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Abstract. This paper is devoted to the study of affine quaternionic
manifolds and to a possible classification of all compact affine quater-
nionic curves and surfaces. It is established that on an affine quater-
nionic manifold there is one and only one affine quaternionic structure.
A direct result, based on the celebrated Kodaira Theorem that classifies
all compact complex manifolds in complex dimension 2, states that the
only compact affine quaternionic curves are the quaternionic tori. As
for compact affine quaternionic surfaces, the study of their fundamental
groups, together with the inspection of all nilpotent hypercomplex sim-
ply connected 8-dimensional Lie Groups, identifies a path towards their
classification.

1. Introduction

The definition of slice regularity for functions of one and several quater-
nionic variables (see, e.g., [11, 12]) has led to a renewed interest for a direct
approach to the study of quaternionic manifolds. Quaternionic manifolds,
as spaces locally modelled on Hn in a slice regular sense, are presented in
[9] with the name of quaternionic regular manifolds, and the closely related
class of quaternionic toric manifolds is studied in [10]. In this setting, the
class of affine quaternionic manifolds - containing those manifolds that ad-
mit a quaternionic affine structure - reveals to be of natural interest, both
because of the well established interest for affine complex manifolds, and for
the reason that most of the natural quaternionic manifolds already studied
are indeed affine quaternionic manifolds.

The main purpose of this paper is to find a path towards a classification
of all compact affine quaternionic curves and surfaces.

The well celebrated Kodaira Theorem exhibits a list of all compact com-
plex manifolds in complex dimension 2. Among these manifolds, Vitter [20],
Matsushima [16] and Inoue, Kobayashi, Ochiai [13] identify all those admit-
ting a complex affine structure. Since affine quaternionic curves are affine
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complex surfaces, we can then prove that the only 1 dimensional compact
affine quaternionic manifolds are the quaternionic tori studied in [4].

In quaternionic dimension 2, the lack of a classification of affine compact
complex manifolds of dimension 4 advises us to change point of view in
order to classify the compact affine quaternionic surfaces. We adopt in fact
the approach used in [7], based on the study of the fundamental groups of
compact affine complex surfaces, and prove the following result

Theorem 1.1. If the subgroup Γ ⊆ Aff (2,H) acts freely and properly discon-
tinuously on H2, and H2/Γ is compact, then Γ contains a unipotent normal
subgroup Γ0 of finite index such that Γ/Γ0 is isomorphic to a finite subgroup
of S3.

which, thanks to a Theorem due to Malcev, [15], has the following conse-
quence

Corollary 1.2. Let the subgroup Γ ⊆ Aff (2,H) act freely and properly
discontinuously on H2, and assume that H2/Γ is compact. Let Γ0 ⊆ Γ be a
unipotent normal subgroup of finite index such that Γ/Γ0 is isomorphic to a
finite subgroup of S3 (see Theorem 1.1). Then Γ0 is a discrete subgroup of
a nilpotent hypercomplex simply connected 8-dimensional Lie Group N such
that N/Γ0 is compact.

This corollary - together with the classification of all nilpotent hypercomplex
simply connected 8-dimensional Lie Groups given by Dotti and Fino, [7] -
indicates a path towards the classification of compact affine quaternionic
surfaces that we will follow in a forthcoming paper.

2. affine quaternionic manifolds

In this setting the Dieudonné determinant detH plays a similar role as the
usual one. To each quaternionic matrix we can associate a complex matrix
via the algebra homomorphism

ψ :M(n,H)→M(2n,C)

defined by

ψ(A+Bj) =

(
A −B
B A

)
,

and it turns out that (detH(M))2 = det(ψ(M)), where the right hand term
is the usual determinant, see [1]. Hence, the group of quaternionic n × n
invertible matrices GL(n,H) can be introduced in the usual fashion via the
Dieudonné determinant.

For Q = t(q1, q2, . . . , qn) ∈ Hn, we can define the group of all quaternionic
affine transformations

Aff (n,H) = {Q 7→ AQ+B : A ∈ GL(n,H), B = t(b1, b2, . . . , bn) ∈ Hn}
which is included in the class of (right) slice regular functions, [12]. In
complete analogy with what Kobayashi does in the complex case, we give
the following:
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Definition 2.1. A differentiable manifold M of 4n real dimensions has a
quaternionic affine structure if it admits a differentiable atlas whose transi-
tion functions are restrictions of quaternionic affine functions of Aff (n,H).

In particular, differentiable manifolds endowed with a quaternionic affine
structure are quaternionic regular [9], [10]. This fact can be used to construct
a large class of quaternionic regular manifolds; indeed, for any subgroup
Γ ⊂ Aff (n,H) which acts freely and properly discontinuously on Hn, the
quotient space

M = Hn/Γ

admits an atlas whose transition functions are slice regular belonging to Γ ⊂
Aff (n,H), and hence has a quaternionic affine structure. It is worthwhile
noticing that the quaternionic manifolds studied by Sommese, [19], all admit
a quaternionic affine structure, and hence they are quaternionic regular.
Many significant examples can be found in his paper.
The relation between affine complex structures and flat connections in the
complex setting has been deeply investigated during the past years. In
particular in the complex setting a theorem of Matsushima [16] states that
there is a one-to-one correspondence between affine structures and affine
holomorphic connections which are torsion-free and flat. Vitter [20], Inoue,
Kobayashi e Ochiai [13] gave a classification of all manifolds admitting such
connections in complex dimension 1 and 2.
A similar correspondence holds also in the quaternionic setting. But the
quaternionic structures are much more rigid. A manifold is said to admit a
GL(n,H)-structure if it can be endowed with two anticommunting almost
complex structures, see [18, page 48]. On such manifolds, also called almost
quaternionic by Sommese in [19], it is possible to define a connection, the
Obata connection, which is torsion free, and it is the only one with this
property. Moreover the Obata connection turns out to be flat if and only if
the GL(n,H)-structure is integrable (if and only if M is quaternionic in the
sense Sommese).

For an almost quaternionic manifold, having an integrable GL(n,H)-
structure is equivalent to the nullity of three tensors which, in the quater-
nionic setting, play the role of the Nijenhuis tensor, [17]. Summarizing

Proposition 2.2. A manifold M has an integrable GL(n,H)-structure if
and only if it is affine quaternionic and equivalently if and only if one can
define on it a connection that is torsion free and flat, the Obata connection.

Moreover

Remark 2.3. An affine quaternionic manifold is hypercomplex, since the
integrability of the GL(n,H)-structure implies that it can be endowed with
two anti-commuting complex structures.
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Thanks to the one-to-one correspondence between affine structures and flat
torsion free holomorphic connections in the complex setting, and the unique-
ness of the Obata connection on an affine quaternionic manifold, we obtain
that

Corollary 2.4. On an affine quaternionic manifold there is one and only
one affine quaternionic structure.

In the complex setting the situation is quite different. Indeed a fixed affine
compact complex manifold may have a number of distinct affine structures
which all induce the given complex structure, that is, it may have affine
structures which are complex analytically but not affinely equivalent. As
an example of this phenomenon, consider a complex one dimensional torus
T = C

Λ . The usual affine coordinate on T is the coordinate z of the universal
cover of T , defined locally on T . But there are other distinct affine structures
on T , in fact, there is an affine structure on T whose coordinate is

1

a
(eaz − 1) =

∞∑
k

ak−1zk

k!

where z is the usual affine coordinate mentioned above.

3. Towards a classification of affine quaternionic manifolds in
low dimension

In order to classify all the affine quaternionic manifolds in low dimen-
sions, one can try to argue as in the complex case. In the complex setting,
however, the Kodaira Theorem gives a list in complex dimension 2 of com-
pact complex manifolds on which one can look at the affine structures or,
equivalently, at the affine holomorphic flat connections. In the quaternionic
setting, also in low dimensions (in quaternionic dimension 2 for example) a
similar list does not exist. For the quaternionic dimension 1, one can ar-
gue as follows: if M is affine quaternionic of dimension 1 it is also complex
affine, so one can go through Vitter’s classification, [20], of affine compact
complex manifolds of complex dimension 2, and determine those admitting
a quaternionic affine structure. Going through this list it is not difficult to
see that there are no examples, a part from the quaternionic tori that have
already been found in [4]. These exhaust the affine quaternionic manifolds
in quaternionic dimension 1.

In quaternionic dimension 2, some examples of affine quaternionic man-
ifolds are given by slice affine quaternionic Hopf surfaces, [2], and by some
tori that one can construct by adapting the strategy in [20] to complex
dimension 4.

Since we cannot refer to a classification of affine compact complex mani-
folds of dimension 4, in order to classify completely the affine quaternionic
manifolds in dimension 2, we adopt the approach used in [8], based on the
study of the fundamental groups of affine compact complex surfaces.
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Our aim is to find necessary conditions on a discrete subgroup Γ of the
group of quaternionic affine transformations Aff (2,H) so that its action on
H2 is free and properly discontinuous. In what follows we identify Aff (2,H)
with the group of invertible 3× 3 matrices with quaternionic entries of the
form a b r

c d s
0 0 1


In this section we study properties of a subgroup Γ of the group Aff (2,H),
acting freely on H2. The action of A ∈ Γ on H2 on the left maps (x, y) in
(x′, y′) where {

x′ = ax+ by + r

y′ = cx+ dy + s

With the usual notation, we denote with h(A) the matrix

(
a b
c d

)
in

GL(2,H), called the holonomy part of A.

We first recall a few definitions and well known facts about eigenvalues
and eigenvectors in the quaternionic setting. We refer to [6],[14] for an
exhaustive treatment of quaternionic linear algebra. In the study of spectral
theory in the quaternionic setting one has to define what is an eigenvalue for
a matrix A, indeed, once chosen the left action of the matrix, one can state
the “right eigenvalue problem” and the “left eigenvalue problem” according
to the position of the eigenvalue. We will focus on the right eigenvalue
problem.

Definition 3.1. Let A be a n × n-quaternionic matrix. Then λ ∈ H is a
right eigenvalue for A if and only if there exists a nonzero v ∈ Hn such that

Av = vλ.

In this case v is called an eigenvector of A.

Remark 3.2. If λ ∈ H is an eigenvalue of a quaternionic matrix A, then all
the elements in the 2-sphere Sλ = {u−1λu : 0 6= u ∈ H} of all conjugates of
λ turn out to be eigenvalues of A: if Av = vλ, then A(vu) = (vu)u−1λu for
any invertible u ∈ H.

Remark 3.3. If v is an eigenvector of a quaternionic matrix A, with
eigenvalue λ, then vµ with µ ∈ H, µ 6= 0, is an eigenvector with respect to
the eigenvalue µ−1λµ in the sphere Sλ.

Proposition 3.4. Let M ∈M(n,H) be a quaternionic matrix. Then λ ∈ H
is a right eigenvalue of M if and only if there exists a complex λ̃ ∈ Sλ such
that

detH(M − λ̃In) = 0.
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Proof. The quaternion λ is a right eigenvalue of M if and only if every
element in Sλ is. Let λ̃ ∈ Sλ be a complex eigenvalue of M ; then λ̃ is an
eigenvalue of ψ(M), and hence

0 = det(ψ(M)− λ̃I2n) = det(ψ(M − λ̃In)) = (detH(M − λ̃In))2.

�

We point out that right eigenvalues are shared by similar matrices: if Av =
vλ, then M−1AM(M−1v) = (M−1v)λ for any invertible quaternionic matrix
M . The same is not true when considering left eigenvalues. In addition, a
quaternionic matrix is diagonalisable if and only if its complex representation
is diagonalisable.

Lemma 3.5. Let the subgroup Γ ⊆ Aff (2,H) act freely on H2. Then each
element of h(Γ) has 1 as an eigenvalue.

Proof. Let A ∈ Γ. The point (x, y) ∈ H2 is fixed by

A =

a b r
c d s
0 0 1


if and only if {

(a− 1)x+ by = −r
cx+ (d− 1)y = −s

If 1 is not an eigenvalue of h(A), then (A − I) ∈ GL(2,H) and hence the
linear system has a solution; thus the action is not free. �

Let us now define two groups of quaternionic matrices,

G1 =


a b r

0 1 s
0 0 1

 : a, b, r, s,∈ H, a 6= 0


and

G2 =


1 b r

0 d s
0 0 1

 : b, r, s, d ∈ H, d 6= 0

 ,

which play a key role in the study of subgroups of Aff (2,H) acting freely on
H2.

Proposition 3.6. Let the subgroup Γ ⊆ Aff (2,H) act freely on H2. Then
Γ is conjugate in Aff (2,H) to a subgroup of G1 or G2.

Proof. Suppose first that Γ contains an element A such that h(A) has an
eigenvalue λ 6= 1. Then, we can diagonalise h(A) via a matrix P in GL(2,H).
Suppose

B ∈
(
P 0
0 1

)
Γ

(
P 0
0 1

)−1
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Write h(B) =

(
a b
c d

)
, then Ph(A)P−1h(B) =

(
λ 0
0 1

)
h(B) =

(
λa λb
c d

)
.

By the previous lemma, both h(B) and Ph(A)P−1h(B) have 1 as an eigen-
value, so there exist (x, y) and (z, w) ∈ H2 such that{

ax+ by = x

cx+ dy = y
and

{
λaz + λbw = z

cz + dw = w
.

Suppose first that y 6= 0 and w 6= 0. Hence, up to a rescaling of the
eigenvector (note that, in general, thanks to Remark 3.3, the corresponding
eigenvalue changes, remaining in the same sphere; in the present case the
real eigenvalue does not change), we can suppose that y = w. In this case,
subtracting the second equations of the systems, we get c(x− z) = 0 which
implies either c = 0 or x = z.

• If c = 0 then d = 1 (since y 6= 0);
• If x = z we get λ = 1 (a contradiction) or x = z = 0. If x = z = 0

then b = 0 (and hence again d = 1 since y 6= 0).

Suppose now that x 6= 0 and z 6= 0; then again we can assume that x = z,
and with straightforward computations we get d(y−w) = y−w; thus d = 1
or y = w.

• If d = 1 then c = 0 (since x 6= 0);
• if y = w 6= 0 we get λ = 1 (a contradiction) or y = w = 0. If
y = w = 0 then c = 0 and a = 1.

If now y = 0 (and necessarily x 6= 0) and z = 0 (and necessarily w 6= 0), we
get c = 0 and a = 1. If instead x = 0 (and necessarily y 6= 0) and w = 0
(and necessarily z 6= 0, we get b = 0 and d = 1.
So the possibilities for h(B) are: if b = 0,(

a 0
c 1

)
;

or, if c = 0 (
a b
0 1

)
;

Note that we cannot have both kinds of h(B) occurring, for if both(
a b
0 1

)
,

(
a′ 0
c′ 1

)
where in Ph(Γ)P−1 with b 6= 0 and c′ 6= 0 also their

product

(
aa′ + bc′ b

c′ 1

)
would belong to it, but it is easy to prove that this

matrix does not have 1 as eigenvalue. Hence we have that(
P 0
0 1

)
Γ

(
P 0
0 1

)−1
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is contained in G1 or in the group of all quaternionic matrices of the

form

a 0 r
c 1 s
0 0 1

 ; the latter is conjugate to G2 via an element of type0 1 0
1 0 0
0 0 1

 and we are done.

Now suppose every element of h(Γ) has both eigenvalues 1. If h(Γ) is the
identity, we are done, otherwise some conjugate of Γ contains an element of

the form L =

1 1 u
0 1 v
0 0 1

 . Let C =

a b r
c d s
0 0 1

 be an arbitrary element

of this conjugate of Γ. Then h(C) =

(
a b
c d

)
and h(LC) =

(
a+ c b+ d
c d

)
have 1 as eigenvalue with molteplicity 2. A direct computation implies again
that c = 0 and a = d = 1. �

In the complex case, G1 and G2 turn out to be solvable; we point out that
this is not the case in the quaternionic setting due to the non commutativity
of H.

Lemma 3.7. If the subrgroup Γ ⊆ Aff (2,H) acts freely on H2 and h(Γ) is
abelian then Γ is conjugate in Aff (2,H) to a subgroup of the group of all

matrices of the form

1 0 r
0 d s
0 0 1

 with d 6= 0 or to a subgroup of the group

of all matrices of the form

1 b r
0 1 s
0 0 1


Proof. The proof given for the complex case in [Fillmore, Lemma 2.4] can
be easily adapted to matrices with quaternionic entries. �

Lemma 3.8. If

a b r
0 1 0
0 0 1

 has no fixed points in H2 then a = 1 and b = 0.

Proof. If b 6= 0 then (0,−b−1r, 1) is a fixed point. Now, suppose b = 0; if a 6=
1 then (−(a− 1)−1r, y, 1) is a fixed point. Hence the assertion follows. �

Lemma 3.9. If the subgroup Γ ⊆ G1 acts freely on H2 then h(Γ) is abelian
and there exists a complex plane containing all a such that(

a b
0 1

)
∈ h(Γ).
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Proof. Let

A =

a b r
0 1 s
0 0 1

 B =

a′ b′ r′

0 1 s′

0 0 1


be elements of Γ. By direct computation, it is easy to verify that their
inverse elements are the quaternionic matrices

A−1 =

a−1 −a−1b −a−1r + a−1bs
0 1 −s
0 0 1



B−1 =

a′−1 −a′−1b′ −a′−1r′ + a′−1b′s′

0 1 −s′
0 0 1

 .

Moreover, for some c ∈ H,

ABA−1B−1 =

aa′a−1a′−1 aa′(−a−1a′−1b′ − a−1b) + ab′ + b c
0 1 0
0 0 1

 .

From the fact that ABA−1B−1 acts without fixed points, applying Lemma
3.8, we get that

(ABA−1B−1)12 = 0 and aa′a−1a′
−1

= 1

which immediately imply that a and a′ belong to the same complex plane,
and that h(Γ) is abelian. �

Now, combining Lemmas 3.7 and 3.9, we get

Corollary 3.10. If the subgroup Γ ⊆ Aff (2,H) acts freely on H2, then Γ is
conjugate in Aff (2,H)) to a subgroup of G2.

Lemma 3.11. If the subgroup Γ ⊆ Aff (2,H) is abelian and acts freely on H2

then it is conjugate in Aff (2,H) to a subgroup of the group of all matrices of

the form

1 0 r
0 d 0
0 0 1

 with d 6= 0 or to a subgroup of the group of all matrices

of the form

1 b r
0 1 s
0 0 1

 .

Proof. Since h(Γ) is abelian we can use Lemma 3.7 and conjugate Γ into the

group of all

1 b r
0 1 s
0 0 1

 and we are done, or into the group of all

1 0 r
0 d s
0 0 1

 .
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In the latter case: if all entries d = 1 we are done. Otherwise suppose d 6= 1
for some element A in Γ. After a conjugation with

C =

1 0 0
0 1 (1− d)−1s
0 0 1

 ,

the matrix A is taken to

1 0 r
0 d 0
0 0 1

 and all the other elements to A′ =1 0 r′

0 d′ s′

0 0 1

 . Now, since Γ is abelian, we have that CAC−1A′ = A′CAC−1

which implies that d′d = dd′ (so d and d′ belong to the same complex plane),
and ds′ = s′. Thus if there exists s′ 6= 0 we get d = 1, a contradiction. �

In what follows in addiction to the hypothesis that the action of Γ on H2 is
free, we will assume that Γ acts properly discontinuously and that H2/Γ is
compact. This has important consequences that we collect here.
We recall the First Theorem of Bieberbach, see, e.g., [3, Theorem 1].

Theorem 3.12. Let G be a subgroup of Aff (n,C), acting freely and properly
discontinuously on Cn and such that Cn/G is compact. Then the subgroup

G̃ ⊆ G of pure translations is generated by n linearly independent transla-

tions and G/G̃ ' h(G) is a finite group.

As a direct consequence we get

Lemma 3.13. If the subgroup Γ acts freely, properly discontinuously on H2

and H2/Γ is compact, then the set of translational parts (r, s) of elements of

the form

a b r
0 1 s
0 0 1

 of Γ contains a basis for H2 as a real vector space.

Proof. The proof easily follows taking into account that Aff (2,H) can be
identified as a subgroup of Aff (4,C). �

We can now solve completely the abelian case: indeed, applying the previous
Lemma, we understand that the first possibility of Lemma 3.11 does not
occur; thus we have

Corollary 3.14. If the subgroup Γ ⊆ Aff (2,H) is abelian and acts freely and
properly discontinuously on H2, and H2/Γ is compact, then it is conjugate in

Aff (2,H) to a subgroup of the group of all matrices of the form

1 b r
0 1 s
0 0 1

 .
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Lemma 3.15. If the subgroup Γ ⊆ Aff (2,H) acts properly discontinuously
on H2, and contains elements

A =

1 b r
0 d s
0 0 1

 and B =

1 f u
0 h v
0 0 1


such that AB 6= BA, then d is a root of unity.

The proof is similar to the one in the complex case, but the computations
are much more complicated, due to the non commutativity of quaternions.

Proof. By direct computation we obtain that for any n ∈ N

An =

1 b(d− 1)−1(dn − 1) b(d− 1)−2(dn − 1)s+ nr − bn(d− 1)−1s
0 dn (d− 1)−1(dn − 1)s
0 0 1


Hence

Cn = A−nBAnB−1 =

1 fn un
0 hn vn
0 0 1


where

hn = d−nhdnh−1

fn = f(dn − 1)h−1 + b(d− 1)−1(dn − 1)(1− d−nhdn)h−1

un = fh−1v − fdnh−1v − b(d− 1)−1(dn − 1)h−1v

+ b(d− 1)−1(dn − 1)d−nhdnh−1v + f(d− 1)−1(dn − 1)s

− b(d− 1)−1(dn − 1)d−nh(d− 1)−1(dn − 1)s

− b(d− 1)−1(dn − 1)d−nv + b(d− 1)−2(dn − 1)2d−ns

vn = −d−nhdnh−1v + d−nh(d− 1)−1(dn − 1)s+ d−nv − d−n(d− 1)−1(dn − 1)s

Suppose that d is not a root of unity. Let us show that, in this case, Cn 6= Cm
for n 6= m.

Assume first that hd 6= dh. Then Cn = Cm if and only of hn = hm, that
is if and only if n = m.

If instead h and d commute, then the entries of Cn become

hn = 1

fn = [fh−1 + b(d− 1)−1(h−1 − 1)](dn − 1)

un = −f(dn − 1)[h−1v − (d− 1)−1s]− b(d− 1)−1(dn − 1)(h−1v − v)

+ b(d− 1)−2(2− d−n − dn)(s− hs)− b(d− 1)−1(1− d−n)v

vn = (1− d−n)[−v + (d− 1)−1(hs− s)]
Suppose that Cn = Cm for n 6= m. Then fn = fm and vn = vm that is{

fh−1 + b(d− 1)−1(h−1 − 1) = 0
−v + (d− 1)−1(hs− s) = 0
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which is equivalent to {
f(d− 1) + b(1− h) = 0
−(d− 1)v + (1− h)s = 0

(3.1)

The first equation in system (3.1) is equivalent to the fact that the
holonomies h(A) and h(B) commute. Recalling that d 6= 1, we have that
h(A) can be diagonalised, thus also h(B) can be diagonalised via the same
matrix (direct computation: indeed suppose that h(B) cannot be diago-
nalised, since they commute they can be simultaneously triangulated, and
they still commute, thus f = fd which implies f = 0 since d 6= 1). Hence,
up to conjugation,

A =

1 0 r
0 d s
0 0 1

 and B =

1 0 u
0 h v
0 0 1


and if the second equation in System (3.1) is satisfied, A and B commute,
in contradiction with our hypothesis. Therefore the matrices Cn are all
distinct.

Let us show that, in both cases, if d is not a root of unity, the action of
Γ is not properly discontinuous.
Suppose first that |d| = 1. Consider the sequence of points (xn, yn) ∈ H2

obtained applying the matrices Cn to the point (0, 1),

xn = fn + un
yn = dn + vn

Up to subsequences, dn goes to 1 as n goes to infinity, thus hn goes to 1 and
fn, un and vn go to 0. Hence the orbit of (0, 1) has (0, 1) as an accumulation
point.
Suppose now that |d| > 1, and consider the orbit of (0, v − h(d− 1)−1s). In
this case

xn = fn(v − h(d− 1)−1s) + un
yn = dn(v − h(d− 1)−1s) + vn

Up to subsequences, hn tends to a ∈ H, |a| = 1 as n tends to infinity (if d
and h commute hn = 1 for any n). Hence, with long but straightforward
computations, we get

xn = b(d− 1)−1[(d− 1)−1(d−n − 1)s+ (1− d−n)h(d− 1)−1s− (1− d−n)v]
yn = −d−nhdn(d− 1)−1s+ d−nh(d− 1)−1(dn − 1)s+ d−nv − (d− 1)−1(1− d−n)s

Taking into account the fact that d−nhdn is bounded, since in modulus
equals |h|, we obtain that (xn, yn) has an accumulation point.
The case where |d| < 1 can be treated analogously, considering the orbit

through the same point via the matrices C̃n = AnBA−nB−1.
�

In order to state and prove the next result, we define and list all (up to
conjugation) finite subgroups of unitary quaternions; to do this we use the
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notations and approach of the book [5] by Conway and Smith. Let I, J ∈ H
be purely imaginary unit quaternions, with I ⊥ J , and let {1, I, J, IJ = K}
be a basis for H having the usual multiplication rules. For

σ =

√
5− 1

2
, τ =

√
5 + 1

2
we consider the unitary quaternions

II =
I + σJ + τK

2
; IO =

J +K√
2

; ω =
−1 + I + J +K

2
;

IT = I; en = e
πI
n .

and define the finite subgroups of the sphere S3 generated as follows:

2I = 〈II, ω〉, 2O = 〈IO, ω〉, 2T = 〈IT, ω〉,
2D2n = 〈en, J〉, 2Cn = 〈en〉, 1Cn = 〈en

2
〉 (n odd).

The following result holds (see, e.g., [5, Theorem 12, page 33]).

Theorem 3.16. Every finite subgroup of the sphere S3 of unitary quater-
nions is conjugated to a subgroup of the following list:

2I, 2O, 2T, 2D2n, 2Cn, 1Cn(n odd).

Recall that a group G is said to be unipotent if all of its elements are
unipotent, i.e., for all g ∈ G, there exists n ∈ N such that (g − 1)n = 0.
We are now ready to state and prove

Theorem 3.17. If the subgroup Γ ⊆ Aff (2,H) acts freely and properly
discontinuously on H2, and H2/Γ is compact, then Γ contains a unipotent
normal subgroup Γ0 of finite index such that Γ/Γ0 is isomorphic to a finite
subgroup of S3 (see Theorem 3.16).

Proof. We can assume for the previous results that, up to conjugation, Γ is
contained in G2. Suppose first that Γ contains a central element A of the

form

1 b r
0 d s
0 0 1

 with d 6= 1. Conjugate Γ by

M =

1 b(d− 1)−1 0
0 1 (1− d)−1s
0 0 1

 ∈ G2

then M−1AM =

1 0 r′

0 d 0
0 0 1

. Since this element is central in M−1ΓM , all

its elements of are of the form

1 0 u
0 h 0
0 0 1

. And this is in contradiction with
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Lemma 3.13 since the translational parts of Γ̃ form a basis for H2. Thus,
for any central element in Γ, d = 1. Since Γ is the fundamental group of the
compact manifold H2/Γ, it is finitely generated. Let

Ai =

1 bi ri
0 di si
0 0 1

 , for 1 ≤ i ≤ k,

be the set of generators of Γ. If Ai is central, di = 1. If Ai is not cen-
tral by Lemma 3.15 we have that di is a root of unity. Consider then the
homomorphism ϕ : Γ→ S3 defined as

ϕ(Ai) = ϕ

1 bi ri
0 di si
0 0 1

 = di.

Let Γ0 denote the kernel of ϕ. Then Γ0 is normal and unipotent, and Γ/Γ0

is isomorphic to a subgroup of S3. Now recall that if Γ̃ denotes the subgroup

of pure translation in Γ, by Theorem 3.12, Γ/Γ̃ is finite. Taking into account

that Γ̃ ⊆ Γ0, we conclude that Γ/Γ0 ⊆ Γ/Γ̃ is isomorphic to a finite subgroup
of S3. �

Let us give an explicit example of affine quaternionic manifold of quater-
nionic dimension 2.

Example 3.18. Consider the following transformations in Aff (2,H):

A =

1 0 0
0 1 1
0 0 1

 , B =

1 −1 0
0 1 I
0 0 1

 , C =

1 0 1
0 1 0
0 0 1

 ,

D =

1 0 J
0 1 0
0 0 1

 , S =

1 0 J
2

0 −1 I
0 0 1

 ,

where I, J,K,L ∈ S are imaginary units. If Γ0 = 〈A,B,C,D〉 and Γ =
〈A,B,C,D, S〉, then H2/Γ0 and H2/Γ are affine quaternionic manifolds. In
particular, they are the quaternionic analogs of examples (f) and (b) in
Vitter’s paper.

Now, starting from Γ0 ⊆ Γ ⊆ Aff (2,H) (where Γ0 is finitely generated,
and without torsion elements), thanks to a theorem of Malcev [15], Γ0 may
be considered as a discrete subgroup of a unique connected, simply connected
nilpotent Lie group N such that N/Γ0 is compact. Thus Γ0 acts freely and
properly discontinuously on N and its orbit space is compact. Now the fact
that Γ/Γ0 is finite and H2/Γ0 is compact forces N to have real dimension
8. Moreover, the fact that Γ0 ⊆ Aff (2,H), endows N/Γ0 with the structure
of a affine quaternionic manifold. Therefore N/Γ0 is hypercomplex, and
the same holds for N (see Remark 2.3). Summarizing, N is a nilpotent



ON COMPACT AFFINE QUATERNIONIC CURVES AND SURFACES 15

hypercomplex simply connected Lie Group. Dotti and Fino, in [7], give a
classification of all possibilities for N .

Corollary 3.19. Let the subgroup Γ ⊆ Aff (2,H) act freely and properly
discontinuously on H2, and assume that H2/Γ is compact. Let Γ0 ⊆ Γ be a
unipotent normal subgroup of finite index such that Γ/Γ0 is isomorphic to a
finite subgroup of S3 (see Theorem 3.17). Then Γ0 is a discrete subgroup of
a nilpotent hypercomplex simply connected 8-dimensional Lie Group N such
that N/Γ0 is compact.

At this point, the next step would be to find explicitly, and possibly list,
all subgroups Γ ⊆ Aff (2,H) acting freely and properly discontinuously on
H2, and such that H2/Γ is compact. In order to do this, one could exploit
the classification of Dotti and Fino, [7]: first identify all discrete subgroups
Γ0 of a nilpotent hypercomplex simply connected 8-dimensional Lie Group
N such that N/Γ0 is compact, and then restrict to those such that Γ/Γ0 is
one of the finite subgroups of S3 listed above.

We will address this topic in a forthcoming paper.
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