Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect.

Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies / M. Colombo, L. Fiandra, G. Alessio, S. Mazzucchelli, M. Nebuloni, C. De Palma, K. Kantner, B. Pelaz, R. Rotem, F. Corsi, W.J. Parak, D. Prosperi. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 7(2016 Dec), pp. 13818.1-13818.14.

Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies

L. Fiandra
Secondo
;
G. Alessio;S. Mazzucchelli;M. Nebuloni;C. De Palma;F. Corsi;
2016

Abstract

Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect.
chemistry (all); biochemistry, genetics and molecular biology (all); physics and astronomy (all)
Settore BIO/10 - Biochimica
Settore BIO/13 - Biologia Applicata
Settore BIO/12 - Biochimica Clinica e Biologia Molecolare Clinica
dic-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
ncomms13818.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 5.55 MB
Formato Adobe PDF
5.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/483755
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 120
  • ???jsp.display-item.citation.isi??? 109
social impact