We describe the Monte Carlo (MC) simulation of the Borexino detector and the agreement of its output with data. The Borexino MC “ab initio” simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland–Zen, SNO+, and Juno

The Monte Carlo simulation of the Borexino detector / M. Agostini, K. Altenmüller, S. Appel, V. Atroshchenko, Z. Bagdasarian, D. Basilico, G. Bellini, J. Benziger, D. Bick, G. Bonfini, L. Borodikhina, D. Bravo, B. Caccianiga, F. Calaprice, A. Caminata, M. Canepa, S. Caprioli, M. Carlini, P. Cavalcante, A. Chepurnov, K. Choi, D. D’Angelo, S. Davini, A. Derbin, X.F. Ding, L. Di Noto, I. Drachnev, K. Fomenko, A. Formozov, D. Franco, F. Froborg, F. Gabriele, C. Galbiati, C. Ghiano, M. Giammarchi, M. Goeger-Neff, A. Goretti, M. Gromov, C. Hagner, T. Houdy, E. Hungerford, A. Ianni, A. Ianni, A. Jany, D. Jeschke, V. Kobychev, D. Korablev, G. Korga, D. Kryn, M. Laubenstein, E. Litvinovich, F. Lombardi, P. Lombardi, L. Ludhova, G. Lukyanchenko, I. Machulin, M. Magnozzi, G. Manuzio, S. Marcocci, J. Martyn, E. Meroni, M. Meyer, L. Miramonti, M. Misiaszek, V. Muratova, B. Neumair, L. Oberauer, B. Opitz, F. Ortica, M. Pallavicini, L. Papp, A. Pocar, G. Ranucci, A. Razeto, A. Re, A. Romani, R. Roncin, N. Rossi, S. Schönert, D. Semenov, P. Shakina, M. Skorokhvatov, O. Smirnov, A. Sotnikov, L.F.F. Stokes, Y. Suvorov, R. Tartaglia, G. Testera, J. Thurn, M. Toropova, E. Unzhakov, A. Vishneva, R.B. Vogelaar, F. von Feilitzsch, H. Wang, S. Weinz, M. Wojcik, M. Wurm, Z. Yokley, O. Zaimidoroga, S. Zavatarelli, K. Zuber, G. Zuzel. - In: ASTROPARTICLE PHYSICS. - ISSN 0927-6505. - 97(2018 Jan), pp. 136-159. [10.1016/j.astropartphys.2017.10.003]

The Monte Carlo simulation of the Borexino detector

D. Basilico;G. Bellini;B. Caccianiga;S. Caprioli;D. D’Angelo;A. Formozov;E. Meroni;L. Miramonti;A. Re;
2018

Abstract

We describe the Monte Carlo (MC) simulation of the Borexino detector and the agreement of its output with data. The Borexino MC “ab initio” simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The MC is tuned using data collected with radioactive calibration sources deployed inside and around the scintillator volume. The simulation reproduces the energy response of the detector, its uniformity within the fiducial scintillator volume relevant to neutrino physics, and the time distribution of detected photons to better than 1% between 100 keV and several MeV. The techniques developed to simulate the Borexino detector and their level of refinement are of possible interest to the neutrino community, especially for current and future large-volume liquid scintillator experiments such as Kamland–Zen, SNO+, and Juno
Solar neutrinos; Large volume liquid scintillator detectors; Monte Carlo simulations
Settore FIS/01 - Fisica Sperimentale
gen-2018
17-ott-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0927650517301330-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 4.53 MB
Formato Adobe PDF
4.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1704.02291.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 4.52 MB
Formato Adobe PDF
4.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/533794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 28
social impact