The growing interest for new routes to obtain acetonitrile led to the development of catalysts active toward the ammoxidation of various substrates. Among these, a C2 molecule such as ethanol represents a good choice in terms of atom economy and, being renewable, sets the basis for a long-term sustainable process. This paper describes a fully integrated, newly designed process for the production of acetonitrile from bioethanol, currently not present in the literature. The target is the production and purification of 10 kg/h of acetonitrile, unit of production used for calculations, obtained from ethanol, ammonia, and air as raw materials. All the byproducts, mainly ammonium bicarbonate and sodium cyanide, are considered marketable chemicals and represent an added value, instead of a disposal issue. Their optimized recovery is included in this flowsheet as a basis for the future economic assessment of the system. The process consumes CO2 without its direct emission. In principle, all the carbon atoms and 90% of the nitrogen atoms are turned into reaction products, and the main loss is gaseous N2. The process design has been performed by means of the Aspen PLUS process simulator, on the basis of literature data and other experimental results. In addition, for an evaluation of the potential benefits of the innovative biobased route, a life cycle analysis was carried out including all the stages involved in the bioacetonitrile production (from raw materials extraction up to the gate plant). The results were then compared with those achieved for the traditional fossil route (SOHIO process), showing a sensible decrease of the environmental burdens in terms of nonrenewable resources and damage to ecosystems (e.g., toxicity, climate change, etc.). Finally, a simplified sensitivity analysis was carried out by substituting the starting raw material for the production of bioethanol (corn) with other materials conventionally used worldwide, such as sugar cane and wood. The latter option seems to make the system more competitive in terms of carbon neutrality, thanks to the usage of the residual lignocellulosic fraction available on the market.

Acetonitrile from Bioethanol Ammoxidation : Process Design from the Grass-Roots and Life Cycle Analysis / A. Tripodi, E. Bahadori, D. Cespi, F. Passarini, F. Cavani, T. Tabanelli, I. Rossetti. - In: ACS SUSTAINABLE CHEMISTRY & ENGINEERING. - ISSN 2168-0485. - 6:4(2018 Apr), pp. 5441-5451.

Acetonitrile from Bioethanol Ammoxidation : Process Design from the Grass-Roots and Life Cycle Analysis

A. Tripodi
Primo
;
E. Bahadori
Secondo
;
I. Rossetti
Ultimo
2018

Abstract

The growing interest for new routes to obtain acetonitrile led to the development of catalysts active toward the ammoxidation of various substrates. Among these, a C2 molecule such as ethanol represents a good choice in terms of atom economy and, being renewable, sets the basis for a long-term sustainable process. This paper describes a fully integrated, newly designed process for the production of acetonitrile from bioethanol, currently not present in the literature. The target is the production and purification of 10 kg/h of acetonitrile, unit of production used for calculations, obtained from ethanol, ammonia, and air as raw materials. All the byproducts, mainly ammonium bicarbonate and sodium cyanide, are considered marketable chemicals and represent an added value, instead of a disposal issue. Their optimized recovery is included in this flowsheet as a basis for the future economic assessment of the system. The process consumes CO2 without its direct emission. In principle, all the carbon atoms and 90% of the nitrogen atoms are turned into reaction products, and the main loss is gaseous N2. The process design has been performed by means of the Aspen PLUS process simulator, on the basis of literature data and other experimental results. In addition, for an evaluation of the potential benefits of the innovative biobased route, a life cycle analysis was carried out including all the stages involved in the bioacetonitrile production (from raw materials extraction up to the gate plant). The results were then compared with those achieved for the traditional fossil route (SOHIO process), showing a sensible decrease of the environmental burdens in terms of nonrenewable resources and damage to ecosystems (e.g., toxicity, climate change, etc.). Finally, a simplified sensitivity analysis was carried out by substituting the starting raw material for the production of bioethanol (corn) with other materials conventionally used worldwide, such as sugar cane and wood. The latter option seems to make the system more competitive in terms of carbon neutrality, thanks to the usage of the residual lignocellulosic fraction available on the market.
Acetonitrile; Ammonia; Ammoxidation; CO2 use; Ethanol; Life cycle assessment (LCA); Process simulation; Chemistry (all); Environmental Chemistry; Chemical Engineering (all); Renewable Energy, Sustainability and the Environment
Settore ING-IND/25 - Impianti Chimici
apr-2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Acetonitrile_ACS-Sust-Chem-Eng.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Acetonitrile_ACS_2018-02-28_revised_unmarked.pdf

Open Access dal 23/06/2019

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/618281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact