The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique—Subtype and Stage Inference (SuStaIn)—able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer’s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 × 10 −4 ) or temporal stage (p = 3.96 × 10 −5 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine.
Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference / A.L. Young, R.V. Marinescu, N.P. Oxtoby, M. Bocchetta, K. Yong, N.C. Firth, D.M. Cash, D.L. Thomas, K.M. Dick, J. Cardoso, J. van Swieten, B. Borroni, D. Galimberti, M. Masellis, M.C. Tartaglia, J.B. Rowe, C. Graff, F. Tagliavini, G.B. Frisoni, R. Laforce, E. Finger, A. de Mendonça, S. Sorbi, J.D. Warren, S. Crutch, N.C. Fox, S. Ourselin, J.M. Schott, J.D. Rohrer, D.C. Alexander, C. Andersson, S. Archetti, A. Arighi, L. Benussi, G. Binetti, S. Black, M. Cosseddu, M. Fallström, C. Ferreira, C. Fenoglio, M. Freedman, G.G. Fumagalli, S. Gazzina, R. Ghidoni, M. Grisoli, V. Jelic, L. Jiskoot, R. Keren, G. Lombardi, C. Maruta, L. Meeter, S. Mead, R. van Minkelen, B. Nacmias, L. Öijerstedt, A. Padovani, J. Panman, M. Pievani, C. Polito, E. Premi, S. Prioni, R. Rademakers, V. Redaelli, E. Rogaeva, G. Rossi, M. Rossor, E. Scarpini, D. Tang-Wai, H. Thonberg, P. Tiraboschi, A. Verdelho, M.W. Weiner, P. Aisen, R. Petersen, C.R. Jack, W. Jagust, J.Q. Trojanowki, A.W. Toga, L. Beckett, R.C. Green, A.J. Saykin, J. Morris, L.M. Shaw, Z. Khachaturian, G. Sorensen, L. Kuller, M. Raichle, S. Paul, P. Davies, H. Fillit, F. Hefti, D. Holtzman, M.M. Mesulam, W. Potter, P. Snyder, A. Schwartz, T. Montine, R.G. Thomas, M. Donohue, S. Walter, D. Gessert, T. Sather, G. Jiminez, D. Harvey, M. Bernstein, P. Thompson, N. Schuff, B. Borowski, J. Gunter, M. Senjem, P. Vemuri, D. Jones, K. Kantarci, C. Ward, R.A. Koeppe, N. Foster, E.M. Reiman, K. Chen, C. Mathis, S. Landau, N.J. Cairns, E. Householder, L. Taylor-Reinwald, V. Lee, M. Korecka, M. Figurski, K. Crawford, S. Neu, T.M. Foroud, S. Potkin, L. Shen, K. Faber, S. Kim, K. Nho, L. Thal, N. Buckholtz, M. Albert, R. Frank, J. Hsiao, J. Kaye, J. Quinn, B. Lind, R. Carter, S. Dolen, L.S. Schneider, S. Pawluczyk, M. Beccera, L. Teodoro, B.M. Spann, J. Brewer, H. Vanderswag, A. Fleisher, J.L. Heidebrink, J.L. Lord, S.S. Mason, C.S. Albers, D. Knopman, K. Johnson, R.S. Doody, J. Villanueva-Meyer, M. Chowdhury, S. Rountree, M. Dang, Y. Stern, L.S. Honig, K.L. Bell, B. Ances, M. Carroll, S. Leon, M.A. Mintun, S. Schneider, A. Oliver, D. Marson, R. Griffith, D. Clark, D. Geldmacher, J. Brockington, E. Roberson, H. Grossman, E. Mitsis, L. de Toledo-Morrell, R.C. Shah, R. Duara, D. Varon, M.T. Greig, P. Roberts, M. Albert, C. Onyike, D. D’Agostino, S. Kielb, J.E. Galvin, B. Cerbone, C.A. Michel, H. Rusinek, M.J. de Leon, L. Glodzik, S. De Santi, P.M. Doraiswamy, J.R. Petrella, T.Z. Wong, S.E. Arnold, J.H. Karlawish, D. Wolk, C.D. Smith, G. Jicha, P. Hardy, P. Sinha, E. Oates, G. Conrad, O.L. Lopez, M. Oakley, D.M. Simpson, A.P. Porsteinsson, B.S. Goldstein, K. Martin, K.M. Makino, M.S. Ismail, C. Brand, R.A. Mulnard, G. Thai, C. Mc-Adams-Ortiz, K. Womack, D. Mathews, M. Quiceno, R. Diaz-Arrastia, R. King, M. Weiner, K. Martin-Cook, M. Devous, A.I. Levey, J.J. Lah, J.S. Cellar, J.M. Burns, H.S. Anderson, R.H. Swerdlow, L. Apostolova, K. Tingus, E. Woo, D.H. Silverman, P.H. Lu, G. Bartzokis, N.R. Graff-Radford, F. Parfitt, T. Kendall, H. Johnson, M.R. Farlow, A.M. Hake, B.R. Matthews, S. Herring, C. Hunt, C.H. van Dyck, R.E. Carson, M.G. Macavoy, H. Chertkow, H. Bergman, C. Hosein, B. Stefanovic, C. Caldwell, G.R. Hsiung, H. Feldman, B. Mudge, M. Assaly, A. Kertesz, J. Rogers, C. Bernick, D. Munic, D. Kerwin, M. Mesulam, K. Lipowski, C. Wu, N. Johnson, C. Sadowsky, W. Martinez, T. Villena, R.S. Turner, K. Johnson, B. Reynolds, R.A. Sperling, K.A. Johnson, G. Marshall, M. Frey, B. Lane, A. Rosen, J. Tinklenberg, M.N. Sabbagh, C.M. Belden, S.A. Jacobson, S.A. Sirrel, N. Kowall, R. Killiany, A.E. Budson, A. Norbash, P.L. Johnson, J. Allard, A. Lerner, P. Ogrocki, L. Hudson, E. Fletcher, O. Carmichael, J. Olichney, C. Decarli, S. Kittur, M. Borrie, T.-. Lee, R. Bartha, S. Johnson, S. Asthana, C.M. Carlsson, S.G. Potkin, A. Preda, D. Nguyen, P. Tariot, S. Reeder, V. Bates, H. Capote, M. Rainka, D.W. Scharre, M. Kataki, A. Adeli, E.A. Zimmerman, D. Celmins, A.D. Brown, G.D. Pearlson, K. Blank, K. Anderson, R.B. Santulli, T.J. Kitzmiller, E.S. Schwartz, K.M. Sink, J.D. Williamson, P. Garg, F. Watkins, B.R. Ott, H. Querfurth, G. Tremont, S. Salloway, P. Malloy, S. Correia, H.J. Rosen, B.L. Miller, J. Mintzer, K. Spicer, D. Bachman, S. Pasternak, I. Rachinsky, D. Drost, N. Pomara, R. Hernando, A. Sarrael, S.K. Schultz, L.L.B. Ponto, H. Shim, K.E. Smith, N. Relkin, G. Chaing, L. Raudin, A. Smith, K. Fargher, B.A. Raj, T. Neylan, J. Grafman, M. Davis, R. Morrison, J. Hayes, S. Finley, K. Friedl, D. Fleischman, K. Arfanakis, O. James, D. Massoglia, J.J. Fruehling, S. Harding, E.R. Peskind, E.C. Petrie, G. Li, J.A. Yesavage, J.L. Taylor, A.J. Furst. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 9:1(2018 Dec 01). [10.1038/s41467-018-05892-0]
Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference
D. Galimberti;A. ArighiMembro del Collaboration Group
;C. FenoglioMembro del Collaboration Group
;E. ScarpiniMembro del Collaboration Group
;
2018
Abstract
The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique—Subtype and Stage Inference (SuStaIn)—able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer’s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 × 10 −4 ) or temporal stage (p = 3.96 × 10 −5 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine.File | Dimensione | Formato | |
---|---|---|---|
30. Young Nat Comm.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
4.89 MB
Formato
Adobe PDF
|
4.89 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.