The use of bacterial cellulose (BC) in food systems is still limited due to production costs. Nine clones belonging to Komagataeibacter hansenii, Komagataeibacter nataicola, Komagataeibacter rhaeticus, Komagataeibacter swingsii, and Komagataeibacter xylinus species were screened for cellulose productivity in growth tests with five different carbon sources and three nitrogen sources. The water-holding and rehydration capacities of the purified cellulose were determined. The structure of the polymer was investigated through nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and X-ray diffraction (XRD) analysis, and observed by scanning electron microscope (SEM). Natural mutants of K. rhaeticus LMG 22126T and K. swingsii LMG 22125T showed different productivity. The factors "bacterial isolate" and "nitrogen source" significantly affected the production of cellulose (p < 0.01) rather than the factor "carbon source" (p = 0.15). However, on average, the best conditions for increasing yield were found in medium containing glucose and peptone. Water-holding capacity (WHC) values ranged from 10.7 to 42.3 (gwater/gcellulose) with significant differences among strains (p < 0.01), while the rehydration capacity varied from 4.2 to 9.3 (gwater/gcellulose). A high crystallinity (64-80%) was detected in all samples with Iα fractions corresponding to 67-93%. The ATR-FT-IR spectra and the XRD patterns confirmed the expected structure. BC made by GVP isolate of K. rhaeticus LMG 22126T, which was the strain with the highest yield, was added to a gluten-free bread formulation. Results obtained from measurements of technological parameters in dough leavening and baking trials were promising for implementation in potential novel foods.

Set-Up of Bacterial Cellulose Production From the Genus Komagataeibacter and Its Use in a Gluten-Free Bakery Product as a Case Study / I. Vigentini, V. Fabrizio, F. Dellaca, S. Rossi, I. Azario, C. Mondin, M. Benaglia, R. Foschino. - In: FRONTIERS IN MICROBIOLOGY. - ISSN 1664-302X. - 10(2019 Sep 06), pp. 1953.1-1953.13. [10.3389/fmicb.2019.01953]

Set-Up of Bacterial Cellulose Production From the Genus Komagataeibacter and Its Use in a Gluten-Free Bakery Product as a Case Study

I. Vigentini
Primo
;
V. Fabrizio
Secondo
;
S. Rossi;M. Benaglia
Penultimo
;
R. Foschino
Ultimo
2019

Abstract

The use of bacterial cellulose (BC) in food systems is still limited due to production costs. Nine clones belonging to Komagataeibacter hansenii, Komagataeibacter nataicola, Komagataeibacter rhaeticus, Komagataeibacter swingsii, and Komagataeibacter xylinus species were screened for cellulose productivity in growth tests with five different carbon sources and three nitrogen sources. The water-holding and rehydration capacities of the purified cellulose were determined. The structure of the polymer was investigated through nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and X-ray diffraction (XRD) analysis, and observed by scanning electron microscope (SEM). Natural mutants of K. rhaeticus LMG 22126T and K. swingsii LMG 22125T showed different productivity. The factors "bacterial isolate" and "nitrogen source" significantly affected the production of cellulose (p < 0.01) rather than the factor "carbon source" (p = 0.15). However, on average, the best conditions for increasing yield were found in medium containing glucose and peptone. Water-holding capacity (WHC) values ranged from 10.7 to 42.3 (gwater/gcellulose) with significant differences among strains (p < 0.01), while the rehydration capacity varied from 4.2 to 9.3 (gwater/gcellulose). A high crystallinity (64-80%) was detected in all samples with Iα fractions corresponding to 67-93%. The ATR-FT-IR spectra and the XRD patterns confirmed the expected structure. BC made by GVP isolate of K. rhaeticus LMG 22126T, which was the strain with the highest yield, was added to a gluten-free bread formulation. Results obtained from measurements of technological parameters in dough leavening and baking trials were promising for implementation in potential novel foods.
bacterial cellulose; bread additives; gluten-free products; Komagataeibacter (Gluconacetobacter); Komagataeibacter rhaeticus
Settore AGR/16 - Microbiologia Agraria
Settore CHIM/06 - Chimica Organica
Article (author)
File in questo prodotto:
File Dimensione Formato  
Vigentini 2019 Set-up of bacterial cellulose production.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 6.16 MB
Formato Adobe PDF
6.16 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/681865
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact