Many interactions among bio-molecular entities, e.g. genes, proteins, metabolites, can be easily represented by means of property graphs, i.e. graphs that are annotated both on the vertices (e.g. entity identifier, Gene Ontology or Human Phenotype Ontology terms) and on the edges (the strength of the relationship, the evidence of the source from which the weight has been taken, etc.). These graphs contain a relevant information that can be exploited for conducting different kinds of analysis, such as automatic function prediction, disease gene prioritization, drug repositioning. However, the number and size of the networks are becoming quite large and there is the need of tools that allow the biologists to manage the networks, graphically explore their structures, and organize the visualization and analysis of the graph according to different perspectives. In this paper we introduce the web service that we have developed for the visual analysis of biomolecular networks. Specifically we will show the different functionalities for exploring big networks (that do not fit in the current canvas) starting from a specific vertex, for changing the view perspective of the network, and for navigating the network and thus identifying new relationships. The proposed system extends the functionalities of off-the-shelf graphical visualization tools (e.g. GraphViz and GeneMania) by limiting the production of big cloud of points and allowing further customized visualizations of the network and introducing their vertex-centric exploration.

A Graphical Tool for the Exploration and Visual Analysis of Biomolecular Networks / C.T. Ba, E. Casiraghi, M. Frasca, J. Gliozzo, G. Grossi, M. Mesiti, M. Notaro, P. Perlasca, A. Petrini, M. Re', G. Valentini (LECTURE NOTES IN ARTIFICIAL INTELLIGENCE). - In: Computational Intelligence Methods for Bioinformatics and Biostatistics / [a cura di] M. Raposo, P. Ribeiro, S. Sério, A. Staiano, A. Ciaramella. - [s.l] : Springer, 2020. - ISBN 9783030345846. - pp. 88-98 (( Intervento presentato al 15. convegno CIBB tenutosi a Caparica nel 2018.

A Graphical Tool for the Exploration and Visual Analysis of Biomolecular Networks

C.T. Ba;E. Casiraghi;M. Frasca;J. Gliozzo;G. Grossi;M. Mesiti;M. Notaro;P. Perlasca;A. Petrini;M. Re';G. Valentini
2020

Abstract

Many interactions among bio-molecular entities, e.g. genes, proteins, metabolites, can be easily represented by means of property graphs, i.e. graphs that are annotated both on the vertices (e.g. entity identifier, Gene Ontology or Human Phenotype Ontology terms) and on the edges (the strength of the relationship, the evidence of the source from which the weight has been taken, etc.). These graphs contain a relevant information that can be exploited for conducting different kinds of analysis, such as automatic function prediction, disease gene prioritization, drug repositioning. However, the number and size of the networks are becoming quite large and there is the need of tools that allow the biologists to manage the networks, graphically explore their structures, and organize the visualization and analysis of the graph according to different perspectives. In this paper we introduce the web service that we have developed for the visual analysis of biomolecular networks. Specifically we will show the different functionalities for exploring big networks (that do not fit in the current canvas) starting from a specific vertex, for changing the view perspective of the network, and for navigating the network and thus identifying new relationships. The proposed system extends the functionalities of off-the-shelf graphical visualization tools (e.g. GraphViz and GeneMania) by limiting the production of big cloud of points and allowing further customized visualizations of the network and introducing their vertex-centric exploration.
Biological network; Protein function prediction; Information visualization; Graph visualization
Settore INF/01 - Informatica
2020
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Computational Intelligence Methods for Bioinformatics and Biostatistics.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/708080
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact