In a model free discrete time financial market, we prove the superhedging duality theorem, where trading is allowed with dynamic and semi-static strategies. We also show that the initial cost of the cheapest portfolio that dominates a contingent claim on every possible path $\omega \in \Omega $, might be strictly greater than the upper bound of the no-arbitrage prices. We therefore characterize the subset of trajectories on which this duality gap disappears and prove that it is an analytic set.
Model-free superhedging duality / M. Burzoni, M. Frittelli, M. Maggis. - In: THE ANNALS OF APPLIED PROBABILITY. - ISSN 1050-5164. - 27:3(2017), pp. 1452-1477. [10.1214/16-AAP1235]
Model-free superhedging duality
M. Burzoni;M. FrittelliSecondo
;M. MaggisUltimo
2017
Abstract
In a model free discrete time financial market, we prove the superhedging duality theorem, where trading is allowed with dynamic and semi-static strategies. We also show that the initial cost of the cheapest portfolio that dominates a contingent claim on every possible path $\omega \in \Omega $, might be strictly greater than the upper bound of the no-arbitrage prices. We therefore characterize the subset of trajectories on which this duality gap disappears and prove that it is an analytic set.File | Dimensione | Formato | |
---|---|---|---|
euclid.aoap.1500451228.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
304.96 kB
Formato
Adobe PDF
|
304.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1506.06608.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
297.92 kB
Formato
Adobe PDF
|
297.92 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.