Achromobacter sp. strain N2 was isolated from a pyrite-cinder-contaminated soil and presented plant growth promoting traits (ACC deaminase activity, production of indole-3-acetic and jasmonic acids, siderophores secretion, and phosphate solubilization) and arsenic transformation abilities. Achromobacter sp. strain N2 was resistant to different metals and metalloids, including arsenate (100 mM) and arsenite (5 mM). The strain was resistant to ionic stressors (i.e., arsenate and NaCl), whereas bacterial growth was impaired by osmotic stress. Strain N2 was able to oxidize 1.0 mmol L-1 of arsenite to arsenate in 72 h. This evidence was supported by the retrieval of an arsenite oxidase AioA gene highly homologous to arsenite oxidases of Achromobacter and Alcaligenes species. Rice seeds of Oryza sativa (var. Loto) were bio-primed with ACCD-induced and non-induced cells in order to evaluate the effect of inoculation on rice seedlings growth and arsenic uptake. The bacterization with ACCD-induced cells significantly improved seed germination and seedling heights if compared with the seeds inoculated with non-induced cells and non-primed seeds. Enhanced arsenic uptake was evidenced in the presence of ACCD-induced cells, suggesting a role of ACCD activity on the mitigation of the toxicity of arsenic accumulated by the plant. This kind of responses should be taken into account when proposing PGP strains for improving plant growth in arsenic-rich soils.
Characterization of As(III) oxidizing Achromobacter sp. strain N2 : effects on arsenic toxicity and translocation in rice / A. Corsini, M. Colombo, S. Zecchin, C. Gardana, P. Simonetti, L. Cavalca. - In: ANNALS OF MICROBIOLOGY. - ISSN 1590-4261. - 68:5(2018 May 01), pp. 295-304. [10.1007/s13213-018-1338-y]
Characterization of As(III) oxidizing Achromobacter sp. strain N2 : effects on arsenic toxicity and translocation in rice
A. CorsiniPrimo
;M. ColomboSecondo
;S. Zecchin;C. Gardana;P. SimonettiPenultimo
;L. Cavalca
Ultimo
2018
Abstract
Achromobacter sp. strain N2 was isolated from a pyrite-cinder-contaminated soil and presented plant growth promoting traits (ACC deaminase activity, production of indole-3-acetic and jasmonic acids, siderophores secretion, and phosphate solubilization) and arsenic transformation abilities. Achromobacter sp. strain N2 was resistant to different metals and metalloids, including arsenate (100 mM) and arsenite (5 mM). The strain was resistant to ionic stressors (i.e., arsenate and NaCl), whereas bacterial growth was impaired by osmotic stress. Strain N2 was able to oxidize 1.0 mmol L-1 of arsenite to arsenate in 72 h. This evidence was supported by the retrieval of an arsenite oxidase AioA gene highly homologous to arsenite oxidases of Achromobacter and Alcaligenes species. Rice seeds of Oryza sativa (var. Loto) were bio-primed with ACCD-induced and non-induced cells in order to evaluate the effect of inoculation on rice seedlings growth and arsenic uptake. The bacterization with ACCD-induced cells significantly improved seed germination and seedling heights if compared with the seeds inoculated with non-induced cells and non-primed seeds. Enhanced arsenic uptake was evidenced in the presence of ACCD-induced cells, suggesting a role of ACCD activity on the mitigation of the toxicity of arsenic accumulated by the plant. This kind of responses should be taken into account when proposing PGP strains for improving plant growth in arsenic-rich soils.File | Dimensione | Formato | |
---|---|---|---|
Charatcterization of strain N2 and effects on arsenic in rice.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
968.73 kB
Formato
Adobe PDF
|
968.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
N2_Rice_ANMI-D-17-01021_R1.pdf.pdf
Open Access dal 31/07/2019
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri |
Corsini2018_Article_CharacterizationOfAsIIIOxidizi.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
770.67 kB
Formato
Adobe PDF
|
770.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.