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Abstract

In a model free discrete time financial market, we prove the superhedging duality theorem,

where trading is allowed with dynamic and semi-static strategies. We also show that the

initial cost of the cheapest portfolio that dominates a contingent claim on every possible path

ω ∈ Ω, might be strictly greater than the upper bound of the no-arbitrage prices. We therefore

characterize the subset of trajectories on which this duality gap disappears and prove that it

is an analytic set.
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1 Introduction

The aim of this article is the proof of the following discrete time, model independent version of the

superhedging theorem.

Theorem 1.1 (Superhedging). Let g : Ω 7→ R be an F-measurable random variable. Then

inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T ≥ g M-q.s.}
= inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ Ω∗}
= sup

Q∈Mf

EQ[g] = sup
Q∈M

EQ[g],

where

Ω∗ := {ω ∈ Ω | ∃Q ∈ M s.t. Q(ω) > 0} . (1)

We adopt the following setting and notations: let Ω be a Polish space and F = B(Ω) be the

Borel sigma-algebra; T ∈ N, I := {0, ..., T }, S = (St)t∈I be an Rd-valued stochastic process on

(Ω,F) representing the price process of d ∈ N assets; P be the set of all probability measures

on (Ω,F); FS := {FS
t }t∈I be the natural filtration and F := {Ft}t∈I be the Universal Filtration,

namely

Ft :=
⋂

P∈P

FS
t ∨NP

t , where NP
t = {N ⊆ A ∈ FS

t | P (A) = 0};
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H be the class of F-predictable stochastic processes, with values in Rd, representing the family of

admissible trading strategies; (H · S)T :=
∑T

t=1

∑d
j=1H

j
t (Sj

t − Sj
t−1) =

∑T
t=1Ht ·∆St be the gain

up to time T from investing in S adopting the strategy H . We denote

M := {Q ∈ P | S is an F-martingale under Q} ,
Pf := {Q ∈ P | supp(Q) is finite} ,
Mf := M∩Pf ,

where the support of P ∈ P is defined by supp(P ) =
⋂{C ∈ F | C closed, P (C) = 1}. The family

of M-polar sets is given by N := {N ⊆ A ∈ F | Q(A) = 0 ∀Q ∈ M} and a property is said to

hold quasi surely (q.s.) if it holds outside a polar set. We adopt the convention ∞−∞ = −∞ for

those random variables g whose positive and negative part is not integrable. We are also assuming

the existence of a numeraire asset S0
t = 1 for all t ∈ I.

Probability free set up. In the statement of the superhedging theorem there is no reference

to any a priori assigned probability measure and the notions of M, H and Ω∗ only depend on the

measurable space (Ω,F) and the price process S. In general the class M is not dominated.

We are not imposing any restriction on S so that it may describe generic financial securities

(for examples, stocks and/or options). However, in the framework of Theorem 1.1 the class H
of admissible trading strategies requires dynamic trading in all assets. In Theorem 1.2 below we

extend this setup to the case of semi-static trading on a finite number of options.

As illustrated in Section 4, we explicitly show that the initial cost of the cheapest portfolio that

dominates a contingent claim g on every possible path

inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ Ω} (2)

can be strictly greater than supQ∈MEQ[g], unless some artificial assumptions are imposed on g or

on the market. In order to avoid these restrictions on the class of derivatives, it is crucial to select

the correct set of paths (i.e. Ω∗) where the superhedging strategy can be efficiently employed.

On the set Ω∗. In Theorem 1.1, the pathwise model independent inequality in (2), is replaced

with an inequality involving only those ω ∈ Ω which are weighted by at least one martingale

measure Q ∈ M. In [BFM16] (see also Proposition 3.1) it is shown the existence of the maximal

M-polar set N∗, namely a set N∗ ∈ N containing any other set N ∈ N . Moreover

Ω∗ = (N∗)C . (3)

The inequality x+ (H ·S)T ≥ g M-q.s. holds by definition outside any M-polar set and therefore

it is equivalent, thanks to (3), to the inequality x + (H · S)T (ω) ≥ g(ω) ∀ω ∈ Ω∗, which justifies

the first equality in Theorem 1.1. The set Ω∗ can be equivalently determined (see Proposition 3.1)

via the set Mf of martingale measures with finite support, a property that turns out to be crucial

in several proofs.

We stress that we do not make any ad hoc assumptions on the discrete time financial model

and notice that Ω∗ is determined only by S: indeed the set M can be written also as M =
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{
Q ∈ P | S is an FS-martingale under Q

}
. One of the main technical result of the paper is the

proof that the set Ω∗ is an analytic set (Proposition 5.5) and so our findings show that the natural

setup for studying this problem is (Ω, S,F,H) with F the Universal filtration (which contains the

analytic sets) and H the class of F-predictable processes. We also point out that we could replace

any sigma-algebra Ft with the sub sigma-algebra generated by the analytic sets of FS
t .

On Model Independent Arbitrage and the condition M 6= ∅. In case M = ∅ then

Ω∗ = ∅ and the theorem is trivial, as each term in the equalities of Theorem 1.1 is equal to −∞,

provided we convene that any M-q.s. inequalities hold true when M = ∅.

For this reason we will assume without loss of generality M 6= ∅, and recall that this condition

can be reformulated in terms of absence of Model Independent Arbitrages. A Model Independent

H-Arbitrage consists in a trading strategy H ∈ H such that (H · S)T (ω) > 0 ∀ω ∈ Ω. However,

as shown in [BFM16] No Model Independent H-Arbitrage is not sufficient to guarantees M 6= ∅.

Indeed we need the stronger condition of No Model Independent H̃-Arbitrage to hold, where H̃ is

a wider class of F̃-predictable stochastic processes for a suitable enlarged filtration F̃. Hence the

non trivial statement in Theorem 1.1 (i.e. when M 6= ∅) regards the superhedging duality under

No Model Independent H̃-Arbitrage.

1.1 Superhedging with semi-static strategies on options and stocks.

We now allow for the possibility of static trading in a finite number of options. Let us add to the

previous market k options Φ = (φ1, ..., φk) which expires at time T and assume without loss of

generality that they have zero initial cost. We assume that each φj is an F -measurable random

variable. Define hΦ :=
∑k

j=1 h
jφj , h ∈ Rk, and

MΦ := {Q ∈ Mf | EQ[φj ] = 0 ∀j = 1, ..., k} = {Q ∈ Mf | EQ[hΦ] = 0 ∀h ∈ Rk}, (4)

which are the options-adjusted martingale measures, and

ΩΦ := {ω ∈ Ω | ∃Q ∈ MΦ s.t. Q(ω) > 0} ⊆ Ω∗. (5)

We have by definition that for every Q ∈ MΦ the support satisfies supp(Q) ⊆ ΩΦ. We define the

superhedging price when semi-static strategies are allowed by

πΦ(g) := inf
{
x ∈ R | ∃(H,h) ∈ H× Rk such that x+ (H · S)T (ω) + hΦ(ω) ≥ g(ω) ∀ω ∈ ΩΦ

}
.

(6)

With the same methodology used in the proof of Theorem 1.1 we will obtain in Section 5.3 the su-

perhedging duality with semi-static strategies, under the assumption MΦ = {Q ∈ Mf | supp(Q) ⊆
ΩΦ} 1:

Theorem 1.2 (Super-hedging with options). Let g : Ω 7→ R and φj : Ω 7→ R, j = 1, ..., k, be

F-measurable random variables. Then

πΦ(g) = sup
Q∈MΦ

EQ[g].

1We wish to thank J. Ob loj and Z. Hou for pointing out that this hypothesis is necessary for the argument used

in the proof of Theorem 1.2. We will show in a forthcoming paper (joint with J. Ob loj and Z. Hou) that the result

holds in full generality dropping this hypothesis.
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1.2 Comparison with the related literature.

In the classical case when a reference probability is fixed, this subject was originally studied by El

Karoui and Quenez [KQ95]; see also [Ka97] and [DS94] and the references cited therein.

In [BN15] a superhedging theorem is proven in the case of a non-dominated class of priors

P ′ ⊆ P . The result strongly relies on two technical hypothesis: (i) The state space Ω has a

product structure, Ω = ΩT
1 , where Ω1 is a certain fixed Polish space and Ωt

1 is the t-fold product

space; (ii) The set of priors P ′ is also obtained as a collection of product measures P := P0⊗. . .⊗PT

where every Pt is a measurable selector of a certain random class P ′
t ⊆ P(Ω1). P ′

t(ω) represents the

set of possible models for the t-th period, given state ω at time t. An essential requirement on P ′
t

is that the graph(P ′
t) must be an analytic subset of Ωt

1 ×P(Ω1). These assumptions are crucial in

order to apply the measurable selection and stochastic control arguments which lead to the proof

of the superhedging theorem. In our setting we do not impose restrictions on the state space Ω so

the result cannot be deduced from [BN15] for P ′ = M. Moreover, even in the case of Ω = ΩT
1 , the

class of martingale probability measures M is endogenously determined by the market and we do

not require that it satisfies any additional restrictions. Furthermore, the techniques employed to

deduce our version of the superhedging duality theorem are completely different, as they rely on

the results of [BFM16]. Note that in the particular simple case of Ω := (Rd)T with S the canonical

process, from [BFM16], we have that Ω∗ = Ω and there are no M-polar sets. We thus have the

equivalence between P-q.s. and M-q.s. equalities. The superhedging Theorem of [BN15] can be

therefore applied with P ′ = P and the two results coincide.

The relevance of the superhedging problem without any a priori specified set of probability

measures is revealed by the increasing amount of literature on this topic. The problem has been

studied as a particular case of a Skorokhod Embedding Problem (see [BHR01, CO11, Ho11]),

following the pioneering work [Ho98] on robust hedging. The reformulation of the superhedging

duality in the framework of optimal mass transport led to important results both in discrete and

continuous time as in [BHLP13, DS13, DS15, GHLT14, HL0ST16, OH15, TT13].

Different approaches are taken in [AB16, Ri15]. In [Ri15] the continuity assumptions on the

assets allow to embed the problem in the linear programming framework and to obtain the desired

equality in a one period market. In [AB16] from a model independent version of the Fundamental

Theorem of Asset Pricing they deduce the following superhedging duality (Theorem 1.4 [AB16])

inf
{
x ∈ R | ∃(H,h) ∈ H× Rk s.t. x+ (H · S)T (ω) + hΦ(ω) ≥ g(ω) ∀ω ∈ Ω

}
= sup

Q∈MΦ

EQ[g].

(7)

They assume a discrete time market, with one dimensional canonical process S on the path space

Ω = [0,∞)T and an arbitrary (but non empty) set of options on S available for static trading.

Theorem 1.4 in [AB16] relies on two additional technical assumptions: (i) The existence of an

option with super-linearly growing and convex payoff; (ii) The upper semi-continuity of the claim

g.

The example in Section 4 shows that without the upper semi-continuity of the claim g the

duality in (7) fails and it also points out that the reason for this is the insistence of superhedging

over the whole space Ω, instead of over the relevant set of paths Ω∗. Our result holds for a d-
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dimensional (not necessarily canonical) process S and does not necessitate the existence of any

options.

2 Aggregation results

In this section we investigate when certain conditions (like superhedging or hedging) which hold

Q-a.s. for all Q ∈ M, ensure the validity of the correspondent pathwise conditions on Ω∗.

For an arbitrary sigma-algebra G and for G-measurable random variables X and Y , we write

X > Y if X(ω) > Y (ω) for all ω ∈ Ω. When we specify X > Y on a measurable set A ⊂ Ω it

means that X(ω) > Y (ω) holds for all ω ∈ A. Similarly for X ≥ Y and X = Y. We recall that

absence of classical arbitrage opportunities, with respect to a probability P ∈ P , is denoted by

NA(P ). We set

L(Ω,G) := {f : Ω → R | G-measurable },
L(Ω,G)+ := {f ∈ L(Ω,G) | f ≥ 0}.

The linear space of attainable random payoffs with zero initial cost is given by

K := {(H · S)T ∈ L(Ω,F) | H ∈ H}.

Recall that the set of events supporting martingale measures Ω∗ is defined in (1) and observe that

the convex cones

C := {f ∈ L(Ω,F) | f ≤ k on Ω∗ for some k ∈ K}, (8)

C(Q) := {f ∈ L(Ω,F) | f ≤ k Q-a.s. for some k ∈ K}. (9)

are related by C ⊆ C(Q), if Q ∈ M.

The main Theorem 1.1 relies on the following cornerstone proposition that will be proved in

Section 5, as its proof requires several technical arguments.

Proposition 2.1. Let g ∈ L(Ω,F) and define

π∗(g) : = inf {x ∈ R | ∃H ∈ H s.t. x+ (H · S)T ≥ g on Ω∗} (10)

πQ(g) : = inf {x ∈ R | ∃H ∈ H s.t. x+ (H · S)T ≥ g Q- a.s. } . (11)

Then

π∗(g) = sup
Q∈Mf

πQ(g) (12)

C =
⋂

Q∈Mf

C(Q). (13)

In particular, if π∗(g) < +∞ the infimum is a minimum.

Corollary 2.2. Let g ∈ L(Ω,F) and x ∈ R. If for every Q ∈ Mf there exists HQ ∈ H such that

x + (HQ · S)T ≥ g Q-a.s. then there exists H ∈ H such that x + (H · S)T (ω) ≥ g(ω) for every

ω ∈ Ω∗.
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Proof. By assumption, g − x ∈ C(Q) for every Q ∈ Mf . From C =
⋂

Q∈Mf
C(Q) we obtain

g − x ∈ C.

Corollary 2.3 (Perfect hedge). Let g ∈ L(Ω,F). If for every Q ∈ Mf there exists HQ ∈
H, xQ ∈ R such that xQ + (HQ · S)T = g Q-a.s. then there exists H ∈ H, x ∈ R such that

x+ (H · S)T (ω) = g(ω) for every ω ∈ Ω∗, and x
Q = x for every Q ∈ Mf .

Proof. Note first that, from the hypothesis, for every Q ∈ Mf there exists HQ ∈ H, xQ ∈ R such

that xQ + (HQ ·S)T (ω) = g(ω) for every ω ∈ supp(Q). We first show that xQ does not depend on

Q. Assume there exist Q1, Q2 ∈ Mf such that xQ1 < xQ2 . For every λ ∈ (0, 1) set Qλ := λQ1 +

(1 − λ)Q2 ∈ Mf . Then there exist HQλ ∈ H and xQλ ∈ R such that xQλ + (HQλ · S)T (ω) = g(ω)

for every ω ∈ supp(Qλ) = supp(Q1) ∪ supp(Q2). Therefore xQλ + (HQλ · S)T (ω) = g(ω) for every

ω ∈ supp(Qi), for any i = 1, 2, and from NA(Qi) we necessarily have that xQλ = xi.

Since x+(HQ ·S)T (ω) = g(ω) for every ω ∈ supp(Q) we can apply Corollary 2.2 which implies the

existence of H ∈ H such that x+(H ·S)T (ω) ≥ g(ω) on Ω∗. Moreover x−x+((H−HQ) ·S)T (ω) ≥
g(ω) − g(ω) for every ω ∈ supp(Q) implies ((H −HQ) · S)T (ω) ≥ 0 for every ω ∈ supp(Q). Since

NA(Q) holds, we conclude ((H−HQ) ·S)T (ω) = 0 for every ω ∈ supp(Q). Thus for every Q ∈ Mf

we have x + (H · S)T (ω) = g(ω) on supp(Q) and hence the thesis follows from Proposition 4.18

[BFM16] (or Proposition 3.1).

Corollary 2.4 (Bipolar representation). Let C be defined in (8). Then

C = {g ∈ L(Ω,F) | EQ[g] ≤ 0 ∀Q ∈ Mf} (14)

Proof. Clearly C ⊆ {g ∈ L(Ω,F) | ER[g] ≤ 0 ∀R ∈ Mf} =: C̃. Fix Q ∈ Mf and observe that

L0(Ω,F , Q) ≡ L1(Ω,F , Q) ≡ L∞(Ω,F , Q), which denote, respectively, the space of equivalent

classes of Q-a.s. finite, Q-integrable and Q-a.s. bounded F -measurable random variables on

Ω. For g ∈ L(Ω,F) we denote with the capital letter G the corresponding equivalence class

G ∈ L0(Ω,F , Q). Denote also by L0
+(Ω,F , Q) the Q-a.s. non negative elements of L0(Ω,F , Q).

The quotient of K and C(Q) with respect to the Q-a.s. identification ∼Q are denoted respectively

by

KQ : = {K ∈ L0(Ω,F , Q) | K = (H · S)T Q− a.s., H ∈ H},
CQ : = {G ∈ L0(Ω,F , Q) | ∃K ∈ KQ such that G ≤ K Q− a.s.} = KQ − L0

+(Ω,F , Q).

Now we may follow the classical arguments: the convex cone CQ is closed in probability with respect

to Q (see e.g. [KS01] Theorem 1). As Q ∈ Mf , CQ is also closed in L1(Ω,F , Q) and therefore:

(CQ)0 = {Z ∈ L∞(Ω,F , Q) | E[ZG] ≤ 0 ∀G ∈ CQ} ⊆ L∞(Ω,F , Q) ∩ L0
+(Ω,F , Q).

Notice that R ≪ Q and R ∈ Mf if and only if R ≪ Q and dR
dQ ∈ (CQ)0. Hence:

(CQ)00 =
{
G ∈ L1(Ω,F , Q) | E[ZG] ≤ 0 ∀Z ∈ (CQ)0

}

=

{
G ∈ L1(Ω,F , Q) | ER[G] ≤ 0 ∀R ≪ Q s.t.

dR

dQ
∈ (CQ)0

}

=
{
G ∈ L1(Ω,F , Q) | ER[G] ≤ 0 ∀R ≪ Q s.t. R ∈ Mf

}
(15)
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Let g ∈ C̃. By the characterization in (15) the corresponding G belongs to (CQ)
00

. By the bipolar

theorem CQ = (CQ)
00

and therefore G ∈ CQ and g ∈ C(Q) (as defined in (9)). Since this holds for

any Q ∈ Mf , from C =
⋂

Q∈Mf
C(Q) (Proposition 2.1) we conclude that g ∈ C.

Remark 2.5. One may ask whether the bipolar duality (14) implies that C is closed with respect

to some topology. To answer this question let us introduce on L(Ω,F) the following equivalence

relation: for any X,Y ∈ L(Ω,F)

X ∼ Y if and only if X(ω) − Y (ω) = k(ω) for some k ∈ K and for every ω ∈ Ω∗.

Consider the quotient space L(Ω,F) = L(Ω,F)/ ∼, denote with [X ] the equivalent class in L(Ω,F)

having X as a representative and let Vf be the vector space generated by Mf . We first claim that

the couple (L(Ω,F), Vf ) is a separated dual pair under the bilinear form 〈·, ·〉 : L(Ω,F) × Vf → R

defined by: 〈[X ], µ〉 7→ Eµ[X ], for any X ∈ [X ]. Notice that the form 〈[X ], µ〉 7→ Eµ[X ] is well

posed as Eµ[k] = 0 for all k ∈ K and the pairing is obviously bilinear. Clearly if µ 6= 0 then there

exists ω ∈ Ω∗ such that µ({ω}) 6= 0 and Eµ[1ω] 6= 0. Thus we have showed that 〈[X ], µ〉 = 0, for

every [X ], implies µ = 0.

We now prove that 〈[X ], µ〉 = 0 for every µ implies [X ] = [0]. By contradiction assume [X ] 6= [0].

By assumption, X can not be replicable at a non zero cost. Observe that if X ∈ [X ] is replicable

at zero cost in any market (Ω,F ,F, S;Q) for any possible choice Q ∈ Mf then by Corollary 2.3

X is pathwise replicable for every ω ∈ Ω∗, or in other words: [X ] = [0].

Hence our assumption [X ] 6= [0] implies that there exists a Q ∈ Mf such that the market

(Ω,F ,F, S;Q) is not complete, so that Me(Q) := {Q∗ ∼ Q | Q∗ ∈ M}} 6= {Q}, and X ∈ [X ] is

not replicable in such market. Then

inf
Q∗∈Me(Q)

EQ∗ [X ] < sup
Q∗∈Me(Q)

EQ∗ [X ].

As Q ∈ Mf has finite support, Me(Q) ⊂ Mf and there exists a µ ∈ Me(Q) ⊂ Vf such that

Eµ[X ] 6= 0, which is a contradiction.

Now we conclude that the cone C/∼ is closed with respect to the weak topology σ(L(Ω,F), Vf ).

Indeed, from (14) we obtain that

C/∼ = {[g] ∈ L(Ω,F) | EQ[g] ≤ 0 ∀Q ∈ Mf} =
⋂

Q∈Mf

{[g] ∈ L(Ω,F) | EQ[g] ≤ 0}

is the intersection of σ(L(Ω,F), Vf )-closed sets.

3 Proof of Theorem 1.1

We first recall from [BFM16] the relevant properties of the set Ω∗ that will be needed several times

in the proofs.

Proposition 3.1 ( Proposition 4.18, [BFM16] ). In the setting described in Section 1 we have

M 6= ∅ ⇐⇒ Ω∗ 6= ∅ ⇐⇒ Mf 6= ∅

Ω∗ = {ω ∈ Ω | ∃Q ∈ Mf s.t. Q(ω) > 0} . (16)

The complement of Ω∗ is the maximal M-polar set.
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Proof of Theorem 1.1 As already stated in the introduction, we may assume w.l.o.g. that

M 6= ∅, or equivalently Mf 6= ∅. The first equality of the theorem holds because of the definition

of M-q.s. inequality and the fact that Ω∗ is the maximal M-polar set.

Step 1: Here we show that

inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ Ω∗} = sup
Q∈Mf

EQ[g].

Note first that the left hand side of the previous equation can be rewritten as inf{x ∈ R | g−x ∈ C}.

From Corollary 2.4 it follows:

inf{x ∈ R | g − x ∈ C} = inf{x ∈ R | EQ[g − x] ≤ 0 ∀Q ∈ Mf}
= inf{x ∈ R | x ≥ EQ[g] ∀Q ∈ Mf}
= sup{EQ[g] | Q ∈ Mf}.

Step 2: We end the proof by showing that for any g ∈ L(Ω,F)

sup
Q∈M

EQ[g] = sup
Q∈Mf

EQ[g], (17)

where we adopt the convention ∞ − ∞ = −∞ for those random variables g whose positive and

negative part is not integrable. Set:

m := sup
Q∈M

EQ[g], l := sup
Q∈Mf

EQ[g].

We obviously have that l ≤ m so that we only have to prove the converse inequality. If l = ∞
there is nothing to prove. Suppose then l <∞. We first show that

if Q ∈ M satisfy EQ[g] > l ⇒ EQ[g] = ∞ (18)

Suppose indeed by contradiction that there exists Q ∈ M\Mf such that l < EQ[g] <∞. Consider

now an arbitrary version of the process gt := EQ[g | Ft] and extend the original market with the

asset Sd+1
t := gt for t ∈ I. We obviously have that Q is a martingale measure for the extended

market and from Proposition 3.1 this implies the existence of a finite support martingale measure

Qf which, by construction, belongs to Mf . Since EQf
[g] = g0 > l, which is the supremum of the

expectations of g over Mf , we have a contradiction.

From (18) we readily infer that if m < ∞ then l = m. We are only left to study the case of

m = ∞ and we show that this is not possible under the hypothesis l <∞. Consider first the class of

martingale measures Q(g) ⊂ M such that EQ[g−] = ∞. We obviously have that Q(g)∩Mf = ∅,

moreover, since l < m = ∞ from (18) and from ∞−∞ = −∞, there exists Q̃ ∈ M \ Q(g) such

that EQ̃[g] = ∞ and EQ̃[g−] <∞. Consider now the sequence of claims gn := g∧n for any n ∈ N.

From EQ̃[g−] < ∞ and Monotone Convergence Theorem we have EQ̃[g ∧ n] ↑ EQ̃[g] = ∞, hence,

there exists n ∈ N such that n ≥ EQ̃[g ∧ n] > l. Note now that

sup
Q∈Mf

EQ[g ∧ n] ≤ sup
Q∈Mf

EQ[g] = l < EQ̃[g ∧ n] (19)

Applying (18) to g∧n we get EQ̃[g∧n] = +∞, which is a contradiction since the contingent claim

g ∧ n is bounded.
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4 Example: forget about superhedging everywhere!

Let (Ω,F) = (R+,B(R+)). Consider a one period market (T = 1) defined by a non-risky asset

S0
t ≡ 1 for t = 0, 1 (interest rate is zero) and a single risky asset S1

T (ω) = ω with initial price

S1
0 := s0 > 0. In this market we also have two options Φ = (φ0, φ1), where φ0 := f0(ST ) is a

butterfly spread option and φ1 := f1(ST ) is a power option, i.e.

f0(x) := (x−K0)+ − 2(x− (K0 + 1))+ + (x− (K0 + 2))+

f1(x) := (x2 −K1)+.

Assume K0 > s0, K1 > (K0 + 2)2 and that these options are traded at prices c0 = 0 and c1 > 0

respectively. Set c = (c0, c1). The payoffs of these financial instruments are shown in Figure 1 for

K0 = 2, K1 = 25:

x

y

payoff of S1

payoff of φ1
payoff of φ0

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Figure 1: Payoffs.

Definition 4.1. (1) There exists a model independent arbitrage (in the sense of Acciaio et al.

[AB16]) if ∃(H,h) ∈ H× R2 such that (H · S)T (ω) + h(Φ(ω) − c) > 0 ∀ω ∈ Ω.

(2) There exists a one point arbitrage (in the sense of [BFM16]) if ∃(H,h) ∈ H×R2 such that

(H · S)T (ω) + h(Φ(ω) − c) ≥ 0 ∀ω ∈ Ω and (H · S)T (ω) + h(Φ(ω) − c) > 0 for some ω ∈ Ω.

It is clear that any long position in the option φ0 is a one point arbitrage but it is not a model

independent arbitrage. We have indeed that there are No Model Independent Arbitrage as:

MΦ 6= ∅.

More precisely, any Q ∈ MΦ must satisfy Q ((K0,K0 + 2)) = 0, so that (K0,K0 + 2) is an MΦ-

polar set, nevertheless,

ΩΦ = R+ \ (K0,K0 + 2).

One possible way to see this is to observe that on Γ := R+\(K0,K0+2) the option φ0 has zero payoff

and zero initial cost so that any probability P , with supp(P ) ⊆ Γ, that is a martingale measure
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for S1, φ1, is also a martingale measure for S0, S1, φ0, φ1. Take now ω1 = 0, ω2 ∈ (K0 + 2,
√
K1),

ω3 >
√
K1 + c1 and observe that the corresponding points x1 := (−s0,−c1), x2 := (ω2 − s0,−c1)

and x3 := (ω3 − s0, φ
1(ω3)− c1)) clearly belong to conv(∆X(ω) | ω ∈ Γ) where ∆X is the random

vector [S1
1 − s0;φ1 − c1]. Consider now ε := 1

2 min{c1, s0, |ω2 − s0|} so that for ω3 sufficiently large

we have

Bε(0) ⊆ conv(∆X(ω) | ω ∈ {ω1, ω2, ω3}) ⊆ conv(∆X(ω) | ω ∈ Γ).

We have therefore that 0 is in the interior of conv(∆X(ω) | ω ∈ Γ) and from Corollary 4.11 item

1) in [BFM16], ΩΦ = Γ = R+ \ (K0,K0 + 2). Note, moreover, that this is true for any value of the

price c1 > 0.

Consider now the digital options gi = Fi(ST ), i = 1, 2, with

F1(x) = 1(K0,K0+2)(x),

F2(x) = 1[K0,K0+2](x)

which differ only at the extreme points of the interval (K0,K0 + 2) and observe that F2 is upper

semi-continuous while F1 is not. From the previous remark g1 has price zero under any martingale

measure Q ∈ MΦ, so that

sup
Q∈MΦ

EQ[g1] = 0. (20)

Define:

πΩ(g) := inf
{
x ∈ R | ∃(H,h) ∈ H× R2 such that x+ (H · S)T (ω) + hΦ(ω) ≥ g(ω) ∀ω ∈ Ω

}

and recall that

πΦ(g) := inf
{
x ∈ R | ∃(H,h) ∈ H× R2 such that x+ (H · S)T (ω) + hΦ(ω) ≥ g(ω) ∀ω ∈ ΩΦ

}

Claim 4.2. In this market:

1. πΦ(g1) = supQ∈MΦ
EQ[g1] = 0 and πΦ(g2) = supQ∈MΦ

EQ[g2];

2. πΩ(g1) = min
{

s0
K0
, 1
}
> supQ∈MΦ

EQ[g1] = 0;

3. πΩ(g2) = supQ∈MΦ
EQ[g2].

Remark 4.3. (i) Item (1) is in agreement with the conclusion of Theorem 1.2.

(ii) Item (2) shows instead that the superhedging duality with respect to the whole Ω does not

hold for the claim g1 (which is even bounded). Note that in this example all the hypothesis of

Theorem 1.4 in [AB16] are satisfied except for the upper semi-continuity of g1.

As the comparison between g1 and g2 in items (2) and (3) shows, the assumption of upper semi-

continuity of the claim seems artificial from the financial point of view, even though necessary for

the validity of Theorem 1.4 in [AB16].

Our results demonstrates that it is possible to obtain a superhedging duality on the relevant

set ΩΦ (or Ω∗ when there are no options) for any measurable claim, regardless of the continuity

assumptions (as well as without the existence of an option with super-linear payoff).
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Proof of the Claim 4.2. Item (1) holds thanks to Theorem 1.1 since in the one-period model there

is no difference between dynamic and static hedging. Notice also that the equalities πΦ(g1) =

0 = supQ∈MΦ
EQ[g1] are consequences of (20) and the fact that (H,h) = (0, 0) is a superhedging

strategy for g1 on ΩΦ. As g2 is upper semi-continuous, the superhedging duality in item (3) holds

thanks to Theorem 1.4 in [AB16], see (7). In the remaining of this section we conclude the proof

by showing πΩ(g1) = min
{

s0
K0
, 1
}

= s0
K0

(by the assumption K0 > s0) and hence item (2).

Let us consider the model independent superhedging strategies i.e. the set of (H,h) ∈ R2 ×R2

such that x+(H ·S)T (ω)+hΦ(ω) ≥ g1(ω) for any ω ∈ Ω. Any admissible trading strategy is given

by (H,h) := [H0, H1, h0, h1] ∈ R4 which correspond to positions in the securities [S0, S1, φ0, φ1]

so that
price: V0(H,h) := H0 +H1s0 + h1c1

payoff: VT (H,h) := H0 +H1ω + h0φ0(ω) + h1φ1(ω)
(21)

Trivial super-hedges There are two immediate strategies whose terminal payoff is a super-

hedge for g1.

1. S0 (i.e. H0 = 1 in (21) and H1 = h0 = h1 = 0) with initial cost 1.

2. 1
K0
S1 (i.e. H1 = 1

K0
in (21) and H0 = h0 = h1 = 0) with initial cost s0

K0
.

Consider now a generic superhedging strategy (H,h) for the option g1 and suppose first that

H1 ≥ 0.

Observe that for every ω ∈ [0,K0] we have: VT (H,h)(ω) = H0+H1ω and g1(ω) = 0. If H0 < 0

there exists ω̃ ∈ [0,K0] such that H0 + H1ω̃ < 0 = g1(ω̃) so that the strategy does not dominate

the payoff of g1. Necessarily H0 ≥ 0.

h1 6= 0 is not optimal for super-hedging g1 If h1 6= 0 we necessarily have h1 ≥ 0, otherwise

VT (H,h)(ω) < 0 for ω large enough (because of the super-linearity of f1) and (H,h) is not

a super-hedge for g1. Since f1(x) = 0 on (K0,K0 + 2) and c1 > 0, the most convenient

super-hedge is with h1 = 0 (cfr Figure 2).

x

y
payoff of φ1

payoff of g1

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Figure 2: φ1 has no positive wealth on (K0,K0 + 2).

From now on with no loss of generality h1 = 0.
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h0 6= 0 is not optimal for super-hedging g1 Since φ0 has a positive payoff, if h0 6= 0 we might

take h0 ≥ 0 otherwise we have a better super-hedge (at the same cost) by replacing h0φ0

with the zero portfolio. Suppose now h0 > 0. By recalling that H0, H1 ≥ 0 we note that

VT (H,h) as in (21) satisfies

inf
ω∈(K0,K0+2)

H0 +H1ω + h0φ0(ω) = H0 +H1K0

so that the same super-hedge is achieved by trading only in S0 and S1. In other words with

no loss of generality h0 = 0 (cfr Figure 3)

x

y
payoff of g1

payoff of h0φ0

0 1 2 3 4 5 6
0

1

2

Figure 3: h0φ0 does not dominate g1 on (K0,K0 + ε) for any h0 with ε = ε(h0)

We finally discuss the case H1 < 0.

This is, in general, a more expensive choice for the strategy (H,h). Indeed we have, for instance,

that for ω̃ = K0 + 1, H1S1(ω̃) = H1(K0 + 1) < 0 while g1(ω̃) = 1. Since for any strategy

(H,h) ∈ R4, VT (H,h)(ω̃) = H0 + H1ω̃ we need H0 ≥ 1 − H1(K0 + 1), hence, the initial price

V0(H,h) ≥ 1 −H1(K0 + 1 − s0). By choosing the parameters s0,K0 such that K0 + 1 − s0 < 0

any superhedging strategy with H1 < 0 is more expensive than the trivial super-hedge given by

H0 = 1, H1 = h0 = h0 = 0. Note moreover that in order to cover the losses in H1S1 for large

value of ω we would need to take a long position in the option φ1 (whose payoff dominates S1) for

an additional cost of h1c1 > 0 with h1 > −H1 > 0.

We can conclude that the cheapest super-replicating strategies are, in general, given by H0S0+

H1S1 with H0, H1 ≥ 0 and it is easy to see that

πΩ(g1) = min

{
s0
K0

, 1

}
=

s0
K0

> 0.

5 Technical results and proofs

Recall that {Ft}t∈I is the universal filtration which satisfies in particular that Ft contains the

family of analytic sets of (Ω,FS
t ) for any t ∈ I.
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We indicate by Mat(d × (T + 1);R) the space of d × (T + 1) matrices with real entries rep-

resenting the set of all the possible trajectories of the price process: for every ω ∈ Ω we have

(S0(ω), S1(ω), ..., ST (ω)) ∈Mat(d× (T + 1);R). Fix t ≤ T : we indicate S0:t = (S0, S1, ..., St) and

recall that S−1
0:t (A) = {ω ∈ Ω | S0:t(ω) ∈ A} for A ⊂Mat(d× (t+ 1);R). We set ∆St := St − St−1,

t = 1, ..., T.

5.1 Ω∗ and ΩΦ are analytic sets

Lemma 5.1. The set Pf = {P ∈ P | P has finite support} is an analytic subset of P endowed

with the sigma-algebra generated by the σ(P , Cb) topology.

Proof. Set E = {δω | ω ∈ Ω} which is σ(P , Cb) closed (Th. 15.8 [AB06]) and observe that Pf is

the convex hull of E. Consider for any n ∈ N the simplex ∆n ⊂ Rn and the map

γn : En × ∆n −→ Pf

defined by γn (δω1
, . . . , δωn

, λ1, . . . , λn) =
∑n

i=1 λiδωi
which is a continuous function in the prod-

uct topology. Since En × ∆n is closed in the product topology of the Borel Space Pn × Rn,

then the image γn (En × ∆n) is analytic (Proposition 7.40 [BS78]). Finally we notice that Pf =
⋃

n γn (En × ∆n) which is therefore analytic, being countable union of analytic sets.

Definition 5.2. Let L∞(Ω,F) := {f ∈ L(Ω,F) | f is bounded}. A subset U ⊂ Pf is countably

determined if there exists a countable set L ⊆ L∞(Ω,F) such that

U := {µ ∈ Pf | Eµ[f ] ≤ 0, ∀f ∈ L}

Lemma 5.3. If U ⊆ Pf is countably determined then it is analytic.

Proof. For each fn ∈ L define

Fn : P → R such that Fn(µ) =

∫

Ω

fndµ.

From Theorem 15.13 in [AB06], Fn is Borel measurable so that

U := {µ ∈ Pf | Eµ[fn] ≤ 0 for all n ∈ N} =
⋂

n∈N

(Fn)−1(−∞, 0] ∩ Pf

is analytic, being countable intersection of analytic sets.

Lemma 5.4. Let Z1(ω) := maxi=1,...,d maxu=0,...,T |Si
u(ω)|, Z2(ω) := maxj=1,...,k |φj(ω)| and Z =

max(Z1, Z2) then

PZ =

{
µ ∈ Pf | ∃Q ∈ Mf such that

dQ

dµ
=

c(µ)

1 + Z

}

PZ,Φ =

{
µ ∈ Pf | ∃Q ∈ MΦ such that

dQ

dµ
=

c(µ)

1 + Z

}

are analytic subsets of P where c(µ) = Eµ

[
(1 + Z)−1

]−1
.
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Proof. Assume PZ 6= ∅ (resp. PZ,Φ 6= ∅) otherwise there is nothing to prove. Fix any t ∈
{1, ..., T }. Let Mat(d × t;Q) be the countable set of d × t matrices with rational entries and

denote its elements by qn, n ∈ N. For qn ∈ Mat(d × t;Q), consider the set {An,m} with An,m =

{ω ∈ Ω | S0:t−1 ∈ B1/m(qn)} ∈ Ft−1, where B1/m(qn) denotes the ball (in the Euclidean norm of

Mat(d× t;R)) with radius 1/m centered in qn. Define

f i
n,m :=

(
Si
t − Si

t−1

1 + Z

)
1An,m

∈ L∞(Ω,F),

gj :=

(
φj

1 + Z

)
∈ L∞(Ω,F). (22)

The following sets

U :=
{
µ ∈ Pf | Eµ[f i

n,m] = 0 ∀i, n,m
}

UΦ :=
{
µ ∈ Pf | Eµ[f i

n,m] = 0 and Eµ[gj] = 0 ∀i, n,m, j
}

are analytic since they are countably determined. We now show that U = PZ and UΦ = PZ,Φ and

this will complete the proof.

For any fixed µ ∈ U we have by construction:

∫

Ω

Si
t

1 + Z
1An,m

dµ =

∫

Ω

Si
t−1

1 + Z
1An,m

dµ for every An,m. (23)

Consider the finite set of matrices {sj}hj=1 := {S0:t−1(ω) ∈ Mat(d × t;R) | ω ∈ supp(µ)} where

h = h(µ) depends on µ. For every j = 1, . . . , h there exists qn(j),m(j) such that sj ∈ B1/m(j)(qn(j))

and the balls B1/m(j)(qn(j)) are all disjoint. Therefore An(j),m(j) is such that

µ(Bj) = µ
(
An(j),m(j)

)

where Bj := {S0:t−1 = sj}. Since {Bj}hj=1 are atoms for µ in Ft−1, we conclude that

∫

Ω

Si
t

1 + Z
1Bj

dµ =

∫

Ω

Si
t−1

1 + Z
1Bj

dµ for every j = 1, . . . , h

and Eµ

(
Si
t

1+Z | Ft−1

)
= Eµ

(
Si
t−1

1+Z | Ft−1

)
. Define Q by dQ

dµ := c
1+Z where c := c(µ) > 0 is the

normalization constant. Then , Q ∼ µ, Q ∈ Pf and:

Eµ

(
Si
t

1 + Z
| Ft−1

)
= Eµ

(
Si
t−1

1 + Z
| Ft−1

)
if and only if EQ

(
Si
t | Ft−1

)
= Si

t−1. (24)

Thus we can conclude Q ∈ Mf and U ⊆ PZ . Take now µ ∈ PZ then there exists Q such that

EQ

(
Si
t | Ft−1

)
= Si

t−1 and dQ
dµ = c

1+Z . From Equation (24) we have that condition (23) holds and

hence µ ∈ U .

Recall that MΦ is defined in (4) and consider now µ ∈ UΦ ⊆ U . Then there exists Q ∈ Mf such

that dQ
dµ = c(µ)

1+Z . Moreover Eµ[gj ] = 0 for every j = 1, . . . , k so that, by (22), EQ[φj ] = 0. In this

way UΦ ⊆ PZ,Φ. Take now µ ∈ PZ,Φ then µ ∈ PZ from the previous part of the proof. Moreover

there exists Q ∈ MΦ such that EQ

[
φj

]
= 0 and dQ

dµ = c
1+Z . Again by (22) we have Eµ[gj] = 0 for

every j = 1, . . . , k and hence µ ∈ UΦ.

Proposition 5.5. Ω∗ and ΩΦ are analytic subsets of (Ω,F).
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Proof. Consider the Baire space NN of all sequences of natural numbers. In this proof we denote

by Bε(ω) the closed ball of radius ε, centered in ω in (Ω, d).

Consider a dense subset {ωi}∞i=1 of Ω. For any n = (n1, ..., nk, ...) ∈ NN we denote by n(1), . . . ,n(k)

the first k terms (i.e. n1, ..., nk). Define

A
n(1) := B1(ω

n(1)).

Let now {ω
n(1),i}∞i=1 a dense subset of A

n(1) we define

A
n(1),n(2) := B 1

2
(ω

n(1),n(2)) ∩ An(1).

At the kth step we shall have {ω
n(1),...,n(k−1),i}∞i=1 a dense subset of A

n(1),...,n(k−1) and we define

the closed set

A
n(1),...,n(k) := B 1

k
(ω

n(1),...,n(k)) ∩ An(1),...,n(k−1).

Notice that for any ω ∈ Ω there will exists an n ∈ NN such that

⋂

k∈N

A
n(1),...,n(k) = {ω}. (25)

We consider the nucleus of the Souslin scheme given by

⋃

n∈NN

⋂

k∈N

A
n(1),...,n(k) × {Q ∈ PZ | Q(A

n(1),...,n(k)) > 0} (26)

Observe that A
n(1),...,n(k) closed in Ω implies {Q ∈ P | Q(A

n(1),...,n(k)) ≥ 1
m} is σ(P , Cb)-closed

from Corollary 15.6 in [AB06]. Therefore

{Q ∈ P | Q(A
n(1),...,n(k)) > 0} =

⋃

m

{Q ∈ P | Q(A
n(1),...,n(k)) ≥

1

m
}

is Borel measurable in (P , σ(P , Cb)). By Lemma 5.4 we have that {Q ∈ PZ | Q(A
n(1),...,n(k)) > 0}

is analytic. We can conclude that A
n(1),...,n(k) × {Q ∈ PZ | Q(A

n(1),...,n(k)) > 0} is an analytic

subset of Ω × P (which is a Polish space).

From Lemma 5.4 we observe that any µ ∈ PZ admits an equivalent martingale measure with

finite support. From Ω∗ = {ω ∈ Ω | ∃Q ∈ Mf s.t. Q(ω) > 0}, if ω /∈ Ω∗ then ω /∈ supp(µ) for

any µ ∈ PZ . Taking (25) into account, if ω /∈ Ω∗ we can find a large enough k̄ such that

A
n(1),...,n(k̄) ∩ supp(µ) = ∅. We then have

⋂

k∈N

A
n(1),...,n(k) × {Q ∈ PZ | Q(A

n(1),...,n(k)) > 0} =

{
{ω} × Pω if ω ∈ Ω∗

∅ if ω /∈ Ω∗

, (27)

where Pω = {Q ∈ PZ | Q({ω}) > 0}.

From Proposition 7.35 and Proposition 7.41 in [BS78] any kernel of a Souslin scheme of analytic

sets is again an analytic set. Then

⋃

n∈NN

⋂

k∈N

A
n(1),...,n(k) × {Q ∈ PZ | Q(A

n(1),...,n(k)) > 0}

is an analytic set in Ω × P whose projection on Ω, thanks to (27), is equal to Ω∗. Since the

projection Π : Ω × P → Ω is continuous we finally deduce that Ω∗ is analytic.

For ΩΦ repeat the same proof replacing PZ with PZ,Φ.
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Remark 5.6. Let Ω̂ ⊆ Ω be an analytic subset of (Ω,F). An inspection of the proof shows that

Ω̂∗ :=
{
ω ∈ Ω̂ | ∃Q ∈ Mf s.t. Q(Ω̂) = 1 and Q(ω) > 0

}
(28)

Ω̂Φ :=
{
ω ∈ Ω̂ | ∃Q ∈ MΦ s.t. Q(Ω̂) = 1 and Q(ω) > 0

}

are also analytic subsets of (Ω,F). Indeed, PΩ̂ := {P ∈ P | P (Ω̂) = 1} is an analytic subset of

P , by Proposition 7.43 in [BS78], therefore PZ ∩ PΩ̂ is analytic and one may replace in the above

proof PZ with PZ ∩ PΩ̂ and Ω∗ with Ω̂∗ to obtain the conclusion.

Remark 5.7. In one-period markets (T = 1), Ω∗ is a Borel measurable set. To see this observe that

if there are no one point arbitrages then Ω∗ = Ω ∈ B(Ω) by Corollary 4.11 in [BFM16]. When this

condition is violated, there exists a strategy H1 ∈ Rd such that H1 · (S1 −S0) ≥ 0 and B1 := {ω ∈
Ω | H1 · (S1(ω)−S0) > 0} is non-empty and Borel measurable. Indeed B1 = (f ◦S1)−1(0,∞) with

f(x) := H1 · (x−S0) continuous and S1 Borel measurable. Observe now that, restricted to the set

Ω \B1, one asset is redundant (say Sd) so that the market can be described by (S0, . . . , Sd−1). If

there is no one point arbitrage we have Ω∗ = Ω \B1 ∈ B(Ω). Otherwise we can iteratively repeat

the same argument to construct Bi := {ω ∈ Ω \ ∪i−1
j=1B

j | Hi · (S1(ω) − S0) > 0} ∈ B(Ω) and

dropping iteratively one additional asset. Since the number of assets is finite the procedure takes

β ≤ d steps. On the resulting set there are no one point arbitrages so that Ω∗ = (∪β
i=1B

j)C ∈ B(Ω).

5.2 On the key Proposition 2.1

Remark 5.8. We point out at this stage that Ω∗ is not only analytic but also it belongs to FT

where FT is the universal completion of σ(St | t ≤ T ). Indeed Ω∗ ⊆ S−1
0:T (S0:T (Ω∗)). Moreover for

any ω1 ∈ S−1
0:T (S0:T (Ω∗)) there exists ω2 ∈ Ω∗ such that S0:T (ω1) = S0:T (ω2). Therefore for any

Q ∈ Mf such that Q({ω2}) > 0 and Q({ω1}) = 0, the measure Q̃ such that Q̃({ω1}) := Q({ω2}),

Q̃({ω2}) := 0 and Q̃ = Q elsewhere is a martingale measure. Necessarily ω1 ∈ Ω∗.

In the proof of Proposition 2.1 we will make use of the following simple fact: set ΩT
∗ := Ω∗ ∈ FT

then by backward recursion we have

Ωt
∗ := S−1

0:t (S0:t(Ω
t+1
∗ )) ∈ Ft, Ωt+1

∗ ⊆ Ωt
∗ for any t = 0, . . . , T − 1, and Ω∗ =

T⋂

t=1

Ωt
∗.

Notice that Ωt
∗ can be interpreted as the Ft-measurable projection of Ω∗ since Ωt

∗ = S−1
0:t (S0:t(Ω∗)).

We also recall that the condition No one point arbitrage holds true on Ω∗. If indeed there exists

H ∈ H such that (H · S)T ≥ 0 with (H · S)T (ω) > 0 for some ω ∈ Ω∗, then any measure P such

that P (ω) > 0 cannot be a martingale measure, which contradicts (1).

5.2.1 Proof of Proposition 2.1

We show, in several steps, that π∗(g) = supQ∈Mf
πQ(g) where π∗ and πQ are defined in (10) and

(11) and g ∈ L(Ω,F).

Step 1: The first step is to construct, for any 1 ≤ t ≤ T , an Ft−1-measurable random set

Rt,X,D ⊆ Rd+1 whose interpretation is the following: if ω occurs, anyH1, . . . Hd, Hd+1 ∈ Rt,X,D(ω)
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represents a strategy at time t− 1 that allows to super-hedge the random variable X at time t, for

any trajectory in D ⊆ Ω. Here Hd+1 represents the investment in the non-risky asset. Note that

we need to incorporate the additional feature given by the choice of the set D since we want to

super-hedge the random variable g only on Ω∗ ⊆ Ω.

Recall ∆St = St − St−1. Consider, for an arbitrary 1 ≤ t ≤ T , D ∈ Ft and X ∈ L(Ω,F), the

multifunction

ψt,X,D : ω 7→
{

[∆St(ω̃); 1;X(ω̃)]1D | ω̃ ∈ Σω
t−1

}
⊆ Rd+2

where [∆St; 1;X ]1D =
[
∆S1

t 1D, . . . ,∆S
d
t 1D,1D, X1D

]
and Σω

t−1 is the level set of the trajectory

ω up to time t − 1 i.e. Σω
t−1 = {ω̃ ∈ Ω | S0:t−1(ω̃) = S0:t−1(ω)}. We show that ψt,X,D is an

Ft−1-measurable multifunction. Indeed we need to show that, for any open set O ⊆ Rd × R2,

{ω ∈ Ω | ψt,X,D(ω) ∩O 6= ∅} = S−1
0:t−1 (S0:t−1 (B)) ∈ Ft−1 where B = ([∆St; 1;X ]1D)−1(O).

First [∆St, 1, X ]1D is an F -measurable random vector then B ∈ F . Second Su is a Borel mea-

surable function for any 0 ≤ u ≤ t − 1 so that we have, as a consequence of Theorem III.18 in

[DM82], that S0:t−1(B) belongs to the sigma-algebra generated by the analytic sets in Mat(d×t;R)

endowed with its Borel sigma-algebra. Applying now Theorem III.11 in [DM82] we deduce that

S−1
0:t−1(S0:t−1(B)) ∈ Ft−1 and hence the desired measurability for ψt,X,D.

By preservation of measurability (see [RW98] for instance) the multifunction

ψ∗
t,X,D(ω) :=

{
H ∈ Rd+2 | H · y ≤ 0 ∀y ∈ ψt,X,D(ω)

}

is also Ft−1-measurable and thus, the same holds true for −ψ∗
t,X,D∩{Rd+1×{−1}}. The projection

on the first d+1 components, Rt,X,D := Πx1,...,xd+1
(−ψ∗

t,X,D∩{Rd+1×{−1}}), provides the building

blocks for the super-replicating strategy for X . By the previous construction we have indeed that

Rt,X,D(ω) =

{
H ∈ Rd+1 | Hd+11D +

d∑

i=1

Hi∆Si
t(ω̃)1D ≥ X(ω̃)1D ∀ω̃ ∈ Σω

t−1

}
(29)

Notice that if D ∩ Σω
t−1 = ∅ then Rt,X,D(ω) = Rd+1. Note also that Rt,X,D is, by construction, a

closed set.

Denote by Πxd+1
(Rt,X,D) the projection on the (d+1)-th component, which is a random interval

in R with possible values {∅}, {R}. Observe now that the projection is continuous and that the

infimum of a real-valued random set A preserve the measurability since

{ω ∈ Ω | inf{a | a ∈ A(ω)} < y} = {ω ∈ Ω | A(ω) ∩ (−∞, y) 6= ∅}

Conclude, therefore, that Xt−1 := inf Πxd+1
(Rt,X,D) is an Ft−1-measurable function with values

in R ∪ {±∞}.

Step 2. We prove that for every ω ∈ {|Xt−1| < ∞} the infimum in Xt−1 is actually a

minimum. To this aim fix ω ∈ {|Xt−1| <∞} and notice that there might exist L ∈ Rd \ {0} such

that L · ∆St = 0 on Σω
t−1 ∩ Ωt

∗, meaning that some assets are redundant on this level set. We can

reduce the number of assets by selecting i1, . . . , ik ∈ (1, ..., d) such that l1∆Si1
t + . . .+ lk∆Sik

t = 0

implies lj = 0 for every j = 1, . . . , k. Consider the closed set

R̃(ω) =
{
H ∈ Rt,X,D(ω) | Hij = 0 for every j = 1, . . . , k

}
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and observe that

Xt−1(ω) = inf Πxd+1
(Rt,X,D(ω)) = inf Πxd+1

(R̃(ω))

= inf Πxd+1

(
R̃(ω) ∩

{
Rd × [Xt−1(ω), Xt−1(ω) + 1]

})
.

The set Ko(ω) := R̃(ω) ∩
{
Rd × [Xt−1(ω), Xt−1(ω) + 1]

}
is closed being the intersection of

closed sets. We claim that Ko(ω) is bounded. By contradiction, suppose it is unbounded. Let

Ĥn = (Hn, H
d+1
n ) ∈ Ko(ω) ⊂ Rd × R, such that ‖Hn‖ → +∞. By definition H

ij
n = 0 for every

j = 1, . . . , k and Hd+1
n is bounded by Xt−1(ω) + 1. For any ω̃ ∈ D ∩ Σω

t−1 and any n we have

Xt−1(ω) + 1

‖Hn‖
+

Hn

‖Hn‖
· ∆St(ω̃) ≥ Xt(ω̃)

‖Hn‖
.

Since Hn

‖Hn‖
lies on the unit sphere of Rd, we can extract a subsequence converging to H∗ with

‖H∗‖ = 1. Therefore passing to the limit over this subsequence we have H∗ ·∆St(ω̃) ≥ 0 for every

ω̃ ∈ D∩Σω
t−1. From No one point arbitrage condition we deduce H∗ ·∆St = 0 on D∩Σω

t−1. Since

Hn ∈ Ko(ω) then (H∗)ij = 0 on the redundant assets and thus H∗ = 0 which is a contradiction.

The setKo(ω) is closed and bounded in Rd+1, hence compact. From the continuity of the projection

Πxd+1
(Ko(ω)) is compact, so that the infimum is attained.

Step 3: We now provide a backward procedure which yields the super-replication price and

the corresponding optimal strategy. By classical arguments, when we fix a reference probability

Q ∈ Mf this procedure yields two processes Xt(Q) and Ht(Q) such that

g ≤
T∑

u=t+1

Hu(Q) · ∆Su +Xt(Q) =

T∑

t=1

Ht(Q) · ∆St +X0(Q) Q− a.s. (30)

where Xt(Q) represents the minimum amount of cash that we need at time t in order to super-hedge

g in the Q-a.s. sense. Recall that from NA(Q) we necessarily have Xt(Q) > −∞ on supp(Q).

With no loss of generality set Xt(Q)(ω) = −∞ for any ω /∈ supp(Q). Now we prove the pathwise

counterpart of (30):

Set XT := g and DT := Ω∗ which belongs to FT by Remark 5.8 and consider first the ran-

dom set RT,XT ,DT
. The random variable XT−1 := inf Πxd+1

(RT,XT ,DT
) represents the minimum

amount of cash that we need at time T − 1 in order to super-hedge g on Ω∗. XT−1 is therefore the

FT−1-measurable random variable that needs to be super-replicated at time T − 2.

For t = T − 1, . . . , 0 we indeed iterate the procedure by taking Xt := inf Πxd+1
(Rt+1,Xt+1,Dt+1

),

Dt = S−1
0:t (S0:t(Dt+1)) ∈ Ft and the random set Rt+1,Xt+1,Dt+1

as defined before. We again have

that Xt is an Ft-measurable function with values in R ∪ {±∞}.

This backward procedure yields the super-hedging price X0 on Ω∗ but also provide the corre-

sponding cheapest portfolio as follows: note first that for every ω ∈ Ω∗, Xt(ω) > −∞. If this is not

the case there exists a sequence (Hn, xn)n∈N ∈ Rd × R such that xn ↓ −∞, xn + Hn∆St+1(ω̃) ≥
Xt+1(ω̃) for every ω̃ ∈ Dt+1 ∩ Σω

t and hence Q-a.s. for every Q ∈ Mf such that Q(Σω
t ) > 0.

This would lead to a contradiction with Xt(Q) > −∞. From now on we therefore assume that
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Xt(ω) > −∞. In the case Xt(ω) <∞ for every t = 0, . . . , T −1, Step 2 provides that Xt is actually

a minimum. The Ft-measurable multifunction given by Πx1,...,xd
(Rt+1,Xt+1,Dt+1

∩
{
Rd ×Xt

}
) is

therefore non-empty for every t = 0, . . . , T − 1 and thus admits a measurable selector Ht+1. The

strategy H1, . . . , HT satisfy the inequalities

g ≤ HT · ∆ST +XT−1 on DT

XT−1 ≤ HT−1 · ∆ST−1 +XT−2 on DT−1

. . .

X1 ≤ H1 · ∆S1 +X0 on D1

and it represents a super-hedge on Ω∗ =
⋂T

t=1Dt as

g ≤ HT · ∆ST +XT−1 ≤
T∑

t=T−1

Ht · ∆St +XT−2 ≤ . . . ≤
T∑

t=1

Ht · ∆St +X0 (31)

holds true for any ω ∈ Ω∗. When instead Xt(ω) = ∞ for some ω ∈ Ω∗ and for some t ≥ 0 then by

simply taking Xu ≡ ∞ and Hu arbitrary for every u ≤ t, the inequality (31) is trivially satisfied.

Step 4: In order to prove (12) we recursively show that Xt(ω) = supQ∈Mf
Xt(Q)(ω) for any

ω ∈ Ω∗ which, in particular, implies X0 = supQ∈Mf
X0(Q). Obviously Xt(ω) ≥ Xt(Q)(ω) for any

ω ∈ Ω∗ so that Xt ≥ supQ∈Mf
Xt(Q). Thus, we need only to prove the reverse inequality.

For t = T the claim is obvious: XT = g. By backward recursion suppose now it holds true for

any u with t+ 1 ≤ u ≤ T i.e. Xu(ω) = supQ∈Mf
Xu(Q)(ω) for any ω ∈ Ω∗.

From the recursive hypothesis in order to find a super-replication strategy with the same price

for any Q ∈ Mf we need to super-replicate Xt+1. We fix a level set Σω
t and recall that Xt is

Ft-measurable, hence it is constant on Σω
t . We first treat two trivial cases:

• If Xt+1(ω) = ∞ for some ω ∈ Ω∗ then the claim is not super-replicable at a finite cost hence

the thesis follows with X0 = supQ∈Mf
X0(Q) = ∞.

• If Σω
t ∩ Ωt+1

∗ = ∅ we have two consequences: Σω
t is an Mf -polar set, hence by assump-

tion, Xt(Q) = −∞ on Σω
t , for any Q ∈ Mf . Moreover, as explained after equation (29),

Πxd+1
(Rt+1,Xt+1,Dt+1

) = R so that Xt(ω) = −∞ and the desired equality follows.

From now on we therefore assume Xt+1 < ∞ and Σω
t ∩ Ωt+1

∗ 6= ∅. Define, for any y ∈ R, the

set

Γy := co
(
conv

{
[∆St+1(ω̃); y −Xt+1(ω̃)] | ω̃ ∈ Σω

t ∩ Ωt+1
∗

})

We claim that

0 ∈ int(Γy) =⇒ Xt > y (32)

Indeed from 0 ∈ int(Γy) there is no non zero (H,h) ∈ Rd ×R , such that either h(y−Xt+1) +H ·
∆St+1 ≥ 0 or h(y −Xt+1) +H · ∆St+1 ≤ 0 on Σω

t ∩ Ωt+1
∗ . In particular there is no H ∈ Rd such

that

y +H · ∆St+1 ≥ Xt+1 on Σω
t ∩ Ωt+1

∗ (33)
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Recalling that, by definition, Xt is the infimum of real numbers for which (33) is satisfied, we have

Xt ≥ y. Since, from Step 2, Xt, when finite, is actually a minimum, we have Xt > y and (32)

follows.

Premise: As in Step 1, we may suppose, without loss of generality, that if for some H ∈ Rd, H ·∆St+1 =

0 on Σω
t ∩ Ωt+1

∗ then H = 0. In fact if this is not the case we can reduce, with an analogous

procedure, the number of assets needed for super-replication on the level set .

We now distinguish two cases.

Case 1: Suppose there exist (H,h, α) ∈ Rd+2 with (H,h, α) 6= 0 such that h(y−Xt+1)+H ·∆St+1 = α

on Σω
t ∩Ωt+1

∗ . We claim that h 6= 0. Indeed, if h = 0 then α 6= 0, since H ·∆St+1 = 0 implies

(H,h, α) = 0. However, α 6= 0 implies H · ∆St+1 = α on Σω
t ∩ Ωt+1

∗ which would yield a

trivial one point arbitrage on Ω∗, hence a contradiction.

Since h 6= 0 we have y − α
h + H

h · ∆St+1 = Xt+1 on Σω
t ∩ Ωt+1

∗ : this means that Xt from

Step 3 coincides with y − α
h and Xt+1 is replicable implementing the strategy H̄ := H

h in

the risky assets and Xt = y − α
h in the non-risky asset. If now for some Q ∈ Mf such that

Q(Σω
t ) > 0, we have the existence of x ≤ Xt and Hx ∈ Rd such that x+Hx · ∆St+1 ≥ Xt+1

Q-a.s. then x −Xt + (Hx − H̄)∆St+1 ≥ 0 Q-a.s. hence, since NA(Q) holds true, x ≥ Xt.

Therefore Xt = Xt(Q) on Σω
t−1.

Case 2: If a triplet (H,h, α) ∈ Rd+2 such as in Case 1 does not exist then we define

ȳ = sup
{
y ∈ R | ∃H ∈ Rd : y +H · ∆St+1 ≤ Xt+1 on Σω

t ∩ Ωt+1
∗

}
.

Obviously ȳ < Xt otherwise we are back to Case 1. For every 0 < ε < Xt − ȳ and for

every H ∈ Rd neither Xt − ε + H∆St+1 ≥ Xt+1 nor Xt − ε + H∆St+1 ≤ Xt+1 holds true

on Σω
t ∩ Ωt+1

∗ . Moreover if there exists h ∈ R such that h(Xt − ε − Xt+1) + H∆St+1 ≥ 0

(or h(Xt − ε − Xt+1) + H∆St+1 ≤ 0) on Σω
t ∩ Ωt+1

∗ necessarily h would be 0 (otherwise

simply divide by h). In such a case H∆St+1 ≥ 0 (or H∆St+1 ≤ 0) on Σω
t ∩ Ωt+1

∗ and by

absence of one point arbitrage we get H∆St+1 = 0 and hence H = 0. For this reason neither

h(Xt−ε−Xt+1)+H∆St+1 ≥ 0 nor h(Xt−ε−Xt+1)+H∆St+1 ≤ 0 for any (H,h) ∈ Rd+1\{0}
so that 0 ∈ intΓXt−ε.

Take {ωi}ki=1 ⊂ Σω
t ∩ Ω∗ (with k ≤ d) such that {[∆St+1(ωi);Xt − ε−Xt+1(ωi)] | i =

1, . . . , k} are linearly independent and generates the same linear space in Rd+1 as ΓXt−ε. By

Proposition 3.1, and the convexity of the set of martingale measures, there exists Q ∈ Mf

such that Q({ωi}) > 0 for any i = 1, . . . , k. For such a Q we get

ΓXt−ε = co (conv{[∆St+1(ω̃);Xt − ε−Xt+1(ω̃)] | ω̃ ∈ supp(Q) ∩ Σω
t })

so that, from 0 ∈ intΓXt−ε, there exists no H(Q) ∈ Rd such that Xt − ε+ H(Q) · ∆St+1 ≥
Xt+1 Q-a.s. We can conclude that Xt ≥ supQ∈Mf

Xt(Q) ≥ Xt − ε. Letting ε ↓ 0 we get

supQ∈Mf
Xt(Q) = Xt as desired.

Step 5: finally we prove (13). Notice that C ⊆ ⋂
Q∈Mf

C(Q). Moreover if g ∈ ⋂
Q∈Mf

C(Q)

then (30) holds with X0(Q) ≤ 0 for every Q ∈ Mf . Therefore also in Equation (31) we have

X0 = supQ∈Mf
X0(Q) ≤ 0 and g ≤ ∑T

t=1Ht · ∆St on Ω∗ i.e. g ∈ C.
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Remark 5.9. Note that the proof of Proposition 2.1 relies only on the fact that Ω∗ is an analyitc

set and that (Ω∗)C is the maximal polar set for the class of finite support martingale measure.

Given Ω̂ ⊆ Ω an analytic subset of (Ω,F), from Proposition 5.5 it also follows that

Ĉ =
⋂

{Q∈Mf |Q(Ω̂)=1}

C(Q)

where Ĉ := {f ∈ L(Ω,F) | f ≤ k on Ω̂∗ for some k ∈ K} and Ω̂∗ as in (28).

5.3 Proof of Theorem 1.2

Recall that πΦ is defined in (6) and MΦ in (4). Set

π̃Φ(g) := inf {x ∈ R | ∃H ∈ H such that x+ (H · S)T (ω) ≥ g(ω) ∀ω ∈ ΩΦ} .

Lemma 5.10. Let g : Ω 7→ R and φj : Ω 7→ R, j = 1, ..., k, be F-measurable random variables.

Then

πΦ(g) = inf
h∈Rk

π̃Φ(g − hΦ).

Proof. For every h ∈ Rk we have πΦ(g) ≤ π̃Φ(g − hΦ) so that πΦ(g) ≤ infh∈Rk π̃Φ(g − hΦ). By

contradiction assume πΦ(g) < infh∈Rk π̃Φ(g−hΦ), then there exist (x̄, h̄, H̄) ∈ (R,Rk,H) such that

x̄ < inf
h∈Rk

π̃Φ(g − hΦ) and

x̄+ (H̄ · S)T (ω) + h̄Φ(ω) ≥ g(ω) for all ω ∈ ΩΦ

Clearly we have a contradiction since

x̄ < π̃Φ(g − h̄Φ) = inf
{
x ∈ R | ∃H ∈ H s. t. x+ (H · S)T (ω) ≥ g(ω) − h̄Φ(ω) ∀ω ∈ ΩΦ

}
≤ x̄.

Proof of Theorem 1.2. Since also ΩΦ is analytic (Proposition 5.5), by comparing the definition

of ΩΦ in (5) with (16), we may repeat step by step the same arguments used in the proof

of Theorem 1.1 and Proposition 2.1 replacing Ω∗ with ΩΦ. We then conclude that π̃Φ(g) =

sup{Q∈Mf |supp(Q)⊆Ωφ}EQ[g] for any F -measurable random variable g. From the hypothesis we

also have π̃Φ(g) = supQ∈MΦ
EQ[g]. Since EQ[hΦ] = 0 for all Q ∈ MΦ and h ∈ Rk, for the

F -measurable random variable g − hΦ we have

π̃Φ(g − hΦ) = sup
Q∈MΦ

EQ[g − hΦ] = sup
Q∈MΦ

EQ[g], ∀h ∈ Rk.

The Lemma 5.10 then implies: πΦ(g) = infh∈Rk π̃Φ(g − hΦ) = supQ∈MΦ
EQ[g].
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