Atherosclerosis is characterized by interaction between immune and vascular endothelial cells which is mediated by adhesion molecules occurring on the surface of the vascular endothelium leading to massive release of proinflammatory mediators. Ginkgo biloba L. (Ginkgoaceae) standardized extracts showing beneficial effects are commonly prepared by solvent extraction, and acetone is used according to the European Pharmacopoeia recommendations; the well-known Ginkgo biloba acetone extract EGb761® is the most clinically investigated. However, in some countries, the allowed amount of solvent is limited to ethanol, thus implying that the usage of a standardized Ginkgo biloba ethanol extract may be preferred in all those cases, such as for food supplements. The present paper investigates if ethanol and acetone extracts, with comparable standardization, may be considered comparable in terms of biological activity, focusing on the radical scavenging and anti-inflammatory activities. Both the extracts showed high inhibition of TNFα-induced VCAM-1 release (41.1-43.9 μg/mL), which was partly due to the NF-κB pathway impairment. Besides ROS decrease, cAMP increase following treatment with ginkgo extracts was addressed and proposed as further molecular mechanism responsible for the inhibition of endothelial E-selectin. No statistical difference was observed between the extracts. The present study demonstrates for the first time that ethanol and acetone extracts show comparable biological activities in human endothelial cell, thus providing new insights into the usage of ethanol extracts in those countries where restrictions in amount of acetone are present.

Comparison of Two Ginkgo biloba L. Extracts on Oxidative Stress and Inflammation Markers in Human Endothelial Cells / S. Piazza, B. Pacchetti, M. Fumagalli, F. Bonacina, M. Dell’Agli, E. Sangiovanni. - In: MEDIATORS OF INFLAMMATION. - ISSN 0962-9351. - 2019(2019 Jun 25).

Comparison of Two Ginkgo biloba L. Extracts on Oxidative Stress and Inflammation Markers in Human Endothelial Cells

S. Piazza
Primo
;
M. Fumagalli;F. Bonacina;M. Dell’Agli
Penultimo
;
E. Sangiovanni
Ultimo
2019

Abstract

Atherosclerosis is characterized by interaction between immune and vascular endothelial cells which is mediated by adhesion molecules occurring on the surface of the vascular endothelium leading to massive release of proinflammatory mediators. Ginkgo biloba L. (Ginkgoaceae) standardized extracts showing beneficial effects are commonly prepared by solvent extraction, and acetone is used according to the European Pharmacopoeia recommendations; the well-known Ginkgo biloba acetone extract EGb761® is the most clinically investigated. However, in some countries, the allowed amount of solvent is limited to ethanol, thus implying that the usage of a standardized Ginkgo biloba ethanol extract may be preferred in all those cases, such as for food supplements. The present paper investigates if ethanol and acetone extracts, with comparable standardization, may be considered comparable in terms of biological activity, focusing on the radical scavenging and anti-inflammatory activities. Both the extracts showed high inhibition of TNFα-induced VCAM-1 release (41.1-43.9 μg/mL), which was partly due to the NF-κB pathway impairment. Besides ROS decrease, cAMP increase following treatment with ginkgo extracts was addressed and proposed as further molecular mechanism responsible for the inhibition of endothelial E-selectin. No statistical difference was observed between the extracts. The present study demonstrates for the first time that ethanol and acetone extracts show comparable biological activities in human endothelial cell, thus providing new insights into the usage of ethanol extracts in those countries where restrictions in amount of acetone are present.
Ginkgo; endothelial cells; oxidative stress; inflammation;
Settore BIO/14 - Farmacologia
25-giu-2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
Mediators of Inflammation.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/652592
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact