α-Synuclein is a presynaptic protein associated to Parkinson's disease, which is unstructured when free in the cytoplasm and adopts α helical conformation when bound to vesicles. After decades of intense studies, α-Synuclein physiology is still difficult to clear up due to its interaction with multiple partners and its involvement in a pletora of neuronal functions. Here, we looked at the remarkably neglected interplay between α-Synuclein and microtubules, which potentially impacts on synaptic functionality. In order to identify the mechanisms underlying these actions, we investigated the interaction between purified α-Synuclein and tubulin. We demonstrated that α-Synuclein binds to microtubules and tubulin α2β2 tetramer; the latter interaction inducing the formation of helical segment(s) in the α-Synuclein polypeptide. This structural change seems to enable α-Synuclein to promote microtubule nucleation and to enhance microtubule growth rate and catastrophe frequency, both in vitro and in cell. We also showed that Parkinson's disease-linked α-Synuclein variants do not undergo tubulin-induced folding and cause tubulin aggregation rather than polymerization. Our data enable us to propose α-Synuclein as a novel, foldable, microtubule-dynamase, which influences microtubule organisation through its binding to tubulin and its regulating effects on microtubule nucleation and dynamics.
α-Synuclein is a Novel Microtubule Dynamase / D. Cartelli, A. Aliverti, A. Barbiroli, C. Santambrogio, E.M. Ragg, F.V.M. Casagrande, F. Cantele, S. Beltramone, J. Marangon, C. De Gregorio, V. Pandini, M. Emanuele, E. Chieregatti, S. Pieraccini, S. Holmqvist, L. Bubacco, L. Roybon, G. Pezzoli, R. Grandori, I. Arnal, G. Cappelletti. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 6(2016 Sep 15).
α-Synuclein is a Novel Microtubule Dynamase
D. Cartelli
;A. AlivertiSecondo
;A. Barbiroli;E.M. Ragg;F. Cantele;J. Marangon;C. De Gregorio;V. Pandini;S. Pieraccini;G. CappellettiUltimo
2016
Abstract
α-Synuclein is a presynaptic protein associated to Parkinson's disease, which is unstructured when free in the cytoplasm and adopts α helical conformation when bound to vesicles. After decades of intense studies, α-Synuclein physiology is still difficult to clear up due to its interaction with multiple partners and its involvement in a pletora of neuronal functions. Here, we looked at the remarkably neglected interplay between α-Synuclein and microtubules, which potentially impacts on synaptic functionality. In order to identify the mechanisms underlying these actions, we investigated the interaction between purified α-Synuclein and tubulin. We demonstrated that α-Synuclein binds to microtubules and tubulin α2β2 tetramer; the latter interaction inducing the formation of helical segment(s) in the α-Synuclein polypeptide. This structural change seems to enable α-Synuclein to promote microtubule nucleation and to enhance microtubule growth rate and catastrophe frequency, both in vitro and in cell. We also showed that Parkinson's disease-linked α-Synuclein variants do not undergo tubulin-induced folding and cause tubulin aggregation rather than polymerization. Our data enable us to propose α-Synuclein as a novel, foldable, microtubule-dynamase, which influences microtubule organisation through its binding to tubulin and its regulating effects on microtubule nucleation and dynamics.File | Dimensione | Formato | |
---|---|---|---|
Cartelli et al Sci Rep 2016.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Publisher's version/PDF
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.