The viscosity of gel-forming fluids is notoriously complex and its study can benefit from new model systems that enable a detailed control of the network features. Here we use a novel and simple microfluidic-based active microrheology approach to study the transition from Newtonian to non-Newtonian behavior in a DNA hydrogel whose structure, connectivity, density of bonds, bond energy and kinetics are strongly temperature dependent and well known. In a temperature range of 15 °C, the system reversibly and continuously transforms from a Newtonian dispersion of low-valence nanocolloids into a strongly shear-thinning fluid, passing through a set of intermediate states where it behaves as a power-law fluid. We demonstrate that the knowledge of network topology and bond free energy enables to quantitatively predict the observed behavior using established rheology models.

Newtonian to non-newtonian fluid transition of a model transient network / G. Nava, T. Yang, V. Vitali, P. Minzioni, I. Cristiani, F. Bragheri, R. Osellame, L. Bethge, S. Klussmann, E.M. Paraboschi, R. Asselta, T. Bellini. - In: SOFT MATTER. - ISSN 1744-683X. - 14:17(2018 May), pp. 3288-3295. [10.1039/c8sm00373d]

Newtonian to non-newtonian fluid transition of a model transient network

G. Nava
Primo
;
E.M. Paraboschi;R. Asselta
Penultimo
;
T. Bellini
Ultimo
2018

Abstract

The viscosity of gel-forming fluids is notoriously complex and its study can benefit from new model systems that enable a detailed control of the network features. Here we use a novel and simple microfluidic-based active microrheology approach to study the transition from Newtonian to non-Newtonian behavior in a DNA hydrogel whose structure, connectivity, density of bonds, bond energy and kinetics are strongly temperature dependent and well known. In a temperature range of 15 °C, the system reversibly and continuously transforms from a Newtonian dispersion of low-valence nanocolloids into a strongly shear-thinning fluid, passing through a set of intermediate states where it behaves as a power-law fluid. We demonstrate that the knowledge of network topology and bond free energy enables to quantitatively predict the observed behavior using established rheology models.
English
Chemistry (all); Condensed Matter Physics
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore FIS/03 - Fisica della Materia
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
mag-2018
Royal Society of Chemistry
14
17
3288
3295
8
Pubblicato
Periodico con rilevanza internazionale
scopus
crossref
pubmed
Aderisco
info:eu-repo/semantics/article
Newtonian to non-newtonian fluid transition of a model transient network / G. Nava, T. Yang, V. Vitali, P. Minzioni, I. Cristiani, F. Bragheri, R. Osellame, L. Bethge, S. Klussmann, E.M. Paraboschi, R. Asselta, T. Bellini. - In: SOFT MATTER. - ISSN 1744-683X. - 14:17(2018 May), pp. 3288-3295. [10.1039/c8sm00373d]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
12
262
Article (author)
no
G. Nava, T. Yang, V. Vitali, P. Minzioni, I. Cristiani, F. Bragheri, R. Osellame, L. Bethge, S. Klussmann, E.M. Paraboschi, R. Asselta, T. Bellini
File in questo prodotto:
File Dimensione Formato  
SM 2018.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
SM 18.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/627324
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact