − v2

n)en.

Therefore,

κ′q(v) = gq
(
N′q, α̈(0)− 2

vn
qn
v + 1

qn
(q2
n − v2

n)en

)

= 1
qn
ν′q · α̈(0)− 2

vn
q2
n
ν′q · v +

q2
n − v2

n

q2
n

ν′q · en,



1128 GIULIO CIRAOLO & LUIGI VEZZONI

and from

ν′q · α̈(0) = qnκ′q(v)+ 2
vn
qn
ν′q · v −

q2
n − v2

n

qn
ν′q · en,

we get

κ′′q̄ (v̄) =
qn

R(q2
n − v2

n)

(
(ν′q · en)2 +

q2
n

R2

)−1/2

×
(
qnκ

′
q(v)+ 2

vn
qn
ν′q · v −

q2
n − v2

n

qn
ν′q · en

)

for every v ∈ TqU ′, gq(v, v) = 1. Therefore,

κ′′1 (q̄) =
q2
n

R

(
(ν′q · en)2 +

q2
n

R2

)−1/2

inf
v∈Sn−2

q

Aq(v),

κ′′n−2(q̄) =
q2
n

R

(
(ν′q · en)2 +

q2
n

R2

)−1/2

sup
v∈Sn−2

q

Aq(v),

where

Aq(v) =
1

(q2
n − v2

n)

(
κ′q(v)+ 2

vn
q2
n
ν′q · v −

q2
n − v2

n

q2
n

ν′q · en
)

and Sn−2
q = {v ∈ TqU : |v|q = 1}. Since

|κ′′i (q̄)| ≤max{|κ′′1 (q̄)|, |κ′′n−2(q̄)|}, i = 1, . . . , n− 2,

we obtain

|κ′′i (q̄)| ≤
q2
n

R

(
(ν′q · en)2 +

q2
n

R2

)−1/2

sup
v∈Sn−2

q

|Aq(v)|.(4.5)

We have

|Aq(v)| ≤
1

|q2
n − v2

n|

(
|κ′q(v)| + 2

vn
qn

+ q
2
n − v2

n

q2
n

)

≤ 1

|q2
n − v2

n|
(|κ′q(v)| + 3),

where we have used q2
n−v2

n > 0, since |v|q = 1. Since Rn = TqU ′⊕〈ν′q〉⊕〈q/R〉,
we have that

q2
n − v2

n ≥
[(
qn
R

)2

+ (ν′q · en)2
]
q2
n,
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and then from (4.5) we find

|κ′′i (q̄)| ≤
1
R

(
(ν′q · en)2 +

q2
n

R2

)−3/2

( sup
v∈Sn−2

q

|κ′q(v)| + 3),

which implies (4.3). ❐

Remark 4.4. We will use the previous proposition in the following way: if
there exists a constant c such that ν′q · en ≥ c, then (4.3) implies

|κ′′i (q̄)| ≤
1
c3R

max{|κ′1(q)|, |κ′n−2(q)| + 2}, i = 1, . . . , n− 2.

5. PROOF OF THEOREM 1.3

The set-up is the following: let S = ∂Ω be a C2-regular closed hypersurface em-
bedded in Hn, where Ω is a bounded open set. We assume that S satisfies a
uniform touching ball condition of radius ρ > 0.

Let π := {p1 = 0} be the critical hyperplane in the method of moving planes
along the direction e1, and let S− = S ∩ {p1 ≤ 0} and Sπ+ be the reflection
of S+ = S ∩ {p1 ≥ 0} about π . From the method of moving planes we have
that Sπ+ is contained in Ω and tangent to S− at a point p0 (internally or at the

boundary). Let Σ and Σ̂ be the connected component of Sπ+ and S− containing
p0, respectively.

5.1. Preliminary lemmas Before giving the proof of Theorem 1.3, we need
some preliminary results about the geometry of Σ.

For t > 0 we set

Σt = {p ∈ Σ | dΣ(p, ∂Σ) ≥ t}.

The following three lemmas show quantitatively that Σt is connected for t small
enough.

Lemma 5.1. Assume

(5.1) νp · e1 ≤ µ

for every p on the boundary of Σ, for some µ ≤ 1
2 , and let t0 = ρ

√
1− µ2. Then, Σt

is connected for any 0 < t < t0.

Proof. Let pr : Σ→ π be the projection from Σ onto π . Given p ∈ Σ, pr(p) is
defined as the closest point in π to p. Then, the boundary of pr(Σ) in π coincides
with the boundary ∂Σ of Σ in S. Proposition 4.1 implies

|κ′i(p)| ≤
1√

1− (νp · e1)2
max{|κ1(p)|, |κn−1(p)|},
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for any p ∈ ∂Σ and i = 1, . . . , n− 1, where κ′i are the principal curvatures of ∂Σ
viewed as a hypersurface of π . The touching ball condition on S yields

(5.2) |κ′i(p)| ≤
1

ρ
√

1− (νp · e1)2
,

for i = 1, . . . , n−1. As any point p ∈ ∂Σ satisfies a touching ball condition of ra-
dius ρ (considered as a point of S), the transversality condition (5.1) and (5.2) im-

ply pr(Σ) enjoys a touching ball condition of radius ρ′ ≥ ρ
√

1− (νp · e1)2 ≥ t0.

Therefore, if s < t0,
Cs = {z ∈ π | d(z, ∂Σ) < s}

is a collar neighborhood of ∂Σ in pr(Σ) of radius s. Since π is a critical hyperplane
in the method of the moving planes, if p belongs to the maximal cap S+, then any
point on the geodesic path connecting p to its projection onto π is contained in
the closure of Ω. It follows that pr−1(Cs) contains a collar neighborhood of ∂Σ of
radius s in Σ, and, for t ≤ s, Σ can be retracted in Σt and the claim follows. ❐

Lemma 5.2. There exists δ > 0 depending only on ρ with the following property.
Assume there exists a connected component Γδ of Σδ such that

(5.3) 0 ≤ νq · e1 ≤
1
8
, for any q ∈ ∂Γδ.

Then, Σδ is connected.

Proof. Let δ ≤ δ0(ρ), where δ0 is the bound appearing in Proposition 3.6.
In view of (5.3), we can choose a smaller δ (in terms of ρ) such that the interior
and exterior touching balls at an arbitrary q in ∂Γδ intersect π , which implies that
Σ \ Γδ is enclosed by π and the set obtained as the union of all the exterior and
interior touching balls to Sπ (recall that Σ is a subset of the reflection Sπ of S
about π) of radius ρ at the points on Γδ. Since δ is chosen small in terms of ρ,
this implies that for any p ∈ Σ \ Γδ, there exists q ∈ ∂Γδ such that dΣ(p, q) ≤ δ,
and from (3.6) we have that

|Np − τpq (Nq)|p ≤ Cδ and gp(Np, τ
p
q (Nq)) ≥

√
1−C2δ2,

where C depends on ρ. Therefore,

νp · e1 = gp(Np,ωp) ≤ gp(Np − τpq (Nq),ωq)+ gp(τpq (Nq),ωp)
≤ Cδ+ gp(τpq (Nq),ωp),

and by using
gp(τ

p
q (Nq),ωp) = gq(Nq, τqp(ωp))
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and triangular inequality, we get

νp · e1 ≤ Cδ+ gq(Nq,ωq)+ gq(Nq, τqp(ωp)−ωq)
≤ Cδ+ νq · e1 + |τqp(ωp)−ωq|q.

In particular, the last bound holds for every p ∈ ∂Σ. From Proposition 3.3 and by

choosing δ small enough in terms of ρ, we obtain νp · e1 ≤
1
4

, and Lemma 5.1

implies the statement. ❐

Lemma 5.3. There exists δ > 0 depending only on ρ with the following property.
Assume there exists a connected component Γδ of Σδ such that, for any q ∈ ∂Γδ, there
exists q̂ ∈ Σ̂ such that

d(q, q̂)+ |Nq − τqq̂ (Nq̂)|q ≤ δ.

Then,

(5.4) 0 ≤ νz · e1 ≤
1
4

for any z ∈ ∂Σ,

and Σδ is connected.

Proof. Let q ∈ ∂Γδ. By construction, νq · e1 ≥ 0. Let qπ be the reflection of
q with respect to π . By our assumptions, we have

d(qπ , q̂) ≤ d(qπ , q)+ d(q, q̂) ≤ 3δ.

We can choose δ small enough in terms of ρ and find C = C(ρ) such that
dS(qπ , q̂) ≤ Cδ (as follows from (3.9)), qπ ∈ Uρ1(q̂), and

gq̂(Nq̂, τ
q̂
qπ (Nqπ )) ≥

√
1−C2δ2,

|Nq̂ − τ q̂qπ (Nqπ )|q̂ ≤ Cδ

(see (3.6)). Since Nqπ = (−(Nq)1, (Nq)2, . . . , (Nq)n) and q and qπ are symmetric
about π , we have that

νq · e1 = gq(Nq,ωq) = −gq(τqqπ (Nqπ ),ωq),

and so

2gq(Nq,ωq) = gq(Nq − τ q̂qπ (Nqπ ),ωq)
= gq(Nq − τqq̂ (Nq̂),ωq)+ gq(τ

q
q̂ (Nq̂)− τ

q
qπ (Nqπ ),ωq).
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This implies that

0 ≤ 2gq(Nq,ωq) ≤ |Nq − τqq̂ (Nq̂)|q + |τ
q
q̂ (Nq̂)− τ

q
qπ (Nqπ )|q,

and Lemma 3.4 together with our assumptions implies

0 ≤ 2νq · e1 ≤
1
8
.

From Lemma 5.2 we obtain that Σδ is connected.
Now fix z ∈ ∂Σ, and let q be such that dΣ(q, z) = δ (so that z ∈ Uρ(q)).

Since q and qπ are symmetric about π , then we have that

gz(τ
z
q(Nq),ωz) = −gz(τzqπ (Nqπ ),ωz),

and hence

2gz(τ
z
q(Nq),ωz) = gz(τzq(Nq)− τzqπ (Nqπ ),ωz).

We write

2gz(Nz,ωz) = 2gz(τzq(Nq),ωz)+ 2gz(Nz − τzq(Nq),ωz)
= gz(τzq(Nq)− τzqπ (Nqπ ),ωz)+ 2gz(Nz − τzq(Nq),ωz)
= gz(τzq(Nq)− τzq̂(Nq̂),ωz)+ gz(τzq̂(Nq̂),ωz)

− gz(τzqπ (Nqπ ),ωz)+ 2gz(Nz − τzq(Nq),ωz).

By Cauchy-Schwarz and triangle inequalities, we have

|2gz(Nz,ωz)| ≤ |τzq(Nq)− τzq̂(Nq̂)|z + |τzq̂ (Nq̂)− τzqπ (Nqπ )|z
+ 2|Nz − τzq(Nq)|z

≤ |τzq(Nq)− τzq̂(Nq̂)|z + |τzq̂ (Nq̂)− N̂z|z + |N̂z − τzqπ (Nqπ )|z
+ 2|Nz − τzq(Nq)|z,

where Nz and N̂z are the normal vectors to Σ and Σ̂ at z, respectively. The first
term can be bounded in terms of δ by Lemma 3.4. All the remaining terms on
the righthand side can be estimated in terms of δ by using Proposition 3.6. This
implies that

|2gz(Nz,ωz)| ≤ Cδ.

By choosing δ small enough compared to C (and hence compared to ρ), we have
that

0 ≤ νz · e1 ≤
1
4
,

that is, Σ intersects π transversally. ❐
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The following lemma will be used several times in the proof of Theorem 1.3.

Lemma 5.4. Assume that en ∈ Σ with νen = en and that there exist two local
parametrizations u, û : Br → R of Σ and Σ̂, respectively, with 0 < r ≤ ρ1 and such
that u− û ≥ 0, where ρ1 is given by (3.3).

Let p1 = (x1, u(x1)) and p̂∗1 = (x1, û(x1)), with x1 ∈ ∂Br/4, and denote by
γ the geodesic path starting from p1 and tangent to νp1 at p1. Assume that

(5.5) d(p1, p̂
∗
1 )+ |νp1 − νp̂∗1 | ≤ θ

for some θ ∈ [0, 1
2]. There exists r̄ depending only on ρ such that if r ≤ r̄ we have

that γ ∩ Σ̂ ≠∅ and, if we denote by p̂1 the first intersection point between γ and Σ̂,
then

d(p1, p̂1)+ |Np1 − τ
p1

p̂1
(Np̂1

)|p1 ≤ Cθ,

where C is a constant depending only on n and ρ, and provided that Cθ < 1
2 .

Proof. We first notice that, by choosing r small enough in terms of ρ, from
Lemma 3.5 we have that |νp1 − en| ≤ 1

4 . By using the touching ball condition for

Σ̂ at p̂∗1 , a simple geometric argument shows that the geodesic passing through p1

and tangent to νp1 at p1 intersects Σ̂, so that p̂1 is well defined.
As shown in Figure 5.1, we estimate the distance between p1 and p̂1 as fol-

lows. Let q be the unique point having distance 2ε from p1 and lying on the
geodesic path containing p1 and p̂∗1 . Let T be the geodesic right-angle trian-
gle having vertices p1 and q and hypotenuse contained in the geodesic passing

through p1 and p̂1. Since the angle α at the vertex p1 is such that | sinα| ≤ 1
4 ,

then from the sine rule for hyperbolic triangles we have that

(5.6) d(p1, p̂1) ≤ Cθ.

Moreover, the cosine law formula in hyperbolic space gives that

(5.7) d(p̂∗1 , p̂1) ≤ Cθ

for some constant C, and from (3.6) we obtain that

|Np1 − τ
p1

p̂1
(Np̂1

)|p1 ≤ |Np1 − τ
p1

p̂∗1
(Np̂∗1 )|p1(5.8)

+ |τp1

p̂∗1
(Np̂∗1 )− τ

p1

p̂1
(Np̂1

)|p1 .

Since p1 and p̂∗1 lie on the same vertical line, we have that

|Np1 − τ
p1

p̂∗1
(Np̂∗1 )|p1 = |νp1 − νp̂∗1 | ≤ Cθ,(5.9)
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where the last inequality follows from (5.12). Moreover, from Proposition 3.4 we
have

|τp1

p̂∗1
(Np̂∗1 )− τ

p1

p̂1
(Np̂1

)|p1

≤ C(d(p1, p̂
∗
1 )+ d(p1, p̂1)+ d(p̂1, p̂

∗
1 )+ |Np̂1

− τp̂1

p̂∗1
(Np̂∗1 )|p̂1

)

≤ Cθ,

where the last inequality follows from (5.12), (5.6), (5.7), and (3.6). This last
inequality, (5.8), and (5.9) imply that

|Np1 − τ
p1

p̂1
(Np̂1

)|p1 ≤ Cθ,

and therefore from (5.6) we conclude. ❐

Σ

Σ̂

en

π∞

p1

q

p̂1

p̂∗1

γ

FIGURE 5.1.

5.2. Proof of the first part of Theorem 1.3. Now we can focus on the
proof of the first part of Theorem 1.3, showing that there exist constants ε and C,
depending only on n, ρ, and |S|g , such that if

osc(H) ≤ ε,

then for any p in Σ there exists p̂ in Σ̂ satisfying

d(p, p̂)+ |Np − τpp̂ (Np̂)|p ≤ C osc(H).

We will have to choose a number δ > 0 sufficiently small in terms of ρ, n,
and |S|g , and subdivide the proof of the first part of the statement into four cases
depending on the whether the distances of p0 and p from ∂Σ are greater or less
than δ. A first requirement on δ is that it satisfies the assumptions of Lemmas 5.2
and 5.3; other restrictions on the value of δ will be done in the development of
the proof.
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Case 1: dΣ(p0, ∂Σ) > δ and dΣ(p, ∂Σ) ≥ δ. In this first case, we assume p0 and
p are interior points of Σ, which are far from ∂Σ more than δ. We first assume p0

and p are in the same connected component of Σδ; then, Lemma 5.2 will be used
in order to show that Σδ is in fact connected.

From Lemma 3.7 we can choose α ∈ (0, 1
2 min(1, ρ−1

1 )) such that αCρ1 ≤
δ/4, where C is the constant appearing in (3.8), and we set

r0 = min(r̄ , αρ1),

where r̄ is given by Lemma 5.4. Accordingly to this definition of r0, from (3.8)
we have that if pi ∈ Σδ then Ur0(pi) ⊂ Σ.

Lemma 5.5. Let ε0 ∈ [0, 1
2], p0, and p be in a connected component of Σδ and

ri = (1− ε2
0)
ir0. There exist an integer J ≤ Jδ, where

(5.10) Jδ :=max

(
4,

2n−1|S|g
δn−1

)
,

and a sequence of points {p1, . . . , pJ} in Σδ/2 such that

p0, p ∈
J⋃

i=0

Ūri/4(pi),

Ur0(pi) ⊆ Σ, i = 0, . . . , J,

pi+1 ∈ Ūri/4(pi), i = 0, . . . , J − 1.

Proof. For every z in Σ and r ≤ ρ0, the geodesic ball Br (z) in Σ satisfies

|Br (z)|Σ ≥ crn−1,

where c is a constant depending only on n (see formula (3.4)). A general re-
sult for Riemannian manifolds with boundary (see, e.g., Proposition 8.1) implies
there exists a piecewise geodesic path parametrized by arc length γ : [0, L]→ Σδ/2
connecting p0 to p and of length L bounded by δJδ, where Jδ is given by (5.10).

We define pi = γ(ri/4), for i = 1, . . . , J − 1 and pJ = p. Our choice of
r0 guarantees that Ur0(pi) ⊆ Σ, for every i = 0, . . . , J, and the other required
properties are satisfied by construction. ❐

Since p and p0 are in a connected component of Σδ, there exist {p1, . . . , pJ}
in the connected component of Σδ/2 containing p0 and a chain {Ur0(pi)}{i=0,...,J}
of subsets of Σ as in Lemma 5.5. We notice that Σ and Σ̂ are tangent at p0 and that,

in particular, the two normal vectors to Σ and Σ̂ at p0 coincide. Up to an isometry
we can assume p0 = en and νp0 = en, and then Σ and Σ̂ can be locally represented
near p0 as the graphs of two functions u0, û0 : Br0 ⊂ π∞ → R. Lemma 3.5 implies
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that |∇u0|, |∇û0| ≤M in Br0 , where M is some constant which depends only on
r0, that is, only on ρ. Since u0 and û0 satisfy (2.2) and |∇u0|, |∇û0| ≤ M , then
the difference u0 − û0 solves a second-order linear uniformly elliptic equation of
the form

L(u0 − û0)(x) = H(x,u(x))− Ĥ(x, û(x))

with ellipticity constants uniformly bounded by a constant depending only on n
and ρ. Since u0(0) = û0(0) and u0 ≥ û0, the Harnack inequality (see Theo-
rems 8.17 and 8.18 in [16]) yields

sup
Br0/2

(u0 − û0) ≤ C osc(H),

and from interior regularity estimates (see, e.g., [16, Theorem 8.32]) we obtain

(5.11) ‖u0 − û0‖C1(Br0/4)
≤ C osc(H),

where C depends only on ρ and n.
Since p1 ∈ ∂Ur0/4(p0), we can write p1 = (x1, u0(x1)), with x1 ∈ ∂Br0/4,

and define p̂∗1 and p̂1 as in Lemma 5.4. We notice that (5.11) yields

(5.12) d(p1, p̂
∗
1 )+ |νp1 − νp̂∗1 | ≤ C osc(H),

so that (5.5) in Lemma 5.4 is fulfilled. From Lemma 5.4 we find

(5.13) d(p1, p̂1)+ |Np1 − τ
p1

p̂1
(Np̂1

)|p1 ≤ C osc(H).

Now we apply an isometry in such a way that p1 = en and νp1 = en. We
notice that by construction p̂1 becomes of the form p̂1 = ten, with t ≥ 1 (notice
that t = 1 + d(p1, p̂1)). From the Euclidean point of view, in this configuration
Ur0(p1) ⊂ Σ satisfies an Euclidean touching ball condition of radius ρ1. More-

over, since p̂1 = ten with t ≥ 1, also Ûr0(p1) ⊂ Σ̂ satisfies the Euclidean touching
ball condition of radius ρ1. Since in this configuration we have that

|νp1 − νp̂1
| = |Np1 − τ

p1

p̂1
(Np̂1

)|p1 ,

from (5.13) we find
|νp1 − νp̂1

| ≤ C osc(H),

where C is a constant that depends only on ρ and n. A suitable choice of ε in the
statement of Theorem 1.1 (i.e., such that Cε < 1) guarantees that we can apply

Lemma 3.8 (recall that osc(H) ≤ ε), and we obtain that Σ and Σ̂ are locally graphs
of two functions

u1, û1 : Br1 → R+,
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such that u1(0) = p1 and û1(0) = p̂1 and where r1 = (1 − ε2)r . Now, we can
iterate the argument before. Indeed, since

0 ≤ inf
Br1/2
(u1 − û1) ≤ u1(0)− û1(0) ≤ C osc(H),

by applying Harnack’s inequality we obtain that

sup
Br1/2

(u1 − û1) ≤ C osc(H),

and from interior regularity estimates we find

(5.14) ‖u1 − û1‖C1(Br1/4)
≤ C osc(H),

where C depends only on ρ and n. Hence, (5.14) is the analogue of (5.11), and
we can iterate the argument. The iteration goes on until we arrive at pN = p and

obtain a point p̂N ∈ Σ̂ such that

d(p, p̂N)+ |Np − τpp̂N (Np̂N )|p ≤ C osc(H).

In view of Lemma 5.3, we have that Σδ is connected and the claim follows.

Case 2: dΣ(p0, ∂Σ) ≥ δ and dΣ(p, ∂Σ) < δ. Here, we extend the estimates found
at Case 1 to a point p which is far less than δ from the boundary of Σ. Let q ∈ Σ
and pmin ∈ ∂Σ be such that

dΣ(q, ∂Σ) = δ, dΣ(p, q)+ dΣ(p, ∂Σ) = δ and dΣ(p,pmin) = dΣ(p, ∂Σ).

From Case 1, we have that there exists q̂ in Σ̂ such that

d(q, q̂)+ |Nq − τqq̂ (Nq̂)|q ≤ C osc(H).

Lemma 5.3 yields that

(5.15) 0 ≤ gz(Nz,ωz) ≤
1
4
,

for any z ∈ ∂Σ and where Σδ is connected.
For r ≤ ρ1, with ρ1 given by (3.3), we define Ur (q) as the reflection of

Ur(qπ ) ∩ {x1 ≥ 0} with respect to π and U ′ = Ur (qπ) ∩ {x1 = 0}. From
Proposition 4.1, U ′ is a hypersurface of π with a natural orientation and its prin-
cipal curvatures κ′i satisfy

1√
1− gz(Nz,ωz)2

κ1(z) ≤ κ′i(z) ≤
1√

1− gz(Nz,ωz)2
κn−1(z),
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for every z ∈ U ′ and i = 1, . . . , n− 1. From (5.15) and since |κi(z)| ≤ ρ−1 for
any z ∈ S (this follows from the touching sphere condition), we have

(5.16) |κ′i(z)| ≤
2
ρ
.

Now, we apply an isometry f : Hn → Hn such that f (q) = en and the normal
vector to f (S) at f (q) is en (i.e., f∗|q(Nq) = en).

Let U ′′ be the Euclidean orthogonal projection of f (U ′) onto π∞. Our goal is
to estimate the curvatures ofU ′′. It is clear that f (π) is either a vertical hyperplane
or a half-sphere intersecting f (S). In the first case, we immediately conclude since
the curvatures of U ′′ vanish.

Thus, we assume that f (π) is a half-sphere. A straightforward computation
yields that the radius of f (π) is

R = qn(Θ2 + 1)
2|Θ| |aΘ + qn|

,

where

Θ = − sinθ
1+ cosθ

, cosθ = νq · en

and a is the Euclidean distance of q from π . It is easy to see a ≤ qn sinh(δ), and
so

1
R
≤ 2|Θ|(sinh(δ)|Θ| + 1)

Θ2 + 1
,

which implies

(5.17)
1
R
≤ 1+ 2 sinh(δ).

We notice that the last estimate can be alternatively found by noticing that an
isometry that fixes en maps a vertical hyperplane into a half sphere, where the
radius can be estimated by using the distance of en from the vertical hyperplane.

We still denote by ν′ the Euclidean normal vector field to f (U ′). We denote
by κ′′i the principal curvatures of U ′′ with respect to the Euclidean metric on π∞
and a chosen orientation. Now, we want to find an upper bound on the curvatures
of U ′′ which will allow us to use Carleson-type estimates. Proposition 4.3 and
formula (5.17) imply

|κ′′i (ξ̄ )| ≤
1
R

(
(ν′ξ · en)2 +

ξ2
n

R2

)−3/2

× (2+max{|κ′1(f−1(ξ))|, |κ′n−1(f
−1(ξ))|})

≤ 1+ 2 sinhδ
|ν′ξ · en|3

(2+max{|κ′1(f−1(ξ))|, |κ′n−1(f
−1(ξ))|})
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for every ξ = (ξ̄, ξn) in f (U ′) and i = 1, . . . , n− 2. Then, (5.16) yields that

|κ′′i (ξ̄ )| ≤
2(1+ ρ)(1+ 2 sinhδ)

ρ|ν′ξ · en|3
.

Next, we show

(5.18) ν′ξ · en ≥
1
2
.

We write
ν′ξ · en = ν′ξ · (en − νξ)+ ν′ξ · νξ ,

where we still denote by ν the normal vector field to f (S). Since f∗|q(νq) = en,
from Lemma 2.1 in [15] we have that |en − νξ| ≤ 1

4 by choosing r small enough
in terms of ρ1 and hence of ρ. Moreover, since

ν′ξ · νξ = ν′f−1(ξ) · νf−1(ξ),

[15, formula (2.29)] implies

ν′f−1(ξ) · νf−1(ξ) =
√

1− (νf−1(ξ) · e1)2

and (5.15) gives (5.18). Therefore,

(5.19) |κ′′i (ξ̄ )| ≤ C,

for some constant C = C(ρ).
Let x = f (pmin) and y = f (p) be the projections of f (pmin) and f (p)

onto π∞, respectively, and let Er be the projection of f (Ur (q)) onto π∞. From
(3.1), we have that |x − y| ≤ Cδ, with C ≥ 1 which depends only on ρ. We can
choose δ small enough (compared to ρ) such that B8Cδ(x) ∩ ∂Er ⊂ U ′′, apply
Theorem 1.3 in [7] and Corollary 8.36 in [16], and find

(5.20) sup
B2Cδ(x)∩Er

(u− û) ≤ C1(u− û)(z)+ osc(H),

with z = x + 4Cδν′′x , where ν′′x is the interior normal to U ′′ at x. By choosing
δ small enough in terms of ρ, the bound on the curvatures of U ′′ implies that
the point z has distance 4Cδ from the boundary of Er . Since dΣ(q,U ′) = δ,
the distance (in π∞) of O from the boundary of Er is at least cδ (as follows from
(3.1)), where c < C depends only on ρ. From Harnack’s inequality,

C1(u− û)(z)+ osc(H) ≤ C2(u(0)− û(0)+ osc(H)),
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and from (5.20) we obtain that

0 ≤ sup
B2Cδ(x)∩Er

(u− û) ≤ C2(u(0)− û(0)+ osc(H)).

Boundary regularity estimates (see, e.g., [16, Corollary 8.36]) yield

0 ≤ ‖u− û‖C1(BCδ(x)∩Er ) ≤ C3((u(0)− û(0))+ osc(H)).(5.21)

Since dΣ(q, ∂Σ) = δ, from Case 1 we know that

d(q, q̂)+ |Nq − τqq̂ (Nq̂)|q ≤ C osc(H),

where q̂ is the first intersecting point between Σ̂ and the geodesic path starting
form q and tangent to νq at q (recall that f (q) = en and Nq = en). From (5.21)
we obtain that

0 ≤ ‖u− û‖C1(BCδ(x)∩Er ) ≤ C osc(H).(5.22)

We define p̂∗ so that p̂∗ = f (y, û(y)). Since y ∈ BCδ(x), (5.22) implies

d(f (p), f (p̂∗))+ |νf (p) − νf (p̂∗)| ≤ C osc(H).

Since f (p) and f (p̂∗) are on the same vertical line, we can write

d(f (p), f (p̂∗))+ |Nf (p) − τ(Nf (p̂∗))|f (p) ≤ C osc(H),

where τ is the parallel transport along the vertical segment connecting f (p̂∗) with
f (p). Lemma 5.4 yields

d(p, p̂)+ |Np − τpp̂ (Np̂)|p ≤ C osc(H),

as required.

Case 3: 0 < dΣ(p0, ∂Σ) < δ. We first show that the center of the interior touching
ball of radius ρ to S at p0, say Bρ(a), lies on the left of π , that is, a · e1 ≤ 0.
Indeed, since p0 is a tangency point, pπ0 ∈ S, and hence pπ0 does not lie in Bρ(a).
This implies

d(p0, a) = ρ ≤ d(pπ0 , a),

and since p0 and pπ0 have the same height we have

|p0 − a|2 ≤ |pπ0 − a|2,

which implies that a · e1 ≤ 0.
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Now, we prove that Σ and π intersect transversally at p0 (see (5.24) below).
Since d(p0, π) ≤ dΣ(p0, ∂Σ) ≤ δ, we have d(p0, p

π
0 ) ≤ 2δ. We can choose δ

small in terms of ρ so that pπ0 ∈ Uρ1(p0). From (3.6), we have that

(5.23)
gp0(Np0 , τ

pπ

pπ0
(Npπ0 )) ≥

√
1−C2δ2,

|Np0 − τ
p0

pπ0
(Npπ0 )|p0 ≤ Cδ.

Since
gp0(Np0 ,ωp0) = −gpπ0 (Np0 ,ωpπ0 ),

and gp0(Np0 ,ωp0) ≥ 0 by construction,

0 ≤ 2gp0(Np0 ,ωp0) = gp0(Np0 − τ
p0

pπ0
(Npπ0 ),ωp0)

≤ |Np0 − τ
p0

pπ0
(Npπ0 )|p0 ≤ Cδ,

where the last inequality follows from (5.23). By choosing δ small compared to C

(in terms of ρ), we have

(5.24) 0 ≤ gp0(Np0 ,ωp0) ≤
1
4
.

Now, we apply an isometry f : Hn → Hn such that

f (p0) = en and f∗|p0(Np0) = en.

As for Case 2 (with q replaced by p0), we locally write f (Σ) and f (Σ̂) as graphs of
function u, û : Er → R, respectively. Moreover, we denote by U ′′ the portion of
∂Er which is obtained by projecting f (Ur(p0)∩π) onto π∞. We comment that
u = û on U ′′ and, again by arguing as in Case 2, that the principal curvatures of
U ′′ can be bounded by a constant K depending only on ρ.

Let x̄ ∈ U ′′ be a point such that

|x̄| = min
x∈U ′′

|x|.

Notice that |x̄| ≤ CdΣ(p0, ∂Σ) < Cδ, where C is the constant appearing in (3.1).
Let ν′′x̄ be the interior normal to U ′′ at x̄, and set

y = x̄ + 2Cδν′′x̄

(see Figure 5.2). We notice that the principal curvatures of U ′′ are bounded by
K and, by choosing δ small compared to ρ, we have 2Cδ ≤ K−1 and the ball
B2Cδ(y) is contained in Er and tangent to U ′′ at x̄, with ν′′x̄ = −x̄/|x̄|. Since
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u(O) = û(O) and from [15, Lemma 2.5] (where we set x0 = x̄, c = y , and
r = 2Cδ), we find that

‖u− û‖C1(BCδ/2(y)) ≤ C osc(H).(5.25)

Let q = (y,u(y)) and q̂∗ = (y, û(y)) so that (5.25) gives

d(q, q̂∗)+ |νq − νq̂∗| ≤ C osc(H).

Up to choosing a smaller δ, we can assume that r = 2Cδ ≤ r̄ , so that Lemma 5.4
yields

d(q, q̂)+ |Nq − τqq̂ (Nq̂)|q ≤ C osc(H),

where q̂ is defined as p̂1 in Lemma 5.4. Next, we observe from our construction
that

dΣ(q, ∂Σ) ≥ δ.

Indeed, if we denote by z the point on ∂Ur (p0) which realizes d(q, ∂Ur (p0)),
then

dΣ(q, ∂Σ) ≥ d(q, z) = arccosh

(
1+ |q̄ − z̄|

2

2qnzn

)
≥ arccosh

(
1+ 2C2δ2

qnzn

)
.

Moreover, since |y|, |z̄| ≤ 2Cδ, from (3.5) we have that qn ≥ 1 − C1(ρ)δ2 and
zn ≥ 1 − C1(ρ)δ2 so that we can obtain dΣ(q, ∂Σ) ≥ δ by choosing δ small
enough in terms of ρ. Since dΣ(q, ∂Σ) ≥ δ we can apply Case 1 and Case 2 to
conclude.

Case 4 : p0 ∈ ∂Σ. This case follows from Case 3 when dΣ(p0, ∂Σ) → 0. Indeed,
in this case Er is a half-ball on π∞ and the argument used in Case 3 can be easily
adapted (see also the corresponding case in [15]). This completes the proof of the
first part of Theorem 1.3.

5.3. Proof of the second part of Theorem 1.3. Now, we focus on the second
part of the statement of Theorem 1.3, showing that Ω is contained in a neighbor-
hood of radius C osc(H) of Σ∪ Σπ .

Assume by contradiction that

∃x ∈ Ω such that d(x,Σ∪ Σπ) > C osc(H).

By construction, we can assume that x·e1 < 0, and hence from the connectedness
of Ω we can find a point y ∈ Ω, with y · e1 < 0, such that

C osc(H) < d(y,Σ) ≤ 2C osc(H).



Almost CMC Hypersurfaces in the Hyperbolic Space 1143

π∞

Er

U ′′

2Cδ

O
x̄

yCδ

FIGURE 5.2. Case 3 in the proof of Theorem 1.3.

Let p be a projection of y over Σ. First, assume p · e1 ≠ 0. From the first
part of Theorem 1.3, we have that there is a point p̂ ∈ S such that p̂ = γ(t)
where γ is the geodesic satisfying γ(0) = p and γ̇(0) = −Np and such that
0 ≤ t ≤ C osc(H) and |Np −τpp̂ (Np̂)|p ≤ C osc(H). Moreover, we notice that by

construction p̂ is on the geodesic γ connecting y and p. Since C osc(H) is small
(less than ρ is enough), this implies that y belongs to the exterior touching ball
of radius ρ at p, that is, y 6∈ Ω, which is a contradiction. If p · e1 = 0 we obtain
again a contradiction from the exterior touching ball condition, since from (5.15)

we have that gp(Np, pne1) ≤ 1
4 . Hence, the claim follows.

6. PROOF OF THEOREM 1.1

Let ε > 0 be the constant given by Theorem 1.3. Let S be a connected closed C2-
hypersurface embedded in the hyperbolic half-space Hn satisfying a touching ball
condition of radius ρ and such that osc(H) ≤ ε, as in the statement of Theorem
1.1. Given a direction ω, let Ωω be the maximal cap of Ω in the direction ω,
according to the notation introduced in Subsection 2.1. As a consequence of the
second part of Theorem 1.3, we have that

(6.1) |Ωω|g ≥
|Ω|g

2
−C osc(H),

for some constant C depending only on n,ρ and |S|g . Moreover, the reflection
Ωπ of Ω about π satisfies

(6.2) |Ω△Ωπ |g = 2(|Ω|g − 2|Ωω|g) ≤ 4C osc(H),

where Ω△Ωπ denotes the symmetric difference between Ω and Ωπ .
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Now the problem consists in defining an approximate center of mass O and
quantifying the reflection about it. In the Euclidean case this step is obtained by
applying the method of the moving planes in n orthogonal directions and defining
O as the intersection of the corresponding n critical hyperplanes (see, e.g., [15]).
In the hyperbolic context, the situation is different since the critical hyperplanes
corresponding to n orthogonal directions do not necessarily intersects. However,
when Theorem 1.3 is in force we can prove that they always intersect.

Lemma 6.1. Let S satisfy the assumptions of Theorem 1.3 and let the critical
hyperplanes corresponding to {e1, . . . , en} be {πe1 , . . . , πen}. Then,

n⋂

i=1

πei = O for some O ∈ Hn.

Proof. It is enough to show that πei ∩ πej ≠ 0 for every i, j = 1, . . . , n. We
may assume that en ∈ S. Let i ≠ j. To simplify the notation we set

π sk = πek,mek
+s , k ∈ {1, . . . , n}, s ∈ R,

so that the critical hyperplane in the direction ek is denoted by π0
k .

We prove the assertion by contradiction. Assume that π0
i ∩π0

j = 0 for some

i ≠ j. Then, π0
i and π0

j divide Ω into three disjoint sets which we denote by
Ω1,Ω2,Ω3, and we may assume that Ω1 is the maximal cap in the direction ei and
Ω1∪Ω2 is the maximal cap in the direction ej (see Figure 6.1). Moreover, in view
of (6.1) we have that

|Ω1|g ≥
|Ω|g

2
−C osc(H),

and

|Ω1|g + |Ω2|g ≥
|Ω|g

2
−C osc(H).

From this, and since the reflection of Ω1 about π0
i is contained in Ω2 ∪ Ω3 and

the reflection of Ω1 ∪Ω2 about π0
j is contained in Ω3, we have that

|Ω2|g ≤ 2C osc(H).

We notice that for every k = 1, . . . , n, we have that π s+tk and π s−tk are the two
connected components of the set of points which are t-far from π sk. We define

ℓ =min{d(π0
i ∩Ω, π0

j ∩Ω) | i, j = 1, . . . , n and i ≠ j}.

Since π0
i and π0

j do not intersect and S ⊂ Bdiam(S)(en), we have that ℓ > 0 and
Proposition 8.2 implies that ℓ depends only on n, ρ, and |S|g . Therefore,

Ω2 ⊇ E1 :=
⋃

s∈(0,ℓ)
Ω∩π sj ,
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and hence |E1|g ≤ 2C osc(H). By reflecting E1 about π0
i we obtain that most

of the mass of Ω1 must be at distance more than ℓ from π0
i ; that is, the set

Ωei,ℓ := ⋃s∈(ℓ,+∞)Ω∩π si is such that

|Ωei,ℓ|g ≥
|Ω|g

2
− 2C osc(H).

Since d(Ωei,ℓ, π
0
j ∩Ω) ≥ 2ℓ, we have that most of the mass of Ω3 is at distance

2ℓ from π0
j . This implies that the set

E2 =
⋃

s∈(−2ℓ,ℓ)

Ω∩π si

is such that |E2|g ≤ 4C osc(H). By iterating this argument above we find m ∈ N
such that mℓ > diam(S) and

0 = |Ωei,mℓ|g ≥
|Ω|g

2
− (m + 1)C osc(H).

This leads to a contradiction provided that C osc(H) is small in terms of n, ρ, and
|S|g. Therefore, πei ∩πej ≠ 0. ❐

en

H2

γe2

γe1πe1

πe2

Ω1

Ω2

Ω3

S

π∞

FIGURE 6.1. A picture of the proof of Lemma 6.1 inH2. Here,
ej = e1 and ei = e2.

We refer to the pointO = ⋂ni=1πei as to the the approximate center of symmetry.
Note that the reflection R about O can be written as

R(p) = πe1 ◦ · · · ◦πen(p),
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where we identify πei with the reflection about the corresponding hyperplane.
Next, we show that if osc(H) is small enough, then πω is close to O, for every

directionω.

Lemma 6.2. There exist ε,C > 0 depending on ρ,n and |S|g such that if the
mean curvature of S satisfies osc(H) ≤ ε, then

d(O, πω) ≤ C osc(H).

Proof. We may assume O ∈ πω,mω−µ, for some µ > 0 (otherwise, we switch
ω and −ω). Now, we argue as in [11, Lemma 4.1]. We define

R(Ω) = {R(p) | p ∈ Ω}.

By choosing ε as the one given by Theorem 1.3, from (6.1) and since R is the
composition of n reflections, we have that

|Ω△R(Ω)|g ≤ C osc(H),

where C is a constant depending onn, ρ, and |S|g . Clearly, d(O, πω) ≤ diam(S).
We denote by Ωπω the reflection of Ω about πω, and from (6.2) we have that

|Ω△Ωπω |g ≤ C osc(H).

Then, the maximal cap Ωω satisfies

|Ω∩R(Ωω)|g = |R(Ω)∩Ωω|g ≥ |Ωω|g − |Ω△R(Ω)|g ≥
|Ω|g

2
−C osc(H),

and from
R(Ωω) ⊂

⋃

s<0

πω,mω−s ,

we obtain that

µ0 := |{Ω∩πω,s :mω − µ < s < mω}|g ≤ C osc(H).

Let

µk = |{p ∈ Ω∩πω,s :mω + (k− 1)µ < s < mω + kµ}|g

for k ∈ N. We notice that by construction of the method of the moving planes we
have that µk is decreasing, and hence

µk ≤ µ0 ≤ C osc(H).

Let Λ = sup{s ∈ R | Ω∩πω,mω−µ+s ≠∅}. It is clear that Λ ≤ diam(Ω). Define
k0 as the smallest integer such that

k0mω ≤ diam(Ω) ≤ (k0 + 1)mω.
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From (6.1) we have

|Ω|g
2

−C osc(H) ≤ |Ωω|g ≤
k0∑

k=0

µk ≤ k0µ0 ≤
diam(Ω)
mω

C osc(H).

Since diam(Ω) ≤ diam(S), from Proposition 8.2 and assuming that osc(H) is less
than a small constant depending on n, ρ, and |S|g , we have that

mω ≤ C osc(H),

where C depends on n, ρ, and |S|g . ❐

Proof of Theorem 1.1. We are ready to complete the proof of our main theo-
rem. Let ε be as in Lemma 6.2, and assume that the mean curvature of S satisfies
osc(H) ≤ ε. Let

r = sup{s > 0 | Bs(O) ⊂ Ω}
and

R = inf{s > 0 | Bs(O) ⊃ Ω},

so that S ⊂ B̄R \ Br . We aim to prove that

R − r ≤ C osc(H),

for some C depending only on n,ρ, and |S|g .
Let p,q ∈ S be such that d(p,O) = r and d(q,O) = R. We can assume that

p ≠ q (otherwise the assertion is trivial). Let t = d(p, q),

ω := 1
t
τenp (exp−1

p (q)),

and consider πω. Let γ : (−∞,+∞) → Hn be the geodesic such that γ(sp) = p
and γ(sq) = q. We denote by z the point on πω which realizes the distance of O
from πω. By construction, p ∈ πω,sp and q ∈ πω,sq with sq = sp + t. We first
prove that d(q, z) ≤ d(p, z). By contradiction, assume that d(q, z) > d(p, z).
Since q and p belong to a geodesic orthogonal to the hyperplanes πω,s and sp <
sq, we have sq > mω. Since πω = πω,mω corresponds to the critical position on
the method of moving planes in the direction ω, we have that γ(s) ∈ Ω for any
s ∈ (mω, sq). Since sp < sq we have that |sp −mω| ≥ |sq −mω|, and with γ
orthogonal to πω, we obtain d(q, z) ≤ d(p, z), which gives a contradiction.

From d(q, z) ≤ d(p, z) and by triangular inequality, we find

r ≥ R − d(O, z) = R − d(O, πm),

and Lemma 6.2 implies R − r ≤ C osc(H) and the proof is complete. ❐
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7. PROOF OF COROLLARY 1.2

The proof is analogous to the proof of [11, Theorems 1.2 and 1.5]. We first
prove an intermediate result, which proves that S is a graph over Br , and more-
over it gives a first (non-optimal) bound on ‖Ψ‖C1(∂Br ); that is, it gives that
‖Ψ‖C1(∂Br ) ≤ C(osc(H))1/2). Then, we obtain the sharp estimate (1.2) by us-
ing elliptic regularity theory.

We let Br (O) and BR(O) be such that 0 ≤ R − r ≤ C osc(H), and let also
0 < t < r −C osc(H). For any point p ∈ S we consider the set E−(p) consisting
of points of Hn belonging to some geodesic path connecting p to the boundary
of Bt(O) tangentially. Then, we denote by C−(O) the geodesic cone enclosed
by E−(p) and the hyperplane containing E−(p) ∩ Bt(O). Moreover, we define
C+(p) as the reflection of C−(p) with respect to p.

We first show that for any p ∈ S we have that C−(p) and C+(p) are contained
in the closure of Ω and in the complement of Ω, respectively. Moreover, the axis
of C−(p) is part of the geodesic path connecting p to O, and this fact will allow us
to define a diffeomorphism between S and ∂Br . We will prove that the interior of
C−(p) is contained in Ω. An analogous argument shows that C+(p) is contained
in the complement of Ω.

We argue by contradiction. Assume p ∉ Br (O) (otherwise the claim is trivial)
and that there exists a point q ∈ C−(p) ∩ ∂Bt(O) such that the geodesic path γ
connecting q to p is not contained in Ω. Let z be a point on γ which does not
belong to the closure of Ω. Let

ω := 1
d(p, q)

τ
q
en(exp−1

q (p))

and consider the critical hyperplane πω in the direction ω. Since z does not
belong to the closure of Ω, the method of the moving planes “stops” before reach-
ing z, and therefore z ∈ πω,sz for some sz ≤ mω. Moreover, by construction
q ∈ πω,sq with sq ≥ s0, where s0 is such that O ∈ πω,s0 . Since sz − sq = d(z, q)
and d(z,O) ≥ r , we have

d(O, πω) =mω − s0 ≥ sz − s0 ≥ sz − sq = d(z, q)
≥ d(z,O)− d(O, q) = d(z,O)− t ≥ r − t;

since 0 < t < r −C osc(H) and from Lemma 6.2, we obtain

C osc(H) < r − t ≤ d(O, πω) ≤ C osc(H),

which gives a contradiction.
We notice that by fixing any t = r − ε/2, from the argument above we have

that for any p ∈ S the geodesic path connecting p to O is contained in Ω. This
implies there exists a C2-regular map Ψ : ∂Br (O)→ R such that

F(p) = expx(Ψ(p)Np),
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which defines a C2-diffeomorphism from Br to S.
Now, we make a suitable choice of t in order to prove that

(7.1) ‖Ψ‖C1 ≤ C(osc(H))1/2.

Indeed, by choosing t = r −
√
C osc(H) we have that for any p ∈ S there exists a

uniform cone of opening π−
√
C osc(H) with vertex at p and axis on the geodesic

connecting p to O. This implies that Ψ is locally Lipschitz and the bound (7.1)
on ‖Ψ‖C1 follows (see also [11, Theorem 1.2]).

Finally, we prove the optimal linear bound ‖Ψ‖C1,α ≤ C osc(H) by using
elliptic regularity. Let φ : U → ∂Br be a local parametrization of ∂Br , with U an
open set of Rn−1. By the first part of the proof, F ◦φ gives a local parametrization
of S. A standard computation yields that we can write

L(Ψ ◦φ) = H(F ◦φ)−HBr ,

where HBr is the mean curvature of ∂Br and L is an elliptic operator which, thanks
to the bounds on Ψ above, can be seen as a second-order linear operator acting on
Ψ ◦φ. Then, [16, Theorem 8.32] implies the bound on the C1,α-norm of Ψ , as
required.

8. APPENDIX. A GENERAL RESULT ON

RIEMANNIAN MANIFOLDS WITH BOUNDARY

Let (M,gM) be a κ-dimensional orientable compact Riemannian C2-manifold
with boundary. For δ, r ∈ R+, z ∈ M , we denote

Mδ = {p ∈ M | dM(p, ∂M) > δ},
Br (z) = {p ∈ M | dM(z,p) < r},

where dM is the geodesic distance on M induced by g.

Proposition 8.1. Assume there exist positive constants c and δ0 such that

(8.1) |Br (z)|gM ≥ crκ ,

and assume Br (z) belongs to the image of the exponential map, for every z ∈ Mδ and
0 < r ≤ δ < δ0. Fix p and q in a connected component of Mδ. Then, there exists a
piecewise geodesic path γ : [0,1] → Mδ/2 connecting p and q, of length bounded by
δNδ where

Nδ := max
(

4,
2κ|M|gM
cδκ

)
.

Proof. Let γ̃ = γ̃(t) be a continuous path connecting p and q in Mδ. Fol-
lowing the approach in [15, Lemma 3.2], we can construct a chain of pairwise
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disjoint geodesic balls {B1, . . . ,BI} of radius δ/2 such that B1 is centered at p, Bi
is centered at ci = γ̃(ti), the sequence ti is increasing, BI contains q, and Bi is
tangent to Bi+1 for any i = 1, . . . , I − 1. Since

∣∣∣
I⋃

i=1

Bi
∣∣∣
gM
≤ |M|gM ,

from (8.1) we get I ≤ Nδ. For every i we choose a tangency point pi between
Bi and Bi+1. The piecewise geodesic path γ is then constructed by connecting
ci with pi and pi with ci+1 by using geodesic radii, for i = 1, . . . , I − 2, and
connecting cI−1 with q by using a geodesic path contained in BI . Hence,

length(γ) ≤ Iδ ≤ δNδ,

as required. ❐

In the next proposition we give an upper bound of the diameter of M when
∂M = 0. The proof of the next proposition is analogous to the one of Proposition
8.1, and is omitted.

Proposition 8.2. Assume ∂M = 0 and that there exists a constant c, δ > 0 such
that

(8.2) |Br (z)|gM ≥ crκ ,

for every z ∈ M and 0 < r ≤ δ. Let p and q in M . Then, there exists a piecewise
geodesic path γ : [0,1] → M connecting p and q, of length bounded by δNδ where

Nδ := max
(

4,
2κ|M|gM
cδκ

)
.

In particular, the diameter of M is bounded by δNδ.
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Matematica, la Probabilità e le loro Applicazioni” (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INdAM) and the project FIR 2013 “Geometri-
cal and Qualitative aspects of PDE.” The second author was supported by the
project FIRB “Geometria differenziale e teoria geometrica delle funzioni” and by
GNSAGA of INdAM.



Almost CMC Hypersurfaces in the Hyperbolic Space 1151

REFERENCES

[1] A. AFTALION, J. BUSCA, and W. REICHEL, Approximate radial symmetry for overdetermined
boundary value problems, Adv. Differential Equations 4 (1999), no. 6, 907–932. MR1729395

[2] A. D. ALEKSANDROV, Uniqueness theorems for surfaces in the large. II, Vestnik Leningrad. Univ.
12 (1957), no. 7, 15–44 (Russian, with English summary). MR0102111

[3] , Uniqueness theorems for surfaces in the large. V, Vestnik Leningrad. Univ. 13 (1958),
no. 19, 5–8 (Russian, with English summary). MR0102114

[4] A. D. ALEXANDROV, A characteristic property of spheres, Ann. Mat. Pura Appl. (4) 58 (1962),
303–315. http://dx.doi.org/10.1007/BF02413056. MR0143162

[5] L. J. ALÍAS, R. LÓPEZ, and J. RIPOLL, Existence and topological uniqueness of compact CMC
hypersurfaces with boundary in hyperbolic space, J. Geom. Anal. 23 (2013), no. 4, 2177–2187.
http://dx.doi.org/10.1007/s12220-012-9324-2. MR3107695

[6] R. BENEDETTI and C. PETRONIO, Lectures on Hyperbolic Geometry, Universitext, Springer-
Verlag, Berlin, 1992. http://dx.doi.org/10.1007/978-3-642-58158-8. MR1219310

[7] H. BERESTYCKI, L. A. CAFFARELLI, and L. NIRENBERG, Inequalities for second-order
elliptic equations with applications to unbounded domains. I, Duke Math. J. 81 (1996),
no. 2, A celebration of John F. Nash, Jr., 467–494. http://dx.doi.org/10.1215/

S0012-7094-96-08117-X . MR1395408
[8] S. BRENDLE, Constant mean curvature surfaces in warped product manifolds, Publ.

Math. Inst. Hautes Études Sci. 117 (2013), 247–269. http://dx.doi.org/10.1007/

s10240-012-0047-5 . MR3090261
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