Big Data technology has discarded traditional data modeling approaches as no longer applicable to distributed data processing. It is, however, largely recognized that Big Data impose novel challenges in data and infrastructure management. Indeed, multiple components and procedures must be coordinated to ensure a high level of data quality and accessibility for the application layers, e.g., data analytics and reporting. In this paper, the third of its kind co-authored by members of IFIP WG 2.6 on Data Semantics, we propose a review of the literature addressing these topics and discuss relevant challenges for future research. Based on our literature review, we argue that methods, principles, and perspectives developed by the Data Semantics community can significantly contribute to address Big Data challenges.
Big Data Semantics / P. Ceravolo, A. Azzini, M. Angelini, T. Catarci, P. Cudré-Mauroux, E. Damiani, A. Mazak, M. Van Keulen, M. Jarrar, G. Santucci, K. Sattler, M. Scannapieco, M. Wimmer, R. Wrembel, F. Zaraket. - In: JOURNAL ON DATA SEMANTICS. - ISSN 1861-2032. - 7:2(2018 Jun), pp. 65-85.
Big Data Semantics
P. Ceravolo
Primo
;A. Azzini;E. Damiani;
2018
Abstract
Big Data technology has discarded traditional data modeling approaches as no longer applicable to distributed data processing. It is, however, largely recognized that Big Data impose novel challenges in data and infrastructure management. Indeed, multiple components and procedures must be coordinated to ensure a high level of data quality and accessibility for the application layers, e.g., data analytics and reporting. In this paper, the third of its kind co-authored by members of IFIP WG 2.6 on Data Semantics, we propose a review of the literature addressing these topics and discuss relevant challenges for future research. Based on our literature review, we argue that methods, principles, and perspectives developed by the Data Semantics community can significantly contribute to address Big Data challenges.File | Dimensione | Formato | |
---|---|---|---|
BigData1.0.pdf
accesso riservato
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
426.93 kB
Formato
Adobe PDF
|
426.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.