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NEWTONIAN TO NON-NEWTONIAN FLUID TRANSITION OF A 
MODEL TRANSIENT NETWORK  
Giovanni Navaa, Tie Yangb, Valerio Vitalic, Paolo Minzionic, Ilaria Cristianic, Francesca Bragherid, 
Roberto Osellamed, Lucas Bethgee, Sven Klussmanne, Elvezia Maria Paraboschif, Rosanna Asseltaf,g, 
and Tommaso Bellinia,* 

The viscosity of gel-forming fluids is notoriously complex and its study can benefit from new model systems that enable a 
detailed control of the network features. Here we use a novel and simple microfluidic-based active microrheology approach 
to study the transition from Newtonian to non-Newtonian behavior in a DNA hydrogel whose structure, connectivity, density 
of bonds, bond energy and kinetics are strongly temperature dependent and well known. In a temperature range of 15 °C, 
the system reversibly and continuously transforms from a Newtonian dispersion of low-valence nanocolloids into a strongly 
shear-thinning fluid, passing through a set of intermediate states where it behaves as a power-law fluid. We demonstrate 
that the knowledge of network topology and bond free energy enables to quantitatively predict the observed behavior using 
established rheology models. 

1. Introduction 
Non-Newtonian viscosity is a general feature of multiscale, 
multicomponent or structured fluids ranging from polymer 
melts to colloidal dispersions. Among them, physical gels, such 
as solutions of associating polymers, reversible hydrogels, and 
in general supramolecular transient networks, are known to 
display shear-thinning viscosity for large enough shear rates1–6. 
This class of materials also includes biomolecular networks that 
provide key structural properties to cells and tissues,7,8. While it 
is clear that the shear-thinning of transient networks reflects 
their internal connectivity and the strength of the bonds, its 
quantitative Interpretation is a challenge because of the 
complexity of the systems where it is observed, whose 
microscopic topology, interaction energies and bonds lifetimes 
are generally known only in terms of statistical distributions9–11. 
In this context, the introduction of a model system having a 
well-defined topology and mesh size together with a fully 
known and controllable density of bonds and bond strength, 
can offer an unprecedented occasion of clarifying the 

microscopic mechanisms underlying the emergence of non-
Newtonian viscosity.  

Here we describe the transition from Newtonian to non-
Newtonian behavior of a dispersion of DNA nanoparticles that 
are independent at high temperature, while they bind into a 
transient network upon cooling. The nanoparticles are shaped 
as three-arms nano-stars (NS in the following, Fig. 1a), each arm 
terminating with a 6-base-long overhang which provides a 
sticky spot for mutual binding 12. The network connectivity of 
this system is thus controlled by the strong temperature (T) 
dependence of the pairing of the overhangs, which is reliably 
predictable on the basis of the well-known thermodynamics of 
DNA hybridization 13. In a temperature range of 15 °C, the 
system progressively and reversibly transforms from a solution 
of single NS or dispersion of clusters (Fig. 1b), to a percolating 
transient network (Fig. 1c)12, enabling to explore four order of 
magnitudes of the Deborah number. The basic idea behind this 
study is that the emergence of non-Newtonian viscosity is here 
achieved by the activation of a single class of simple molecular 
binding events over a temperature range that is so narrow that 
other equilibrium and dynamic variables are effectively held 
fixed. We take advantage of the full control of the network 
structure parameters – including coordination number (f = 3), 
bond lifetime (WB) and binding free energy ('G) – to 
quantitatively understand the transition from linear to shear-
thinning viscosity in terms of the stabilization of the 
tridimensional DNA network. Specifically, we show here that: i) 
the NS solution displays a gradual and reversible transformation 
between Newtonian and strongly shear-thinning in a T interval 
of less of 15 °C; ii) the knowledge of f, WB, 'G, combined either 
with heuristic arguments or with a rigorous model for the 
rheology of soft glassy materials 2 enables predicting both the 
value and the range of T where the transition to shear-thinning 
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behavior occurs; iii) the behavior at low T can be also 
quantitatively understood from the topology of the network 
and 'G either through a simple geometrical approach or by 
using the classic Lake-Thomas model14–16.  
 

2. Materials and Methods 
The DNA NS dispersion are prepared by annealing equimolar 
mixtures of three 48-base-long oligomers. The three sequences 
self-assemble into three-arms nanoparticles. Each arm is 
formed by 20 base pairs long duplexes that terminate with 6-
base-long overhangs [See ESI]. NS are stable and independent 
for 40 °C < T < 60 °C, while at lower T the overhangs of distinct 
NS hybridize so that the NS behave as attractively interacting 
nanoparticles with valence equal to three 12. The phase diagram 
of this system includes a consolution curve separating a vapor-
like and a liquid-like phases that terminates in a critical point at 
T ≈ 11 °C 12. The coexistence region is limited at DNA 
concentrations c < 9 mg/ml.  At larger concentrations, such as c 
= 10 mg/ml explored in this study, corresponding to a number 
density of NS 𝑛𝑁𝑆 = 1.34 ⋅ 1023, the NS dispersion transforms, 
continuously and reversibly, from a liquid of independent 
particles (at high T), into an arrested gel (at low T) without 
incurring in phase separations 17. Such T-controlled gelation is 
an example of equilibrium gelation, by which the formation of 
the network is obtained by passing through a set of equilibrium 
states with no discontinuity 17.  
To investigate the viscous behavior of this system across its 
liquid-gel transition, we used a recently developed 
microrheological technique based on a microfluidic chip in 
which a microbead (PMMA, radius R = 5 µm) is trapped at half 
height of a channel (having square section, 150µm size) and put 
in motion across the channel by optical forces 20 (Fig. 2a-d). In 
our design, two counterpropagating beams are carried into the 
microchannel by two facing waveguides, realized by femto-
second laser inscription, that terminate perpendicularly to the 
channel at half its height 21. The bead is then held at half channel 
height by the transversal gradient forces of the two beams. 
When the intensity of the two beams is unbalanced, the bead 
also experiences a net scattering force pushing it in the 
propagating direction of the stronger beam 18,19. 
In such stress-controlled microrheological technique, the force 
on a microbead is easily set and maintained over large bead 
displacements. This technology is particularly suitable to 
determine the force-speed ratio and thus to accurately detect 
the appearance of non-Newtonian behavior. 
The laser beams used to apply the optical forces on the PMMA 
beads, were provided by a CW 10W Yb-doped fiber laser (𝜆 =
1070 𝑛𝑚), splitted, coupled to the two counterpropagating 
waveguides and modulated as explained in Ref. 20.  The 
temperature T of the chip was controlled during all the 
experiments by a Peltier cell, allowing stability within 0.2 °C and 
all measurements were performed after 30 min equilibration at 
each working T. The motion of the bead inside the channel was 
recorded by a camera (Thorlabs DCC1645C, 20-200 fps) 
mounted on an inverted microscope, and tracked by a Labview 

program that also controlled the beam stoppers used to 
modulate the force on the bead.  
The longitudinal force exerted by each beam depends on the x 
coordinate: 𝐹(𝑥, 𝑃𝐿)  =  𝐴𝑃𝐿𝑔(𝑥), where 𝑃𝐿  is the light power 
and A is a constant. The profile g(𝑥) was obtained using paraxial 
optics22 (Fig. 2e). The product 𝐴𝑃𝐿  was determined by 
calibrating the setup with fluids of known viscosities ranging 
from 0.001 to 1𝑃𝑎 𝑠 20 [see ESI]. We found an excellent 
repeatability of such calibration procedure, thanks to the 
monolithic alignment between the optical components and to 
the laser stability. 
Experiments were performed by filling the channel with 1 µL of 
NS dispersed in 20 mM NaCl aqueous solution at a DNA 
concentration c = 10 mg/ml, corresponding to a NS molarity 
𝑛𝑁𝑆 ≈ 222 µ𝑀, in which a small number of PMMA microbeads 
are dispersed.  
The experiments are then carried on as in the following. First, 
one microbead is trapped and positioned close to one side of 
the microchannel (avoiding contact with the glass wall) by 
unbalancing the power of the two beams (Fig. 2c). Then, by 
shutting off the beam emitted from the waveguide farthest to 
the bead, the bead is pushed across the channel, a procedure 
that we named “optical shooting” (Fig. 2d). Examples of time-
lapse sequence of the bead motion and its position vs. time x(t), 
are shown in Figs. 2f and 2g. A sufficiently long time is left 
between two consecutive optical shootings to let the system 
equilibrate. Thus, in all experiments, the bead always moves 
within an unperturbed NS dispersion 

3. Results and Discussion 
Optical shooting experiments were performed at various T in 
the range (20 - 40 °C) and at various PL (corresponding to forces 
in the interval 1-100 pN). Examples of the measured x(t) are 
shown in Fig. 3a (symbols), each set corresponding to a single 
optical shooting. Since the inertia of the bead can be neglected, 
the apparent viscosity 𝜂𝐴 of the fluid is determined from x(t) 
and F(x) via the Stokes law 𝜂𝐴 =  𝐹(𝑥) (6𝜋𝑅𝑣(𝑥))⁄  where R is 
the radius of the bead, and v(x) was computed from x(t). 𝜂𝐴 
determined at various T is plotted in Fig. 3b as a function of the 
bead velocity. In some cases – at the largest T – two distinct data 
sets with same T and different PL are reported so to explore a 
wide force range.  
As expected, we find the viscosity of the DNA NS solution at the 
largest T (red dots in Fig. 3b) to be Newtonian, with KA being 
independent from v. As T decreases from 40 to 20 °C, two 
phenomena occur. First, KA markedly grows, its value at the 
lowest bead speed increasing of almost 3 orders of magnitude. 
Second, the system becomes non-Newtonian, KA progressively 
acquiring a shear-thinning character. In the explored range of 
speeds, the apparent viscosity displays a power-law behavior 
ηA  ∝  vn−1, and thus F ∝  vn, as evident from the linear 
behavior of the data in the log-log plot (Figs. 3b and 3c) 23. The 
exponent n ranges from 1 (Newtonian limit, largest T) to a value 
close to 0, as can be appreciated by comparing the data at the 
lowest T with the -1 slope dashed line. The T dependence of n is 
shown in Fig. 3f (colored dots, right-hand axis). The rheological 
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behavior at the lowest T corresponds to the strongest form of 
shear-thinning viscosity, in which friction becomes independent 
from speed, as apparent in Fig. 3c, which displays F(v) for the 
same data as in Fig. 3b.   
While in shear cells the shear rate 𝛾̇ is uniquely set, in bead 
based experiments a distribution of shear rates is 
simultaneously probed, as given by the velocity profile of the 
fluid v(r, T) around the bead, where r is the distance from the 
bead center (r>R) and T the angle with respect of the velocity 
direction. In Newtonian fluids v(𝐫)  ∝ 1 r⁄  is the dominant term 
far from the bead24 which accounts for the Stokes law. In non-
Newtonian shear-thinning power-law fluids in which the viscous 
friction is FPL ∝  γ̇m 23, the velocity profile around a moving 
bead is modified  to v(𝐫)  ∝ 1 rα⁄  with D�≈ (2-m)/m > 1 and the 
friction force on the bead becomes F ∝  vm  25. Thus, despite 
the intrinsic inhomogeneity of the shear rate induced by the 
bead motion, our result indicates that, in the explored range, 
the NS solution is a power law fluid whose exponent equals the 
one controlling the force on the bead, i.e. m = n.  
Power-law fluids are a phenomenological description of the 
non-Newtonian shear thinning behavior of a fluid, typically 
verified in limited parameter ranges. When shear rates are small 
enough, all fluids become Newtonian. In this limit, the 
equilibration time of the fluid W, set in our system by the bond 
lifetime 𝜏𝐵, is faster than the characteristic time of externally 
imposed deformations. Non-Newtonian shear thinning 
behavior can develop when the dimensionless product γ̇𝜏𝐵 
becomes of the order of unity26,27, a condition in which the 
strain rate is large enough to generate a significant tension in 
the network before it spontaneously unbind because of the 
finite lifetime. In bead based experiments, where γ̇ is not 
homogeneous in the system, the natural dimensionless 
parameter to gauge the onset of non-Newtonian behavior is the 
ratio B =  vτB R⁄  28 which is the Deborah number of our 
experiments. In this study, the values of B spans four orders of 
magnitude, as a combination of the limited range of 
experimentally accessible velocities and of the large variation in 
W% obtained upon changing T. 
Power law fluid behavior is generally believed to emerge as a 
feature of the transition from Newtonian to non-Newtonian 
viscosity as a function of the shear rate. To explore this notion 
in the context of our measurements, we adopted the plainest 
among the model describing such a transition, namely the Cross 
model with exponent equal to 1 29,27, 
 
 

𝜂𝐴 = 𝜂0−𝜂∞  
1+𝐵

+ 𝜂∞    (1) 

where 𝜂0 and 𝜂∞ are respectively the viscosity in the limit of 
zero and infinite speed. Eq. 1 accounts for a cross-over from a 
regime of small structural deformations (i.e. small WB, high T, 
small v) in which the fluid is Newtonian, to a regime of large 
structural deformations (i.e. large WB, low T, large v) in which 
𝜂𝐴  ∝ 1 𝐵 ∝  𝑣−1⁄ , as in the strong non-Newtonian limit we 
observe. A simple inspection of Eq. 1 indicates that the smooth 
transition between these regimes could be thought of as a 

family of power-law fluids, each verified in a limited range of B, 
and whose exponent varies with B as n ≈ (1+B)-1.  
The 𝜂𝐴(𝑣) dependence expressed in Eq. 1 can be used to fit the 
measured x(t) (Fig. 3a) by integrating the equation of motion 
with K∞ set to the viscosity of water and with�K0 and W as fitting 
parameters [see ESI]. The good quality of the fits (lines in Fig. 
3a) indicates that all 𝜂𝐴 data can be expressed in terms of the 
two dimensionless quantities (𝜂𝐴 − 𝜂∞) (𝜂0 − 𝜂∞)⁄  and B, 
readily computed from�K0(T) and W(T) determined for each 
optical shooting. Indeed, when 𝜂𝐴(𝑣) datasets (Fig. 3b) are 
rescaled using the two dimensionless quantities, they collapse 
on a universal curve, as shown in Fig. 3d. This collapse supports 
the notion that the whole behavior of this system reflects a 
single basic microscopic mechanism with the power-law 
behavior emerging as a cross-over condition. Such mechanism 
is also revealed by inspecting the T dependence of the best fit 
values of 𝜂0 and 𝜏. In Fig. 3e we show 𝜂0 (red triangles, right-
hand axis) and 𝜏 (blue diamonds, left-hand axis) vs. 1/T. In the 
same figure we also plot 𝜏𝐷𝐿𝑆 (green squares, left-hand axis), 
the lifetime of thermally induced concentration fluctuations, 
that we previously measured by Dynamic Light Scattering (DLS) 
on the same sample 12,17,30 [See ESI]. 
Despite a significant level of noise, data in Fig. 3e 
unambiguously indicate that the whole thermal and viscous 
behavior of the DNA transient network is controlled by a single 
Arrhenius process. The associated activation enthalpy 'H can 
be derived from the slope of the data (dashed line). We find 'H 
≈ 87 kcal/mol, compatible with the enthalpy necessary to 
disrupt the bonds between NS 12,17,30. Both T dependence and 
values of the viscous characteristic time 𝜏 in Fig. 3e are 
compatible with the expected inter-NS bond lifetime 𝜏𝐵, as 
determined from hybridization kinetic studies31. Thus, our 
observations indicate that 𝜏 ≈ 𝜏𝐵, i.e. the viscous characteristic 
time matches the characteristic time of the microscopic bonds. 
Moreover 𝜂0, the zero-velocity limit of the viscosity, is also 
found to grow according to an equal activation scaling. This is in 
line with observations in network-forming molecular glasses 
such as silica 32, and it is generally expected since the 
characteristic scale of energy in this system is set by the inter-
NS bond enthalpy. 
 
Three regimes 

The collapse of the data into a single universal curve depending 
on B indicates that the whole behavior is controlled by the 
interplay between the shear stress, imposed by the motion of 
the bead, and the relaxation time of the networks structure. 
Accordingly, we interpret here our observations as resulting 
from the evolution through three regimes: the “cluster regime” 
(Newtonian), the “stretched elastic network” regime 
(Newtonian) and the “network fracturing” regime (non-
Newtonian), pictorially described in Fig. 4.  
At high T the bond lifetime is short, and the system is in the 
cluster regime (Figs. 4a1 and 4a2): NS are either independent or 
aggregated in small clusters. In this regime, the viscosity is close 
to that of water (𝜂𝑤 , dotted line in Figs. 3b and 3c), incremented 
by a correction proportional to the volume fraction of the 
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suspended particles 33. Since low valence colloids aggregate into 
low-density (“empty”) structures 34, upon aggregating from 
single NS into small clusters the effective volume fraction filled 
by DNA mildly grows while remaining Newtonian.  
As T lowers, clusters become large enough to be significantly 
deformed by the local shear rate produced by the motion of the 
particle (Fig. 4b1 and 4b2). Because of such deformation, the 
network locally develops a shear elastic force opposing the bead 
motion. However, in this regime, the bond lifetime is short 
enough that the bead does not actively disrupt them, since they 
spontaneously open fast enough not to ever reach their tearing 
point.  
At low T, instead, the network is percolating and long-lived. In 
this condition, the bead can proceed only by breaking the bonds 
(Fig. 4c1 and 4c2) and the work spent to move the bead must 
equal the energy required to open the inter-NS bonds 
constraining the motion. Thus, in this regime, the friction force 
experienced by the bead depends on the number of broken 
bonds but not on the velocity of the bead, a condition that 
correspond to the strong shear-thinning behavior 
experimentally observed at low T.  
 
Quantitative analysis: tearing force 

The force and energy required to tear a molecular network are 
described by the classic Lake-Thomas model and its 
developments14,16,35–37. According to this approach, we can 
calculate T0, the ratio of the fracturing energy (EFR) and the cross 
section of the fracture (A), from structural and energetic 
parameters of the network: 
 

𝑇0 = 𝐸𝐹𝑅

𝐴
= (3

8
)

1/2
 𝜈𝐿𝑁ER    (2) 

where ER is the rupturing energy of the single monomer, while 
𝜈, L and N are respectively the number density of “active chains” 
(chains participating in the actual connectivity of the network, 
excluding dangling chains), the length and the polymerization 
degree of the ruptured chains. 
ER is in our case very well known since it corresponds to the free 
energy 'G(T) involved in the hybridization of the overhangs of 
the NS. 'G(T) can be evaluated for our specific DNA sequence 
by using the standard Nearest-Neighbor model for DNA 
thermodynamics 13 and is shown in Fig. 3f as a continuous red 
line.  
The number 𝜈 of the active chains involved in the tearing 
process while the bead moves in the DNA NS network can be 
estimated from the number of nodes in the network which 
depends on the quantity p(T), the fraction NS arm tips that are 
bound at a given T. Thanks to our design of the gel, p(T) depends 
on the thermodynamic parameters involved in the hybridization  
of the NS sticky end (CGATCG) and can be computed using tools 
such as NUPAC 38 . p(T), shown in Fig. S3 [see ESI], changes form 
p = 1 at low T, to p = 0 at about T ≈ 45°. The effect of the change 
in p is pictorially represented in Figs. 1b and 1c for two 
representative temperatures 35 °C (p=0.17) and 20 °C (p=0.66).  
Based on the knowledge of p, we can compute the number 
density n3(T) of “active nodes” in the network, i.e. of NS that 

participate as nodes in the connectivity of large clusters. When 
p=1, n3 = nNS. For lower p, we need to exclude from n3(T) all NS 
having less than three connected bonds and all NS connected to 
dangling branches. n3(T) can be calculated from p(T) either 
adopting the theory for tree-like structures15,37  or can be 
numerically computed using a recursive procedure on a 3d 
model of the network [see ESI]. The two procedures are limited 
to conditions where p is large enough (p>0.5) and give 
comparable results [Fig. S5].  
Finally, because of the valence f=3 of the active NS: 

𝜈(𝑇) = 3
2

𝑛3(𝑇)    (3) 
When p=1, 𝐿 = ℓ0, the distance between two NS centers (14.5 
nm, see ESI) and N, the polymerization length, is 1. As T grows, 
we can estimate L by scaling it with the mean distance between 

active nodes, 𝐿~ℓ0(𝑛𝑁𝑆 𝑛3⁄ )−1
3, while 𝑁 = 𝐿/ℓ0. Thus, the 

product 𝐿 ⋅ 𝑁 becomes: 
  

𝐿 ⋅ 𝑁~ℓ0(𝑛3 𝑛𝑁𝑆⁄ )
2
3  (4). 

As the bead move forward of a length Δ𝑥 through the network, 
the minimum area over which the bonds need to be ruptured is 
approximately 2𝑅Δ𝑥. From Eq. 2: 
  

𝑇0 =  𝐸𝐹𝑅

2𝑅Δ𝑥
=  𝐹𝐹𝑅

2𝑅
   (5) 

In Eq. 5 we introduce the tearing force 𝐹𝐹𝑅 , which should be 
compare to the force measured to propel the bead in the 
network fracturing regime. Combining equations (5),(4),(2) and 
using the calculated 'G(T) and  𝜈(𝑇) we obtain for T = 22°C (the 
lowest considered in this study), 𝐹𝐹𝑅= 85 pN. This value is in 
good agreement with the observation, as it can be recognized 
in Fig. 3c, where have marked 𝐹𝐹𝑅(𝑇) with a dashed line.  An 
alternate evaluation of 𝐹𝐹𝑅(𝑇), yielding a similar result (≈ 75 
pN) can be obtained from R, 'G(T) and n3(T) via simple 
geometrical and physical assumptions [see ESI]. 
 
Quantitative analysis: Newtonian to non-Newtonian crossover 

We now turn to discussing the crossover between the stretched 
elastic network regime and the network fracturing regime, its 
nature, the T at which it is found and its width. The quantitative 
agreement between measured and computed FFR at low T 
suggests that the transition to non-Newtonian fluid is produced 
by an increasing relevance of the bond breaking mechanism. In 
the stretched elastic network regime, introduced in the first 
paragraph of this section, the amplitude of the elastic force is 
limited by the bond lifetime that sets a maximum value for the 
local shear γM = γ̇τB since in this regime bonds are not actively 
ruptured, but rather spontaneously open because of their 
limited lifetime. This limit corresponds to an elastic tangential 
stress σE = G′γ̇τB, where G’ is the shear elastic modulus of the 
network. The spontaneous opening of the bonds dissipates the 
elastic energy accumulated by the deformation so that σE 
contributes to the effective Newtonian viscosity, the total stress 
becoming σ = (ηw + G′τB)γ̇ and the force on the bead F =
6πR(ηw + G′τB)v, where  ηw is the viscosity of water. 
This regime extends at low T until the elastic energy Eel stored 
in each bond becomes comparable with 'G(T), a condition that 
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determines the crossover temperature between Newtonian 
and non-Newtonian behavior. Eel can be estiamated from G’, W%, 
R, v, and n3 [see ESI]. G’(T) can be evaluated by the standard 
phantom network model 39 as G’ = kBT3/2 n3(1 − 2/f), 
where in our case f = 3. W% is available from our data (Fig. 3e).  
The resulting Eel(T) is shown in Fig. 3f for three values of v (60 
Pm/s dotted blue line, 10 Pm/s continuous blue line, 3 Pm/s 
blue dashed line). As visible, upon lowering T, Eel becomes larger 
than 'G (red line), which indicates that the network is stressed 
beyond its tearing threshold. The crossing between the 
computed values of Eel(T) and 'G(T), gives an estimate for the T 
where we expect the crossover between the stretched elastic 
network regime and the network fracturing regime to take 
place. We find such T to be approximately around 28°C, an 
estimate that agrees with the T at which the power-law 
exponent is found to markedly change (purple shading). 
A more refined quantitative analysis of the crossover toward 
non-Newtonian viscosity can be formulated on the basis of the 
“soft glass rheology” model in Ref. 2, which describes the 
viscoelasticity of soft materials whose structure is stabilized by 
bonds that require an activation energy to be broken. When 
mechanically perturbed, the system may thus be found in 
metastable states, depending on the time-scale of the action. 
According to this model, the transition from Newtonian and 
non-Newtonian indeed occurs through power-law fluid 
behavior. The transition takes place when the difference 'G – 
Eel lays in a given range of thermal noise, namely when 2 kBT > 
'G – Eel > 1 kBT. In this range, the system shows a power-law 
fluid behavior whose exponent ranges from n ≈ 0.2 to n ≈ 0.8, 
respectively. Because of the strong T dependence of the 
energies involved in the DNA NS bonds, this energy range is 
found in our system by changing T of a few degrees only. This 
can be appreciated in the construction of Fig. 3f, in which we 
have marked by orange shading the energy range ('G - 2 kBT, 
'G - 1 kBT) [see. ESI], by grey shading the T range in which such 
energy interval is crossed by the elastic energy for v = 10 Pm/s 
(continuous blue line) and by black squares the expected values 
of n (n = 0.2 and n = 0.8) at the two boundaries of the interval. 
Fig. 3f enables comparing the outcome from this theoretical 
estimate (black squares and grey shaded area) and the 
experimental results (color dots and purple-shaded area). 
Remarkably, the quantitative prediction of the model, in which 
we used only literature information and geometrical data, well 
approximates the observations both in the crossover 
temperature – expected to be only a few degrees above the 
observations – and in the width the crossover – of the order of 
3 degrees.   

Conclusions 
The model DNA network investigated here by active 
microrheology enables to successfully explore the complex 
viscous behavior of network forming systems. We find that in a 
narrow T range the NS system crosses over from Newtonian 
fluidity to strong shear thinning viscosity through power-law 
fluid states of decreasing exponent.  

All the key features we experimentally observe can be 
quantitatively understood thanks to a detailed knowledge of 
the microscopic structure of the gel. Specifically, we could 
explain: 

• the existence of a regime at low T in which the friction 
is independent on velocity, 𝜂𝐴  ∝  𝑣−1, and the value 
of the force (FFR ≈ 85 pN) required to set the particle in 
motion at T = 22 °C; 

• the temperature at which the Newtonian to non-
Newtonian crossover occurs, which we determine to 
be T ≈ 28°C, only 2 °C above the observed one; 

• the existence of a smooth transition between 
Newtonian and strong non-Newtonian behavior 
thorough power-law fluids whose exponents smoothly 
depend on T in a T range of 2-3 °C width, as 
experimentally found. This prediction relies on the 
“soft glass rheology” model of Ref. 2.  

This study indicates that the whole set of mechanical properties 
of transient networks can be reduced to two key ingredients: 
the energy scale of the single bond and the network topology. 
All the quantitative predictions listed above ultimately depend 
on these two parameters solely. Thus, by exploiting this 
knowledge, we could design DNA hydrogels having topology, 
density of bonds, and bond strength such to tailor the viscous 
properties of the resulting material: the frictional force, and the 
location and sharpness of the Newtonian to non-Newtonian 
transition. 
Finally, it is worth noticing that the DNA NS hydrogel, which we 
previously proposed as a model of strong glass formers for its 
equilibrium and thermodynamic properties 17, shares with silica 
– the archetype of glass forming liquids – also important 
rheological properties, such as the proportionality between 
viscosity and relaxation time (as in our Fig. 3e) and the collapse 
of K(v) once properly rescaled (as in our Fig. 3d) 32.  
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FIGURE CAPTIONS 
 
1 Description of the transient network based on interacting 
DNA nanostars (NS). a: Each DNA nanoparticle is shaped as a 
three-armed star. Each arm terminates with a sticky spot that 
provides NS with mutual attraction, thus making them valence 
3 (f=3) particles. The sticky terminals consist in 6 base-long self-
complementary overhanging sequences, which at low T 
hybridize with the overhangs of other NS. b,c: Pictorial sketches 
describing the T dependence of the NS aggregation state. b: at 
T = 35 °C, the fraction of bound terminals is p = 0.17, and the NS 
are dispersed as monomers or small clusters. c: at T = 20 °C, the 
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fraction of bound terminals is p = 0.66, and the NS are bound 
into a percolating network.  
 
2 Microfluidic-based active microrheology. a,b: the optofluidic 
chip (a) comprizes a straight fluidic channel having section 150 
µm x 150 µm and two waveguide carrying counter-propagating 
beams perpendicularly to the channel as described in the sketch 
(b). Micro-beads are trapped and put in motion by modulating 
the light power carried by the two waveguides. c:  the 
experiment is prepared by unbalancing the beams and trapping 
the bead near a channel wall. In the sketch, the light power 
coming from the right-hand side (marked as LASER ON*) is 
larger than the opposite one. d: as the stronger beam is 
shuttered, the bead is shot across the channel. e: example of 
position (x) dependence of the optical force for a given laser 
power. f: excerpt of a typical time-lapse sequence of a shooting 
procedure. g: by tracking the bead on the recorded video, its 
motion x(t) (black line) could be determined with 1Pm 
resolution. 
 
3 Viscous behavior of the DNA network. Viscosity 
measurements were performed in a range of temperatures T 
represented by a color code adopted throughout the figure. a: 
bead motion x(t) measured for a choice of T and light powers 
(empty dots) and their fitting with Eq. 1 (lines). b: for each 
optical shooting, the bead speed v(x) was determined from x(t) 
and used to extract the apparent viscosity KA as a function of v 
(colored squares). Dotted line: water viscosity. Dashed line: KA 
in the network fracturing regime at T = 22°C. c: from the same 
data, we determined the force F vs. v. Dotted line: F in pure 
water. Dashed line: F in the network fracturing regime at T = 
22°C. d: data in panel b are rescaled using two dimensionless 
quantities based on K0(T) and W(T). The scaling of KA(T) leads to 
the collapse of all measured data. e: the fitting of x(t) (panel a) 
enabled determining the values of W(T) (blue diamonds, left-
hand axis)�and K0(T) (red triangles, right-hand axis) for each 
optical shooting. WDLS(T) determined via Dynamic Light 
Scattering [see ESI] are also shown (green squares, left-hand 
axis). f: T dependence of the exponents n of the power law fluid 
(colored dots, right-hand axis). The experimental crossover 
range (from n=0.8 to n=0.2) is marked by purple shading. Elastic 
energy per bond Eel caused by the deformation caused by the 
bead moving at a speed v (blue lines, left-hand axis; dotted line, 
v=3 Pm/s; continuous line, v=10 Pm/s; dashed line, v=60 Pm/s). 
Free energy per NS-NS bond 'G (red line, left-hand axis). The 
crossover from n=0.8 to n=0.2 predicted by the model in Ref. 2 
is obtained by the crossing of Eel with 'G-kBT and 'G-2kBT 
(orange lines). The construct in the figure, built with Eel at v=10 
Pm/s, predicts the crossover to take place in the grey shaded 
region. The black squares represent the predicted conditions of 
n=0.2 and n=0.8.  
 
 
4 Three regimes in the transition between Newtonian to non-
Newtonian fluid. Upon lowering the temperature, the system 
evolves through three states, here pictorially described at the 
bead length scale (panels 1, at the left-hand side) and at the NS 

length scale (panels 2, at the right-hand side). In the drawing the 
NS density is marked by purple shading. In the Newtonian 
“cluster regime” the system is a dispersion of independent NS 
or small clusters of NS (a1, a2). In the Newtonian “stretched 
elastic network” regime the NS network is extended but the 
bond lifetime is short enough that the bead motion stresses the 
network but does not break the bonds (b1, b2). In the non-
Newtonian “network fracturing” regime the network is long 
lived and the bead moves by breaking the bonds to produce an 
opening through the network (c1, c2).  
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Fig. 1: Description of the transient network based on interacting DNA nanostars (NS). a: Each DNA 
nanoparticle is shaped as a three-armed star. Each arm terminates with a sticky spot that provides NS with 
mutual attraction, thus making them valence 3 (f=3) particles. The sticky terminals consist in 6 base-long 
self-complementary overhanging sequences, which at low T hybridize with the overhangs of other NS. b,c: 
Pictorial sketches describing the T dependence of the NS aggregation state. b: at T = 35 °C, the fraction of 
bound terminals is p = 0.17, and the NS are dispersed as monomers or small clusters. c: at T = 20 °C, the 

fraction of bound terminals is p = 0.66, and the NS are bound into a percolating network.  
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Fig. 2: Microfluidic-based active microrheology. a,b: the optofluidic chip (a) comprizes a straight fluidic 
channel having section 150 µm x 150 µm and two waveguide carrying counter-propagating beams 

perpendicularly to the channel as described in the sketch (b). Micro-beads are trapped and put in motion by 
modulating the light power carried by the two waveguides. c:  the experiment is prepared by unbalancing 

the beams and trapping the bead near a channel wall. In the sketch, the light power coming from the right-
hand side (marked as LASER ON*) is larger than the opposite one. d: as the stronger beam is shuttered, the 
bead is shot across the channel. e: example of position (x) dependence of the optical force for a given laser 
power. f: excerpt of a typical time-lapse sequence of a shooting procedure. g: by tracking the bead on the 

recorded video, its motion x(t) (black line) could be determined with 1µm resolution.  
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Fig. 3: Viscous behavior of the DNA network. Viscosity measurements were performed in a range of 
temperatures T represented by a color code adopted throughout the figure. a: bead motion x(t) measured 

for a choice of T and light powers (empty dots) and their fitting with Eq. 1 (lines). b: for each optical 
shooting, the bead speed v(x) was determined from x(t) and used to extract the apparent viscosity ηA as a 

function of v (colored squares). Dotted line: water viscosity. Dashed line: ηA in the network fracturing 
regime at T = 22°C. c: from the same data, we determined the force F vs. v. Dotted line: F in pure water. 

Dashed line: F in the network fracturing regime at T = 22°C. d: data in panel b are rescaled using two 
dimensionless quantities based on η0(T) and τ(T). The scaling of ηA(T) leads to the collapse of all measured 
data. e: the fitting of x(t) (panel a) enabled determining the values of τ(T) (blue diamonds, left-hand axis) 
and η0(T) (red triangles, right-hand axis) for each optical shooting. τDLS(T) determined via Dynamic Light 
Scattering [see S.I.] are also shown (green squares, left-hand axis). f: T dependence of the exponents n of 

the power law fluid (colored dots, right-hand axis). The experimental crossover range (from n=0.8 to 
n=0.2) is marked by purple shading. Elastic energy per bond Eel caused by the deformation caused by the 
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bead moving at a speed v (blue lines, left-hand axis; dotted line, v=3 µm/s; continuous line, v=10 µm/s; 
dashed line, v=60 µm/s). Free energy per NS-NS bond ∆G (red line, left-hand axis). The crossover from 
n=0.8 to n=0.2 predicted by the model in Ref. 2 is obtained by the crossing of Eel with ∆G-kBT and ∆G-

2kBT (orange lines). The construct in the figure, built with Eel at v=10 µm/s, predicts the crossover to take 
place in the grey shaded region. The black squares represent the predicted conditions of n=0.2 and n=0.8.  
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Fig. 4: Three regimes in the transition between Newtonian to non-Newtonian fluid. Upon lowering the 
temperature, the system evolves through three states, here pictorially described at the bead length scale 

(panels 1, at the left-hand side) and at the NS length scale (panels 2, at the right-hand side). In the 
drawing the NS density is marked by purple shading. In the Newtonian “cluster regime” the system is a 

dispersion of independent NS or small clusters of NS (a1, a2). In the Newtonian “stretched elastic network” 
regime the NS network is extended but the bond lifetime is short enough that the bead motion stresses the 

network but does not break the bonds (b1, b2). In the non-Newtonian “network fracturing” regime the 
network is long lived and the bead moves by breaking the bonds to produce an opening through the network 

(c1, c2).  
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