This paper is devoted to the study of affine quaternionic manifolds and to a possible classification of all compact affine quater- nionic curves and surfaces. It is established that on an affine quater- nionic manifold there is one and only one affine quaternionic structure. A direct result, based on the celebrated Kodaira Theorem that classifies all compact complex manifolds in complex dimension 2, states that the only compact affine quaternionic curves are the quaternionic tori. As for compact affine quaternionic surfaces, the study of their fundamental groups, together with the inspection of all nilpotent hypercomplex sim- ply connected 8-dimensional Lie Groups, identifies a path towards their classification.
On Compact Affine Quaternionic Curves and Surfaces / G. Gentili, A. Gori, G. Sarfatti. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - (2019). [Epub ahead of print]
Titolo: | On Compact Affine Quaternionic Curves and Surfaces |
Autori: | |
Parole Chiave: | Affine quaternionic manifolds, fundamental groups of compact affine quaternionic surfaces. |
Settore Scientifico Disciplinare: | Settore MAT/03 - Geometria |
Data di pubblicazione: | 2019 |
Rivista: | |
Tipologia: | Article (author) |
Data ahead of print / Data di stampa: | 9-nov-2019 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s12220-019-00311-2 |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
fundGGS.pdf | Pre-print (manoscritto inviato all'editore) | Open Access Visualizza/Apri |