Aims Hyperoxic breathing might lead to redox imbalance and signaling changes that affect cerebral function. Paradoxically, hypoxic breathing is also believed to cause oxidative stress. Our aim is to dissect the cerebral tissue responses to altered O2 fractions in breathed air by assessing the redox imbalance and the recruitment of the hypoxia signaling pathways. Results Mice were exposed to mild hypoxia (10%O2), normoxia (21%O2) or mild hyperoxia (30%O2) for 28 days, sacrificed and brain tissue excised and analyzed. Although one might expect linear responses to %O2, only few of the examined variables exhibited this pattern, including neuroprotective phospho- protein kinase B and the erythropoietin receptor. The major reactive oxygen species (ROS) source in brain, NADPH oxidase subunit 4 increased in hypoxia but not in hyperoxia, whereas neither affected nuclear factor (erythroid-derived 2)-like 2, a transcription factor that regulates the expression of antioxidant proteins. As a result of the delicate equilibrium between ROS generation and antioxidant defense, neuron apoptosis and cerebral tissue hydroperoxides increased in both 10%O2 and 30%O2, as compared with 21%O2. Remarkably, the expression level of hypoxia-inducible factor (HIF)−2α (but not HIF-1α) was higher in both 10%O2 and 30%O2 with respect to 21%O2 Innovation Comparing the in vivo effects driven by mild hypoxia with those driven by mild hyperoxia helps addressing whether clinically relevant situations of O2 excess and scarcity are toxic for the organism. Conclusion Prolonged mild hyperoxia leads to persistent cerebral damage, comparable to that inferred by prolonged mild hypoxia. The underlying mechanism appears related to a model whereby the imbalance between ROS generation and anti-ROS defense is similar, but occurs at higher levels in hypoxia than in hyperoxia.

Brain adaptation to hypoxia and hyperoxia in mice / L. Terraneo, R. Paroni, P. Bianciardi, T. Giallongo, S. Carelli, A. Gorio, M. Samaja. - In: REDOX BIOLOGY. - ISSN 2213-2317. - 11(2017), pp. 12-20.

Brain adaptation to hypoxia and hyperoxia in mice

L. Terraneo
Primo
;
R. Paroni
Secondo
;
P. Bianciardi;T. Giallongo;S. Carelli;A. Gorio
Penultimo
;
M. Samaja
2017

Abstract

Aims Hyperoxic breathing might lead to redox imbalance and signaling changes that affect cerebral function. Paradoxically, hypoxic breathing is also believed to cause oxidative stress. Our aim is to dissect the cerebral tissue responses to altered O2 fractions in breathed air by assessing the redox imbalance and the recruitment of the hypoxia signaling pathways. Results Mice were exposed to mild hypoxia (10%O2), normoxia (21%O2) or mild hyperoxia (30%O2) for 28 days, sacrificed and brain tissue excised and analyzed. Although one might expect linear responses to %O2, only few of the examined variables exhibited this pattern, including neuroprotective phospho- protein kinase B and the erythropoietin receptor. The major reactive oxygen species (ROS) source in brain, NADPH oxidase subunit 4 increased in hypoxia but not in hyperoxia, whereas neither affected nuclear factor (erythroid-derived 2)-like 2, a transcription factor that regulates the expression of antioxidant proteins. As a result of the delicate equilibrium between ROS generation and antioxidant defense, neuron apoptosis and cerebral tissue hydroperoxides increased in both 10%O2 and 30%O2, as compared with 21%O2. Remarkably, the expression level of hypoxia-inducible factor (HIF)−2α (but not HIF-1α) was higher in both 10%O2 and 30%O2 with respect to 21%O2 Innovation Comparing the in vivo effects driven by mild hypoxia with those driven by mild hyperoxia helps addressing whether clinically relevant situations of O2 excess and scarcity are toxic for the organism. Conclusion Prolonged mild hyperoxia leads to persistent cerebral damage, comparable to that inferred by prolonged mild hypoxia. The underlying mechanism appears related to a model whereby the imbalance between ROS generation and anti-ROS defense is similar, but occurs at higher levels in hypoxia than in hyperoxia.
Hypoxia-inducible factor; In vivo hyperoxia; In vivo hypoxia; Neurons; Oxidative injury; Biochemistry; Organic Chemistry
Settore BIO/10 - Biochimica
Settore BIO/12 - Biochimica Clinica e Biologia Molecolare Clinica
Settore BIO/14 - Farmacologia
2017
11-nov-2016
Article (author)
File in questo prodotto:
File Dimensione Formato  
111-Brain adaptation to hypoxia and hyperoxia in mice.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 966.51 kB
Formato Adobe PDF
966.51 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/476040
Citazioni
  • ???jsp.display-item.citation.pmc??? 35
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 59
social impact